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Abstract

We consider two termination detection models aris-
ing in parallel applications, the APS and the AP
model. In the AP model, processors are either active
or passive and a passive processor can be made active.
In the APS model, processors can also be in a server
state. A passive processor can enter the server state,
but does not become active again. We describe and
analyze algorithms for both models and present exper-
imental work highlighting the differences between the
models. We show that in almost all situations the use
of an AP algorithm to detect termination in an APS
environment will result in a loss of performance. Our
experimental work on the Cray T3E provides insight
into where and why this performance loss occurs.

1 INTRODUCTION

Termination detection is a fundamental commu-
nication operation in data-parallel programs, espe-
cially programs in the Single Program Multiple Data
(SPMD) mode. Synchronization may be needed dur-
ing as well as at the end of program segments. When
synchronization only needs to ensure that no proces-
sor (PE) advances beyond a certain point and each
PE knows in advance when it has finished its com-
putations, barrier-style synchronization primitives can
be used [3, 10]. However, in many applications syn-
chronization points cannot be explicitly or statically
placed in the program. This happens, for example,
when synchronization events are data-driven. Termi-
nation detection achieves global synchronization for
such scenarios.

A major challenge of termination detection (TD) is
to repeatedly capture a snapshot of the global state
of the system in order to detect termination as soon
as possible. Termination should be detected without
creating communication bottlenecks and without de-
stroying an existing balance between communication
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and computation.

Termination detection has been extensively studied
in the realm of distributed processing [2, 4, 5, 8, 9,
13, 14, 15]. Solutions for parallel environments are
described in [16, 17]. TD solutions developed for dis-
tributed systems may make assumptions not directly
applicable to a parallel system. Termination detec-
tion is generally achieved by sending control messages
(TD messages). These are in addition to the work
messages, i.e. the messages sent by the original pro-
gram. In a parallel system, TD messages can destroy
a carefully achieved balance between communication
and computation. Our goal is to develop TD algo-
rithms for parallel systems that minimize the number
of control messages as well as the amount of additional
delays induced by acknowledgments of work messages.

Following conventional terminology used in termi-
nation detection, we assume that a processor is ei-
ther active or passive. Whether processors start out
as active or passive is not crucial to our algorithms.
In our underlying applications processors start out as
active. An active processor performs local computa-
tions and it can send remote work requests to other
processors. When an active processor has finished its
assigned work load, it becomes passive and waits for
termination to occur. A passive processor can send
and receive control messages. When it receives re-
mote work requests its status changes. Termination
occurs when all the processors are passive and there is
no message in transit.

In this paper we investigate two TD scenarios which
differ on how passive processors respond to work mes-
sages. Assume the application requiring TD executes
on parallel system consisting of N processors (PEs).
We do not make any assumptions about the under-
lying interconnection network. We only assume that
the PEs communicate using a set of communication
channels. The first TD model is the general environ-
ment in which a passive processor, upon receiving a
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work message, becomes active again and is capable of
generating new work messages. We refer to this sce-
nario as the active-passive (AP) model. A number of
parallel applications requiring termination handle in-
coming work requests in a different way [6, 7, 12]. In
such applications, when a passive processor receives
a work request from another processor, the work re-
quest obeys locality. By that we mean that in order to
process and complete the work request, no communi-
cation is required and all the data needed is available
locally at the processor. A passive processor receiving
a work message does thus not become active. It can
be viewed as being in a “server state.” We refer to
this termination scenario as the active-passive-server
(APS) model. Figure 1 shows the possible transitions
between states for the APS and AP model as well as
barrier synchronization.
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Figure 1: Synchronization models

We present and analyze efficient TD algorithms for
the APS and the AP model. Clearly, any algorithm for
the AP model detects termination in the APS model.
Our work focuses on the loss in performance when an
algorithm for the AP model is used for the APS model.
Two of the performance measures we consider are ter-
mination delay, i.e. the difference between the time
when global termination occurs and the time it is de-
tected, and slowdown, i.e. the increase in execution
time due to the presence of control messages and con-
gestion. We present complexity analysis showing how
the use of an AP algorithm in an APS scenario results
in an increase in control messages. Our experimental
results echo the complexity results. They show that
in almost all situations the use of an AP algorithm to
detect termination in an APS environment results in
significant performance loss.

Active-Passive Mode! for Termination Detection

2 RING ALGORITHMS

In this section we describe TD algorithms when pro-
cessors use a token-passing logical ring network on pro-
cessors PEy,...,PEN_;. Only control messages use
the ring structure.

