Homework 5. $\mathrm{Big} \mathrm{O}, \Omega$

Q1.

1. $100 n+1 \leq 100 n+n=101 n=O(n) \Rightarrow c=101, n_{0}=1$.
2. $(10 n+1)^{4} \leq(10 n+n)^{4}=(11 n)^{4}=14641 n^{4}=O(n) \Rightarrow c=14641, n_{0}=1$.
3. $3 n^{3}-5 n^{2}-500 \leq 3 n^{3}=O\left(n^{3}\right) \Rightarrow c=3, n_{0}=1$.
4. $n^{2}+n+\sqrt{n}+\log ^{2} n \leq n^{2}+n^{2}+n^{2}+n^{2}=4 n^{2}=O\left(n^{2}\right) \Rightarrow c=4, n_{0}=1$.

Q2.

1. $6 n^{2}-2 n \leq 6 n^{2}=O\left(n^{2}\right) \ldots \ldots$. (1)
$6 n^{2}-2 n \geq 6 n^{2}-2 n^{2}=4 n^{2}=\Omega\left(n^{2}\right) \ldots \ldots .(2)$
Form (1) and (2): $6 n^{2}-2 n=\Theta\left(n^{2}\right)$.
2. $\frac{6 n^{2}}{\log ^{3} n+1} \leq 6 n^{2} \leq n^{3}=O\left(n^{3}\right)$.
3. $3 n^{3}+44 n^{2} \geq n^{2}=\Omega\left(n^{2}\right)$.

Q3. Proof by contradiction: Assume that

$$
\begin{aligned}
(\log n)^{3} & =O\left(\log n^{3}\right) \\
\rightarrow(\log n)^{3} & \leq c \log n^{3}=k \log n\left(\text { note that } \log n^{3}=3 \log n\right) \\
\rightarrow(\log n)^{2} & \leq k .
\end{aligned}
$$

However, it is impossible to find such a constant k which is always greater than $(\log n)^{2}$ for all possible values of n (taking into account that it is a monotonically increasing function). Therefore, $(\log n)^{3} \neq O\left(\log n^{3}\right)$.

Q4. Note that:

- $2^{\log _{2} n}=n$.
- $2^{3 \log _{2} n}=2^{\log _{2} n^{3}}=n^{3}$.
- $\left(\frac{3}{2}\right)^{n} \leq 2^{n}$.
- For $n \geq 4$, we have $2^{n}=\prod_{i=1}^{n} 2 \leq \prod_{i=1}^{n} i=n!\leq \prod_{i=1}^{n} n=n^{n}$.
- By sketching the graphs for $\log ^{4} n$ and n, you can conclude that $\log ^{4} n \leq n$.
- A constant function (such as 100) does not grow with n as opposed to any other function and, therefore, it is upper bounded by any of these functions regardless the value of this constant.
- The exponential function a^{n} always dominates polynomial and logarithmic functions.

Hence, the required ascending order is:

$$
100 \prec \log ^{4} n \prec 2^{\log _{2} n} \prec 2^{3 \log _{2} n} \prec n^{3} \log ^{2} n \prec\left(\frac{3}{2}\right)^{n} \prec 2^{n} \prec n!\prec n^{n}
$$

