- We first prove $A \subseteq (A B) \cup (A \cap B)$. For every $x \in A$, there are two cases:
 - (a) $x \in B$. Therefore we have $x \in A$ and $x \in B$, which is $x \in (A \cap B)$. Thus $x \in (A B) \cup (A \cap B)$.
 - (b) $x \notin B$. Therefore we have $x \in A$ and $x \notin B$, which is $x \in (A B)$. Thus $x \in (A B) \cup (A \cap B)$.
 - Then we prove $(A B) \cup (A \cap B) \subseteq A$. For every $x \in (A B) \cup (A \cap B)$, we know x belongs to (A B) or $(A \cap B)$ or both. Let's consider two cases (note that they are not mutually exclusive):
 - (a) $x \in (A B)$. By definition of difference, we know $x \in A$.
 - (b) $x \in (A \cap B)$. By definition of intersection, we know $x \in A$.
- 2. (a) $x \equiv y \mod 11$ is reflexive, symmetric and transitive, but not antisymmetric.
 - reflexive: $\forall x (x \equiv x \mod 11)$ since $\forall x (x x = 0 \cdot 11)$.
 - symmetric: $\forall x \forall y$ such that $x \equiv y \mod 11$, we know $\exists k(x y = k \cdot 11)$. Therefore, we have $y x = -k \cdot 11$, which means $y \equiv x \mod 11$.
 - not antisymmetric: $1 \equiv 12 \mod 11$ and $12 \equiv 12 \mod 11$, but $1 \neq 12$.
 - transitive: $\forall x \forall y \forall z$ such that $x \equiv y \mod 11$ and $y \equiv z \mod 11$, we know $\exists k_1(x y = k_1 \cdot 11)$ and $\exists k_2(y z = k_2 \cdot 11)$. Then we have $x z = (k_1 + k_2) \cdot 11$, and hence $x \equiv z \mod 11$.

So it is an equivalence relation, the equivalence classes are:

$$\begin{split} [0] &= \{11k : k \in \mathbb{Z}\}\\ [1] &= \{11k + 1 : k \in \mathbb{Z}\}\\ [2] &= \{11k + 2 : k \in \mathbb{Z}\}\\ [3] &= \{11k + 3 : k \in \mathbb{Z}\}\\ [4] &= \{11k + 4 : k \in \mathbb{Z}\}\\ [5] &= \{11k + 5 : k \in \mathbb{Z}\}\\ [6] &= \{11k + 6 : k \in \mathbb{Z}\}\\ [6] &= \{11k + 6 : k \in \mathbb{Z}\}\\ [7] &= \{11k + 7 : k \in \mathbb{Z}\}\\ [8] &= \{11k + 8 : k \in \mathbb{Z}\}\\ [9] &= \{11k + 9 : k \in \mathbb{Z}\}\\ [10] &= \{11k + 10 : k \in \mathbb{Z}\} \end{split}$$

It is not a partial order relation.

- (b) $xy \ge 3$ is symmetric, but not reflexive, antisymmetric or transitive.
 - not reflexive: $0 \cdot 0 \geq 3$.
 - symmetric: $\forall x \forall y (xy = yx)$, so $\forall x \forall y (xy \ge 3 \rightarrow yx \ge 3)$.
 - not antisymmetric: $2 \cdot 3 \ge 3 \land 3 \cdot 2 \ge 3$ but $2 \ne 3$.
 - not transitive: Let x = 1, y = 3 and z = 1, so we have $xy \ge 3$ and $yz \ge 3$, but $xz \ge 3$.

It is neither a equivalence relation nor a partial order relation.

(c) $x = y^2$ is antisymmetric, but not reflexive, symmetric or transitive.

- not reflexive: $4 \neq 4^2$.
- not symmetric: $4 = 2^2$, but $2 \neq 4^2$.
- antisymmetric: if $x = y^2$ and $y = x^2$, then $y = y^4$, which gives us two possible values of y, 0 and 1. We can verify that when y = 1, x = 1 and when y = 0, x = 0. So x = y.
- not transitive: $16 = 4^2$ and $4 = 2^2$, but $16 \neq 2^2$.

It is neither a equivalence relation nor a partial order relation.

- 3. (a) $f(x) = x^5$ is a bijection, as we can construct its inverse $f^{-1}(y) = y^{1/5}$.
 - (b) $f(x) = \cos^2(x)$ is not a bijection, since it's not injective: $f(0) = f(\pi)$ but $x \neq \pi$.
 - (c) $f(x) = \frac{x+1}{x+5}$ is a bijection, because we can construct its inverse $f^{-1}(y) = \frac{5y-1}{1-y}$.

4. (a)
$$g^{-1}(\{0\}) = \{x : 0 \le x < 1\}$$

(b) $g^{-1}(\{x : 0 < x < 1\}) = \emptyset$

5. (a)

$$\sum_{i=1}^{1000} 3^i = \sum_{i=1}^{999} 3^{i+1}$$
$$= 3 \times \frac{3^{1000} - 1}{3 - 1}$$
$$= \frac{3^{1001} - 3}{2}$$

(b)

$$\sum_{i=1}^{2} \sum_{j=1}^{3} (i+j) = (1+1) + (1+2) + (1+3) + (2+1) + (2+2) + (2+3) = 21$$

(c)

$$\sum_{j=0}^{100} (3^j - 2^j) = \sum_{j=0}^{100} 3^j - \sum_{j=0}^{100} 2^j$$
$$= \frac{3^{101} - 1}{2} - \frac{2^{101} - 1}{1}$$
$$= \frac{3^{101} + 1}{2} - 2^{101}$$

 $\mathbf{2}$