[30] Homework 3. Programming Assignment: Numerical Evaluation of Certain Sums

The goal of this assignment is to find good numerical approximations to certain sums. We need first a few definitions. For nonnegative integers $0 \leq k \leq n$ define

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

where $n!=1 \cdot 2 \cdots n$.

[15] Stirling's Approximation:

Tabulate and plot

$$
I_{n}=\sum_{k=1}^{n} \ln k
$$

for a range of n (e.g., $1 \leq n \leq 500$). Based on this numerical computation find a good a approximation formula for

$$
\ln n!=\sum_{k=1}^{n} \ln k
$$

for large n up to a $\log n$ term, if possible. That is, your answer may look like this

$$
\log n!\approx^{?} n^{2} \log n+n+3 \log n
$$

Plot your approximation on the same graph as I_{n}.
[15] An Interesting Sum:
Tabulate and plot

$$
S_{n}=\sum_{k=1}^{n}\binom{n}{k} 2^{-n} \log _{2}\binom{n}{k}
$$

for $1 \leq n \leq 500$. Based on this numerical computation find a good approximation of S_{n} for large n, as in the previous case, and plot it together with S_{n}.

