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Abstract: In s-to-p broadcasting, s processors in a p-processor machine contain a message to
be broadcast to all the processors, 1 < s < p. We present a number of different broadcast-
ing algorithms that handle all ranges of s. We show how the performance of each algorithm
is influenced by the distribution of the s source processors and by the relationships between
the distribution and the characteristics of the interconnection network. For the Intel Paragon
we show that for each algorithm and machine dimension there exist ideal distributions and
distributions on which the performance degrades. For the Cray T3D we also demonstrate
dependencies between distributions and machine sizes. To reduce the dependence of the per-
formance on the distribution of sources we propose a repositioning approach. In this approach
the initial distribution is turned into an ideal distribution of the target broadcasting algorithm.
We report experimental results for the Intel Paragon and Cray T3D and discuss scalability and
performance.
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1 Introduction

The broadcasting of messages is a basic communication operation in message-passing massively
parallel processors (MPPs). Two variants of the broadcasting operation, the one-to-all and
all-to-all broadcast, have been studied extensively and are generally included in communication
libraries [1, 2, 6, 7, 12, 17]. In the one-to-all broadcast, one processor broadcasts a message to
every other processor [4, 11, 15, 16, 18]. In the all-to-all broadcast, every processor broadcasts
a message to every other processor [3, 8, 10, 13, 20]. Broadcasting problems arising in parallel
applications are not limited to these two forms. The number and positions of the processors
initiating a broadcast can vary and may not be known in advance. In this paper we present a
unified framework for s-to-p broadcasting; i.e., when s of the p processor of a machine simulta-
neously initiate a broadcast, 1 < s < p. We refer to the s processors as the source processors.
We describe different algorithms for s-to-p broadcasting and discuss experimental results for
the Intel Paragon and Cray T3D.

S-to-p broadcasting, which is also known as many-to-all broadcasting [19], arises, for exam-
ple, when processors generate broadcast messages in a dynamic fashion. In iterative algorithms,
processors may initiate a broadcast when their own computations have led to a significant
change in data values stored at other processors. This scenario is also known as dynamic
broadcasting [21]. In dynamic broadcasting the distribution of the sources is often random. An
application in which the number of source processors is not known in advance, but the positions
of the processors tend to follow regular patterns, is dynamic load balancing for distributed data
structures as described in [9].

Parameters influencing scalability (i.e., the ability to maintain speedup) of s-to-p algorithms
include the number of processors, the message sizes, and the number of source processors. Qur
results demonstrates that other architecture-dependent factors can have considerable influence
on scalability and thus on the choice of the algorithm that gives the best performance. For any
fixed s, an s-to-p algorithm can exhibit a different behavior depending where the source pro-
cessors are located. An algorithm-architecture pair is likely to have ideal distribution patterns
and distribution patterns that give poor performance. Poor distribution patterns for one pair
can be ideal for another.

In this paper we describe a number of different s-to-p broadcasting algorithms and investi-



gate for each algorithm good and poor distribution patterns. We characterize how parameters
of s-to-p algorithms impact different source distributions. Some of our algorithms are tailored
towards mesh architectures and others are based on architecture-independent approaches. Our
goal is to design algorithms whose behavior can be characterized as follows:

e the number of processors actively involved in the broadcasting process increases as fast
as possible and

e the message length at the processors increases as slowly as possible.

We show that achieving these two objectives can be more difficult for regular machine sizes (i.e.,
machines whose dimensions are a power of 2). This, in turn, implies that good or bad input
distributions cannot be characterized by the pattern alone. The dimension of the machine
plays a crucial role as well. We show that for the Paragon algorithms based on the above
stated goal give the best performance. For the Paragon, the performance obtained on ideal
distributions can differ by a factor of 2 from that obtained on poor distributions. To eliminate
the dependence of an algorithm on source distribution and machine dimension, we propose the
approach of repositioning sources. The basic idea is to perform a permutation to transform the
given distribution into an ideal distribution for a particular algorithm which is then invoked
to perform the actual broadcast. For the Cray T3D, we also show that some distributions
performs better than the others, providing an argument for repositioning algorithms.

In order to study the relationships between algorithms, source distributions, and machine
architecture, we assume that every processor knows the position of the source processors and the
size of the messages when s-to-p broadcasting starts. If this does not hold, synchronization and
possible communication is needed before our algorithms can be used. The paper is organized as
follows. In Section 2 we describe the algorithms that do not reposition sources. In Section 3 we
discuss different repositioning approaches. Section 4 describes the different source distributions
we consider. In Section 5 we discuss performance and scalability of the proposed algorithms on

the Intel Paragon and Cray T3D. Section 6 concludes.