Ring Algorithm for the APS Model:

Assume that initially every processor is active.
When a processor becomes passive and initiates a
check for termination, it generates a clean token to
be passed around the ring. A passive processor receiv-
ing a clean token leaves the token clean. An active or
server processor receiving a clean token makes the to-
ken dirty. A processor receiving a dirty token does not
change it, but passes it on. When the token returns
to its initiator and it is dirty, the initiator knows that
there was at least one non-passive PE in the system.
A passive initiator sends out another clean token.

Concluding that termination has actually occurred
requires not only the receipt of a clean token, but the
knowledge that all the messages sent have been re-
ceived. To achieve this, the token is augmented with
two fields that keep track of the number of sends and
receives, nr_send and nr_rec, respectively. When the
initiator receives a clean token and nr_send # nr_rec, a
new clean token is generated. This process is repeated
until the initiator receives a clean token and the to-
tal number of sends and receives issued by all PEs is
equal.

Ring Algorithm for the AP Model:

The algorithm described for the APS models fails to
detect termination for the AP model. More precisely,
it could conclude that termination occurred when the
system has not terminated. The problem lies in active
processors now being able to make passive processors
active and these processors can send messages which
make other passive processors active.

In the ring algorithm for the AP model every pro-
cessor uses, in addition to nr_send and nr_rec, a mes-
sage flag, m _flag. The flag is initially set to 0. A pro-
cessor PE; sets the flag to 1 whenever it sends a work
message to another processor. PE; resets m_flag to 0
when it receives a clean or dirty token. When a clean
token reaches a passive processor and that processor’s
m_flag is set to 1, the token becomes dirty. Adding
the above described actions to the algorithm for the
APS model results in a correct algorithm for the AP
model when there is only one token present in the ring.
If two or more PEs become initiators, they will each
inject a clean token into the system. We solve this
contention by assigning priorities to processors (PEs
of higher priority kill tokens generated by the PE with
lower priority). When multiple tokens are present, a



token with lower priority can reset m_flag in PE; and
later be purged. Another token of higher priority can
arrive at PE; later and find no evidence that PE; sent
a work message which made another processor active.
We solve this problem by recording the priority of the
processor resetting m_flag. When a clean token passes
through a passive processor with m_flag = 0 and the
priority of the token is higher than the recorded pri-
ority, the token is made dirty and the priority is up-
dated. When a processor sends a work message and
sets m_flag =1, it sets the priority as being undefined.
As holds for all TD algorithms described in this pa-
per, correctness arguments are omitted due to space
constraints and will appear in the full version [11].

3 TREE ALGORITHMS

In this section, the TD algorithms use logical tree
structure for TD messages. Processors becoming pas-
sive send TD information either up the tree to a parent
PE or to a designated PE on a level close to the root,
a PE on the control level.

In the logical tree every leaf corresponds to one of
the N processors. PEs are grouped together in groups
and one of the PEs within each group is made the par-
ent of the group. These selected parent PEs form the
second level of the tree. The third level is constructed
by grouping these 2nd level parents and selecting 3rd
level parents (a processor can be a parent at multiple
levels).

Tree Algorithm for the APS Model:

Assume that every processor knows its level, its par-
ent, and its number of children in the logical tree. Fur-
ther, each PE is assigned one PE on the control level.
In Algorithm Tree_APS, an active PE becoming pas-
sive for the first time informs its immediate parent
by sending a TD message which contains the number
of sends and receives it has issued so far. When all
the PEs in a group have reported to their parent PE,
the parent PE combines the information about sends
and receives issued within the group and sends this
information up to its parent. Likewise, at the upper
levels of the tree, each parent sends the information
upwards when it has received the information from all
of its group members. After each child of the root has
reported to the root and the root has become passive,
the root checks whether the number of sends equals
the number of receives. If they are, the root declares
termination. If the number of sends and receives at the
root do not match, there are work-request messages in
transit and thus the root does not issue termination.

A passive PE goes into the server state if an active

PE sends it a work request. When a PE becomes pas-
sive after being in the server state, it does not send a
control message to its parent, but it reports directly to
the assigned processor in the control level. If this pro-
cessor at the control level has not yet received reports
from all its children, it simply records the received
information. Otherwise, it passes the received infor-
mation up towards the root. Eventually, the number
of sends and receives will match and the root detects
termination. The choice of the control level can have
significant impact on the performance. A control level
close to the root implies that control messages traverse
fewer hops, but it increases the potential for commu-
nication bottlenecks.

