\documentclass[11pt]{article} \usepackage{fullpage} \begin{document} \begin{verbatim} ### Lecture 23: Apr 2/3, 2013 ### --------- today.txt -------- 7.1 Basic Quadrature Rules 7.1.3 Degree of exactness; order of accuracy --------- review.txt -------- 6.3 The QR factorization example H_n ... H_2 H_1 A = R => virtual QR factorization Chapter 7 Quadrature rules of the game 7.1 Basic Quadrature Rules 7.1.1 Three simple rules: trapezoid, midpoint, Simpson 7.1.2 Composite quadrature rules ------------------- || 7.1.3 || ------ section 7.1.3 --------- function Q = compsimp(f, a, b, N) % compsimp.m w = zeros(1, 2*N + 1); w(1) = w(end) = 1/6; w(2:2:end-1) = 2/3; w(3:2:end-2) = 1/3; x = linspace(a, b, 2*N + 1)'; h = (b - a)/N; Q = h*(w*f(x)); f = @(x) exp(x); Ns = 2.^(0:10); Qs = []; for N = Ns; Qs = [Qs compsimp(f, -4, 2, N)]; end Qx = exp(2) - exp(-4); loglog(Ns, 1./abs(Qs - Qx), '+') p = 4; loglog(Ns, 1./abs(Qs - Qx), '+', Ns, Ns.^p, '-') f = @(x) x >= 1/5; Qs = []; for N = Ns; Qs = [Qs compsimp(f, 0, 1, N)]; end Qx = 4/5; loglog(Ns, 1./abs(Qs - Qx), '+', Ns, Ns.^p, '-') p = 1; loglog(Ns, 1./abs(Qs - Qx), '+', Ns, Ns.^p, '-') f = @(x) x.^(1/3); Qs = []; for N = Ns; Qs = [Qs compsimp(f, 0, 1, N)]; end Qx = 3/4; loglog(Ns, 1./abs(Qs - Qx), '+', Ns, Ns.^p, '-') p = 1; loglog(Ns, 1./abs(Qs - Qx), '+', Ns, Ns.^p, '-') p = 4/3; loglog(Ns, 1./abs(Qs - Qx), '+', Ns, Ns.^p, '-') ------------------------------------ H y = - sign(y_1) ||y|| e_1 prove it! \end{verbatim} \end{document}