2 Algorithms without Repositioning

A natural first approach for implementing communication operations is to make use of opera-

tions available in communication libraries [1, 2, 6, 7]. Not surprisingly, s-to-p broadcasting can



be phrased in terms of such operations. We start this section by describing three such solu-
tions. The broadcasting of the s messages can be performed by every source processor sending
its message to a designated processor, say processor Py. Py combines the s messages into one
large message which is then broadcast to all processors. In terms of existing operations, this
corresponds to an s-to-one gather operation followed by a 1-to-p broadcast. An alternative
approach is to view the s-to-p broadcast as an all-to-all broadcast in which the s source proces-
sors broadcast their message and p — s processors broadcast a null message. A third solution
is to have each processor view its message as p — 1 distinct messages and perform an all-to-all
personalized exchange (i.e., an operation in which every processor sends a unique message to
every other processor). Our work has shown that the above three approaches can have serious
drawbacks resulting in poor performance. In our experimental study we include two of the
approaches for the sake of comparison: Algorithm 2-Step which performs an s-to-one gather
followed by a 1-to-p broadcast and Algorithm PersAlltoAll which performs a personalized
message exchange.

Another possible implementation based on available operations is to allow each source pro-
cessor to initiate its own 1-to-p broadcast, independent of the location and number of source
processors. Such a solution seems attractive for dynamic broadcasting situations since it does
not require synchronization before the broadcasting. However, having the s broadcasting pro-
cesses take place without interaction and coordination leads to poor performance due to arising
congestion and the large number of messages in the system.

In the algorithms we consider every source processor initiates broadcast, after a global
synchronization. Whenever messages from different sources meet at a processor, messages
are combined. Thus, subsequent steps proceed with fewer messages having larger size. Our
algorithms differ on the patterns underlying the merging of messages. The merging patterns
are chosen to satisfy the objectives given in Section 1. The remainder of this section describes
three algorithms based on this principle: Algorithms Br_Lin, Br_zy_source, and Br_zy_dim.

In Algorithm Br_Lin, we view the processors as forming a linear array. When the under-
lying architecture is a mesh, the indexing may correspond to a snake-like row-major indexing.
However, the linear array does not have to be a physical one, it can be a logical one. If proces-
sors P; and P35, 1 < i < p/2, both contain a message to be broadcast, they exchange their

messages and form a larger message consisting of the original and the received message. If only



one of the processors contains a message, it sends the message to the other processor. Then,
Algorithm Br_Lin proceeds recursively on the first p/2 and the last p/2 processors. Algorithm
Br_Lin can thus be viewed as consisting of [logp] iterations, with each iteration having pairs
of processors communicating and possibly exchanging messages.

Consider Algorithms Br_Lin on a mesh architecture. When p = 2* and the mesh is square,
the first logp/2 iterations use only column links, while the remaining iterations use only row
links. Whether the number of processors actively involved in the broadcasting process increases,
depends on where the source processors are located. For example, when the input distribution
consists of columns, the first log p/2 iterations introduce no new sources. For meshes with an
odd number of rows, new sources are introduced in the case of column distribution. In order to
study the use of only column links or row links for arbitrary mesh sizes, we consider broadcasting
algorithms which operate on one dimension at a time. Within each dimension (e.g., within a
row or within a column), these algorithms invoke Algorithm Br_Lin. We describe two such
algorithms which differ on how dimensions are selected.

In Algorithm Br_xy_source the maximum number of sources in the rows and columns
determines in which order the dimensions are processed. Recall that the processors know the
positions of the sources. Let max, be the maximum number of sources in a row and mazx, be
the maximum number of sources in a column. If maz, < maz., rows are selected first and
Algorithm Br_Lin is invoked on the rows. Otherwise, the columns are selected first. A reason
for choosing the dimensions in this order is the following. When the rows contain fewer source
processors, invoking Br_Lin within the rows is likely to generate messages of smaller size to
be broadcast within the columns (i.e., at the time when Br_Lin is invoked on the columns we
expect the message sizes to be smaller). As an example, assume all sources are located in «
columns and each such column contains r sources, where r is the number of rows of the mesh.
Then, maz, = a and maz. = r. First broadcasting in the rows results in every processor
containing o messages at the time the column broadcast starts. If we were to first broadcast
within the columns, ¢ — a columns would be empty columns at the time the row broadcast
starts.

For the sake of comparison, we also consider broadcasting without consideration as to where
the source processors are located, only considering the size of the dimensions. Assume the mesh

consists of r rows and ¢ columns. Algorithm Br_xy_dim selects the rows if » > ¢ and the



columns if r < c.