Tree Algorithms for the AP Model:

The first AP algorithm, Algorithm Tree_ CNTR,
can be viewed as an extension of the APS tree algo-
rithm. Similar to Tree-APS, we use a control level. We
further maintain for each processor an array Counter
of size N which is used to record the number of mes-
sages sent to each individual processor. When an ac-
tive processor PE; sends a work message to PE;, PE;
increments Counter;[j]. PE;, after receiving a work
message, decrements its Counter;[j].

When active PFE; becomes passive for the first time,
it sends a TD message containing array Counter; to
its parent and PFE; reinitializes array Counter; to zero.
Upon receiving TD messages from its children, a PE
merges the arrays received. Once the node has re-
ceived TD messages from all its children, it sends a
TD message consisting of the updated array to its par-
ent. This process continues until the root receives the
TD message. When an active processor PE; becomes
passive any time other than the first time, PE; sends
a TD message with the new values in array Counter;
to its assigned processor in the control level.

The root declares termination when (i) it has re-
ceived at least one TD message from every child, and
(ii) every entry in its Counter-array is zero. The flow
for TD messages is analogous to the flow in the Tree-
APS. However, TD messages contain now an array of
size N.

The second AP tree algorithm, Algorithm
Tree_ACK, operates on a tree without using the con-
trol level. This algorithm is based on a well-known
approach for termination detection [1]. Algorithm
Tree_ACK can be viewed as an algorithm with static
and dynamic parental responsibility. Termination is
detected by processors sending TD messages from the
leaves towards the root of the static, logical tree. Once
the root has received a TD message from each child
and is passive itself, it declares termination. Hence,



communication of the tree consists of a single flow from
the leaves towards the root. This is made possible by
using a message-based dynamic parental responsibility
which is established between an active and a passive
processor. This new type of responsibility makes use
of acknowledgement messages and may cause delays in
termination detection. We refer to [1] for more details.
Complexity Comparisons:

In this section we present an analytical comparison
of the three TD tree algorithms. The asynchronous
nature of termination detection coupled with the dif-
ficulty in capturing congestion in a parallel system
makes general analysis difficult. We thus concentrate
on situations which we judge to be representative of
scenarios arising in APS applications. We assume that
the underlying computations occur in the form of a
diffusing process. Such a process involves n of the N
processors, n < N. At the beginning of a diffusing
process, one of the n PEs is active. The other n — 1
PEs are passive. The active processor sends work mes-
sages to the passive processors. We assume that a pas-
sive processor receives at least one work message and
that a total of m work messages is sent. In an ac-
tual application, several diffusing processes may exist
simultaneously. We analyze the best and worst case
situation in terms of four parameters:

o TD_tot_msgs: the total number of TD messages sent
e TD_dly_msgs: the number of TD messages sent after
the last processor becomes passive

e TD_tot_comp: the total amount of additional work
incurred by the algorithm during a diffusing process
e TD_dly_comp: the amount of work done by all the
processors to detect termination after the last proces-
sor becomes passive.

| BEST CASE

APS CNTR ACK
TD_tot_msgs h+n+2° h+mn+2° m+h
TD_dly msgs c c h
TD_tot_comp O(n) O(nN) O(m)
TD_dly_comp O(c) O(cN) O(h)

WORST CASE

APS CNTR ACK
TD_tot_msgs | h+m+cm | h+m+cm m+h
TD_dly msgs n+ 2°¢ n+ 2°¢ m+h
TD_tot_comp O(m) O(mN) O(m + h)
TD_dly_comp O(n) O(nN) O(m + h)

Figure 2: Complexity analysis of different tree algo-
rithms under best case and worst case scenarios

The best case for a diffusing process generally oc-

curs when the passive processors become servers ex-
actly once and server processors finish at times min-
imizing the four quantities stated above. The worst
case for a diffusing process occurs when processors
switch between passive and server state often and ev-
ery new passive state results in a maximum number
of new control messages. Figures 2 summarize the
bounds for the three algorithms. Besides the quan-
tities n, N, and m already defined, we use h as the
height of the tree and c as the position of the control
level. Note that ¢ < h and 2° << N.

A complete discussion on how the bounds are ob-
tained will appear in the full version of the paper. We
point out two features which are crucial to understand-
ing the experimental results. Algorithms Tree APS
and Tree_Counter send basically the same number of
control messages. Their difference lies in the size of the
control messages and the computation required. Al-
gorithm Tree_ ACK does perform more computations
compared to Tree_APS, but the difference is not strik-
ing. What sets Tree_ACK apart from Tree_APS is the
fact that every work message induces two control mes-
sages. In both the best and the worst case scenario of
a diffusion process the difference in the number of con-
trol messages is significant. The experimental results
reflect these differences.

