1. - We first prove $A \subseteq(A-B) \cup(A \cap B)$. For every $x \in A$, there are two cases:
(a) $x \in B$. Therefore we have $x \in A$ and $x \in B$, which is $x \in(A \cap B)$. Thus $x \in(A-B) \cup(A \cap B)$.
(b) $x \notin B$. Therefore we have $x \in A$ and $x \notin B$, which is $x \in(A-B)$. Thus $x \in(A-B) \cup(A \cap B)$.

- Then we prove $(A-B) \cup(A \cap B) \subseteq A$. For every $x \in(A-B) \cup(A \cap B)$, we know x belongs to $(A-B)$ or $(A \cap B)$ or both. Let's consider two cases (note that they are not mutually exclusive):
(a) $x \in(A-B)$. By definition of difference, we know $x \in A$.
(b) $x \in(A \cap B)$. By definition of intersection, we know $x \in A$.

2. (a) $x \equiv y \bmod 11$ is reflexive, symmetric and transitive, but not antisymmetric.

- reflexive: $\forall x(x \equiv x \bmod 11)$ since $\forall x(x-x=0 \cdot 11)$.
- symmetric: $\forall x \forall y$ such that $x \equiv y \bmod 11$, we know $\exists k(x-y=k \cdot 11)$. Therefore, we have $y-x=-k \cdot 11$, which means $y \equiv x \bmod 11$.
- not antisymmetric: $1 \equiv 12 \bmod 11$ and $12 \equiv 12 \bmod 11$, but $1 \neq 12$.
- transitive: $\forall x \forall y \forall z$ such that $x \equiv y \bmod 11$ and $y \equiv z \bmod 11$, we know $\exists k_{1}(x-$ $\left.y=k_{1} \cdot 11\right)$ and $\exists k_{2}\left(y-z=k_{2} \cdot 11\right)$. Then we have $x-z=\left(k_{1}+k_{2}\right) \cdot 11$, and hence $x \equiv z \bmod 11$.
So it is an equivalence relation, the equivalence classes are:

$$
\begin{aligned}
{[0] } & =\{11 k: k \in \mathbb{Z}\} \\
{[1] } & =\{11 k+1: k \in \mathbb{Z}\} \\
{[2] } & =\{11 k+2: k \in \mathbb{Z}\} \\
{[3] } & =\{11 k+3: k \in \mathbb{Z}\} \\
{[4] } & =\{11 k+4: k \in \mathbb{Z}\} \\
{[5] } & =\{11 k+5: k \in \mathbb{Z}\} \\
{[6] } & =\{11 k+6: k \in \mathbb{Z}\} \\
{[7] } & =\{11 k+7: k \in \mathbb{Z}\} \\
{[8] } & =\{11 k+8: k \in \mathbb{Z}\} \\
{[9] } & =\{11 k+9: k \in \mathbb{Z}\} \\
{[10] } & =\{11 k+10: k \in \mathbb{Z}\}
\end{aligned}
$$

It is not a partial order relation.
(b) $x y \geq 3$ is symmetric, but not reflexive, antisymmetric or transitive.

- not reflexive: $0 \cdot 0 \nsupseteq 3$.
- symmetric: $\forall x \forall y(x y=y x)$, so $\forall x \forall y(x y \geq 3 \rightarrow y x \geq 3)$.
- not antisymmetric: $2 \cdot 3 \geq 3 \wedge 3 \cdot 2 \geq 3$ but $2 \neq 3$.
- not transitive: Let $x=1, y=3$ and $z=1$, so we have $x y \geq 3$ and $y z \geq 3$, but $x z \not \geq 3$.
It is neither a equivalence relation nor a partial order relation.
(c) $x=y^{2}$ is antisymmetric, but not reflexive, symmetric or transitive.
- not reflexive: $4 \neq 4^{2}$.
- not symmetric: $4=2^{2}$, but $2 \neq 4^{2}$.
- antisymmetric: if $x=y^{2}$ and $y=x^{2}$, then $y=y^{4}$, which gives us two possible values of $\mathrm{y}, 0$ and 1 . We can verify that when $y=1, x=1$ and when $y=0, x=0$. So $x=y$.
- not transitive: $16=4^{2}$ and $4=2^{2}$, but $16 \neq 2^{2}$.

It is neither a equivalence relation nor a partial order relation.
3. (a) $f(x)=x^{5}$ is a bijection, as we can construct its inverse $f^{-1}(y)=y^{1 / 5}$.
(b) $f(x)=\cos ^{2}(x)$ is not a bijection, since it's not injective: $f(0)=f(\pi)$ but $x \neq \pi$.
(c) $f(x)=\frac{x+1}{x+5}$ is a bijection, because we can construct its inverse $f^{-1}(y)=\frac{5 y-1}{1-y}$.
4. (a) $g^{-1}(\{0\})=\{x: 0 \leq x<1\}$
(b) $g^{-1}(\{x: 0<x<1\})=\varnothing$
5. (a)

$$
\begin{aligned}
\sum_{i=1}^{1000} 3^{i} & =\sum_{i=1}^{999} 3^{i+1} \\
& =3 \times \frac{3^{1000}-1}{3-1} \\
& =\frac{3^{1001}-3}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sum_{i=1}^{2} \sum_{j=1}^{3}(i+j)= & (1+1)+(1+2)+(1+3) \\
& +(2+1)+(2+2)+(2+3) \\
= & 21
\end{aligned}
$$

(c)

$$
\begin{aligned}
\sum_{j=0}^{100}\left(3^{j}-2^{j}\right) & =\sum_{j=0}^{100} 3^{j}-\sum_{j=0}^{100} 2^{j} \\
& =\frac{3^{101}-1}{2}-\frac{2^{101}-1}{1} \\
& =\frac{3^{101}+1}{2}-2^{101}
\end{aligned}
$$