3 Algorithms with Repositioning

We will show in Section 5 that the performance of s-to-p algorithms depends on where the source
processors are positioned. For the Intel Paragon, we have observed that performance can differ
by a factor of 2. Further, each algorithm has its own ideal as well as poor source distributions.
To break the dependence on the position of the sources we next describe algorithms which
reposition the sources and then invoke the s-to-p algorithm on an ideal input distribution.
Observe that the repositioning of processors containing messages has been applied successfully
to obtain good routing algorithms [14]. We consider two such algorithms, a repositioning and
a partitioning algorithm.

A repositioning algorithm for s-to-p broadcasting is composed from a non-repositioning
algorithm and an ideal input distribution for this algorithm on the selected machine. We
consider three repositioning algorithms: Repos_Lin, Repos xy source, and Br_xy dim.
We use Repos_Lin in our explanation. The first step of Algorithm Repos_Lin generates an ideal
distribution of s sources for Br_Lin on the given machine. This is achieved by performing a
partial permutation in which each source processor sends its message to a processor determined
by the ideal distribution. We refer to the next section for a discussion on ideal distributions.
Whether it pays to perform the redistribution depends on the quality of the initial distribution
of sources. Our current implementations do not check whether the initial distribution is close
to an ideal distribution and always reposition.

Our second class of algorithms makes use of the observation that the time for broadcasting
s/2 sources on a p/2-processor machine is often less than half of the time needed for broad-
casting s sources on a p-processor machine. In addition to repositioning the sources, these
algorithms also partition the processors and perform two independent broadcasting problems
simultaneously. Assume we partition the p processors into a group G consisting of p; proces-
sors and into a group G consisting of ps processors. The partition of the processors into two
groups is independent of the position of the sources. However, it may depend on the choice of
the broadcasting algorithm invoked on each processor group. The repositioning of the sources

is done so that



e group (G; contains s; sources, group G contains s9 sources, and ﬁ—; = j—;, and

e the new source distribution in G (resp. G2) is an ideal one for the broadcasting algorithm

invoked in G (resp. Ga).

After the broadcasting within G; and G5 has been completed, every processor in G (resp.
G2) exchanges its data with an assigned processor in G5 (resp. G1). This communication step
corresponds to a permutation between the processors in G; and Go. Depending on what s-
to-p algorithm is used within the groups, we consider three partitioning algorithms: Part_Lin,

Part_zy_source, and Part_zy_dim.

4 Source Distributions

In this section we discuss different source distribution patterns used in our experiments. Some
of these distributions exploit the strengths while other highlight the weaknesses of the pro-
posed algorithms. Some are chosen because we expect them to be difficult distributions for all
algorithms. To define the distributions, assume a mesh of size p = r x ¢ with r < ¢ and that

processors are indexed in row-major order. Let i = [2].
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Figure 1: Placement of 30 sources in row, cross, and right diagonal distributions.

e Row and Column Distributions: R(s) and C(s)
In R(s), i evenly spaced rows contain source processors. Every row, with the exception
of the last one, contains ¢ source processors. For a 10 x 10 mesh, R(30) has the source
processors positioned as shown in Figure 1. C(s) is defined analogously for the columns.

e Equal Distribution: E(s)
Processor (1, 1) is a source processor and every [p/s]|-th or |p/s|-th processor is a source
processor. For particular values of s, r, and ¢, E(s) can turn into a row, column, or
diagonal distribution, or exhibit a rather irregular position of sources.



e Right and Left Diagonal Distributions: Dr(s) and DI(s)
Dr(s) has the s source processors positioned on 7 diagonals. We include the diagonal
from (1,1) to (r,7). The remaining ¢ — 1 diagonals are spaced evenly (assume wrap-
around connections when placing sources) and the last diagonal not necessarily filled with
sources. DI(s) has source processors on the diagonal from (1,c¢) to (r,1) and spaces the
remaining ¢ — 1 diagonals accordingly.

e Band Distribution: B(s)
B(s) generalizes the right diagonal distribution which contains ¢ diagonals, each having
width 1. The band distribution B(s) contains b = [7] evenly distributed bands, each
having width [ 1.

e Cross Distribution: Cr(s)
Cr(s) corresponds to a union of a row and a column distribution, with the number of
source processors in the row distribution being roughly equal to the number of processors
in the column distribution. Figure 1 shows C7(30) for a 10 x 10 mesh. It consists of two
equally spaced rows, each containing 10 sources, and two equally spaced columns. The
second column contains only 4 sources.

e Square Block Distribution: Sq(s)
In Sq(s), the source processors are contained in a mesh of size [1/s] X [1/s]. If not stated
otherwise, we assume that processor (1,1) is the top-left corner of the square. Within the
square, the s sources are placed column by column.

