[50] Homework 2. Language of Mathematics
Each problem is worth 10 points
[10] Prove that for any sets A and B

$$
A=(A-B) \cup(A \cap B)
$$

[10] Let x and y be integers. Determine whether the following relations are reflexive, symmetric, antisymmetric, or transitive:

- $x \equiv y \bmod 11$;
- $x y \geq 3$;
- $x=y^{2}$.

Justify your statements.
Finally, determine which of the above relations are equivalence and partial order relations. For equivalence relations, construct the equivalence classes.
[10] Determine whether the following function is bijection from \mathbf{R} to $f(\mathbf{R})$:

- $f(x)=x^{5}$,
- $f(x)=\cos ^{2}(x)$,
- $f(x)=\frac{x+1}{x+5}, \quad x \neq-5$.
[10] Let $g(x)=\lfloor x\rfloor$. Find
- $g^{-1}(\{0\}) ;$
- $g^{-1}(\{x: 0<x<1\})$
[10] What are the values of the following:

$$
\begin{aligned}
& \sum_{i=1}^{1000} 3^{i}, \\
& \sum_{i=1}^{2} \sum_{j=1}^{3}(i+j) \\
& \sum_{j=0}^{100}\left(3^{j}-2^{j}\right) .
\end{aligned}
$$

