[40] Homework 5: $\operatorname{Big} O, \Omega$.
[10] Select the best "big Oh" notation for each expression. Justify by showing the constants c and n_{0}. Note that $f(n)=O(g(n))$ if there are constants $c>0$ and $n_{0}>0$ so that for all $n \geq n_{0}$ we have $|f(n)| \leq c \cdot g(n)$.

1. $100 n+1$.
2. $(10 n+1)^{4}$.
3. $3 n^{3}-5 n^{2}-500$.
4. $n^{2}+n+\sqrt{n}+\log ^{2} n$.
[10] Show the following:

$$
\begin{aligned}
6 n^{2}-2 n & =\Theta\left(n^{2}\right) \\
\frac{6 n^{2}}{\log ^{3} n+1} & =O\left(n^{3}\right) \\
3 n^{3}+44 n^{2} & =\Omega\left(n^{2}\right)
\end{aligned}
$$

[10] Is $(\log n)^{3}=O\left(\log n^{3}\right)$? Justify your answer?
[10] We say that $f(n) \prec g(n)$ if $g(n)$ grows faster than $f(n)$ (e.g., $\log n \prec n$).
Order the following functions by by \prec from the lowest to the highest:

$$
\left(\frac{3}{2}\right)^{n}, 100, n^{3} \log ^{2} n, 2^{\log _{2} n}, \log ^{4} n, 2^{3 \log _{2} n}, 2^{n}, n!, n^{n}
$$

Justify your answer.