4 EXPERIMENTAL RESULTS

In this section we discuss the performance of the
ring- and tree-based TD algorithms on a Cray T3E
using MPI message passing primitives.! The focus of
our experimental work is on demonstrating that the
use of a termination detection algorithm designed for
the AP model can result in considerable performance
loss for applications that exhibit APS characteristics.

The TD algorithms have been executed under a
number of different scenarios. The experimental re-
sults we include in this paper are for the scenario when
processors are initially assigned work loads based on a
Poisson distribution. We use Poisson mean values of
1, 2, 5, 20 and 40. A mean value of 1 implies that ini-
tially almost all PEs get similar work loads and thus
finish very close to each other. The higher mean val-
ues imply increasing disparity among the initial work
loads at different processors. Within each processor,
the work load consists of local and remote work. The
percentage of local and remote work is a parameter.
We report results for 1%, 2%, and 5% of the work in
each processor being remote work requests to other

1Results reported are for machine size of 128 PEs, unless
otherwise stated.



processors. When a remote work request is sent out,
all other processors are equally likely to be the desti-
nation. And for each remote work request, the proba-
bility of it waiting for an acknowledgment is 0.5. For
the remote requests that must be acknowledged, the
requesting processor waits for the acknowledgment be-
fore resuming its local work.

Our performance study focuses on two measures
termination delay and slowdown, defined in Section 1.
Figure 3 compares the termination delay for three ring
algorithms on various machine sizes. Two of these ring
algorithms are explained in Section 2. We refer to
them as algorithms Ring_APS and Ring FLAG. In ad-
dition, we include a ring algorithm for the AP model,
algorithm Ring COUNTER, which does not use flags,
but a counter array of size N is used in every proces-
sor. The use and function of the Counter entries is as
described for Algorithm Tree_CNTR in Section 3.
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Figure 3: TD delay for three ring algorithms.

The termination delay in Figure 3 corresponds to
the average termination delay over different computa-
tion loads and remote work requests. As predicted,
for all three ring algorithms, the termination delay in-
creases linearly with the increase in number of pro-
cessors. For larger machine sizes, the algorithms
Ring FLAG and Ring COUNTER perform worse than
Ring_APS. The reason is that Algorithm Ring FLAG
potentially makes one additional pass through the ring
and Algorithm Ring COUNTER suffers due to large
token size which is proportional to the number of pro-
Cessors.

Next, we compare Ring APS with the tree-based
algorithms. Figure 4(a) compares the termination de-
tection delay of Ring APS and tree based algorithms
for different machine sizes. The tree based algorithms,
Tree_APS and Tree_ACK, outperform Ring_APS. The
Ring_APS algorithm suffers due to its inherent sequen-
tial flow of the token through the processors. Fig-
ure 4(b) gives a closer look at the performance of the

tree-based algorithms. The performance curves corre-
spond to a workload scenario of mean=20 and remote
workload=5%. In terms of TD delay, the performance
of the Tree_APS and the Tree_ ACK is not strikingly
different. On the other hand, the effect of large mes-
sage sizes for a token is seen in the termination detec-
tion delay of Tree_CNTR.

Figure 5(a) captures the slowdown in terms of total
TD messages. Algorithm Tree_ACK creates over twice
the number of TD messages compared to Tree_ APS
and Tree.CNTR. This is also true for different load
distributions as shown in Figure 5(b). The number
of TD messages generated by algorithm Tree CNTR
is close to the number of TD messages generated by
Tree_ APS. This is expected, because the two algo-
rithms only differ in the size of the control messages:
Algorithm Tree_APS uses a O(1) size token whereas
Tree_.CNTR uses O(N) size token. In our experiments,
we have observed that the algorithm Tree_ CNTR slows
down the underlying computation significantly. This
also results in a higher termination detection delay as
shown in Figure 4(b). Note that Tree_APS algorithm
outperforms Tree_ACK and Tree_.CNTR algorithms in
APS environment, both in terms of termination de-
tection delay and overall computation slowdown. For
additional discussion on the performance of the TD
algorithms we refer to [11].

5 CONCLUSION

We considered two models for termination detection
arising in SPMD applications, the APS model and the
AP model. For each model we described a number
of different algorithms which adapt and modify meth-
ods for distributed termination detection algorithms
to parallel systems. Our experimental results show
that under almost all circumstances the use of an AP
algorithm for an APS scenario results in a considerable
loss of performance.
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