Figure 1 shows three of the above distributions for s = 30 on a 10 x 10 mesh. The re-
mainder of this section describes how the algorithms handle different distributions on a mesh
architecture.

For Algorithm Br_zy source one expects row and column distributions to be ideal source
distributions. Algorithm Br_zy source will choose the first dimension so that the number of
source processors is increased as fast as possible, while the message length increases as slowly
as possible. However, not all row and column distributions are equally good. For example, in
R(20) on a mesh of size 10 x 10, the first and the sixth row contain the source processors and
thus the first iteration does not increase the number of source processors. Having 20 sources
positioned in the first and the seventh row eliminates this. This is an important observation for
the algorithms generating ideal distributions. It shows that the machine dimension effects the
ideal distribution of sources. The diagonal distribution places the same number of sources in
each row and column. One would expect Algorithm Br_zy_source to perform well on diagonal

distributions. The performance of Algorithm Br_zy_source on the equal distribution will vary.



algorithm dependent distribution dependent
congestion ‘ wait ‘ # send/rec || av_msg lgth ‘ av_act_proc
2-step O(s) 0(1) O(p) O(sL) O(it5)
PersAlltoAll 0(1) 0(1) O(p) O(L) O(p)
Br_Lin, s = 2! 0(1) O(logp) | O(logp) O(sL) O(is + 552)
Br_Lin, s # 2! 0(1) O(logp) | O(logp) O(hfng) O(15575 l0g 5)

Figure 2: Comparing algorithm and data distribution characteristics for the equal distribution

Cross, square block, and band distributions should be considerably more expensive since the
source positions may not allow a fast increase in the number of sources.

The behavior of Algorithm Br_Lin on the distributions is different. First, neither row or
column distribution are ideal distributions for Br_Lin. For the column distribution and certain
machine sizes, a fraction of the iterations may not increase the number of sources. When the
number of rows is a power of 2, Br_Lin on the row distribution behaves like Br_zy_source.
Since, depending on the ratio of s and p, the equal distribution can turn into a row or a column
distribution, we do not consider it ideal either. The behavior of Br_Lin on the left and the right
diagonal distribution can differ (no such difference exists for Br_zy_source). On a machine of
size 10 x 10, Dr(10) experiences no increase in the number of sources in the first iteration. For
other machine sizes, the right diagonal distribution may not experience such a disadvantage.
The left diagonal distribution is least sensitive towards the size of the machine and it is one of
the ideal distributions for Br_Lin. The remaining distributions appear to be difficult.

We conclude this section by contrasting algorithm and distribution dependent parameters
for selected algorithms. Figure 2 shows five paramters for Algorithms 2-Step, PersAlltoAll,
and Br_Lin on the equal distribution. We assume p = 2* and that every source processor
contains a message of size L. For Algorithm Br_Lin we distinguish whether s is a power of 2 or
not. The three algorithm dependent parameters are congestion, which measures the maximum
number of sends and receives a processor handles in one iteration, wait, which bounds the
number of times a processor waits for data before proceeding with the next send operation, and
#send/rec which measures the total number of send and receive operations per processor during
the entire algorithm. For 2-Step and PersAlltoAll the values are given for implementations in
terms of send/receive operations, with 2-Step consisting of logp and PersAlltoAll consisting

of p iterations, respectively. The two distribution dependent parameters are av_msg_lgth and



av_act_proc. Parameter av_msg_lgth bounds the maximum average length of the messages sent
and received by a processor over all iterations. More precisely, if the length of the messages for
a processor is Iy, 1, . ..,l; over t iterations, then (3-!_, 1;)/t < av_msglgth < sL. Parameter
av_act_proc measures the average number of active processors in the machine over all iterations
(it is bounded by p).

The table shows a number of relationships influencing performance and which are discussed
in more detail in the next section. Within the algorithm dependent parameters, 2-Step and
PersAlltoAll employ a low wait cost at the expense of a large number of total send and receives.
Algorithm Br_Lin keeps wait and #send/rec balanced (in Br_Lin every iteration experiences
a wait cost). For algorithms consisting of logp iterations, the ideal average number of active
processors, ignoring the effect of s, is @. This is achieved by 2-Step, but the other param-
eters are relatively high. For Br_Lin and the equal distribution, the distribution dependent
parameters depend on whether s is a power of 2. For s = 2!, the first {/2 iterations do not
increase the number of active processors, they only increase the message length at the s source
processors. For s # 2!, the number of active processors increases faster and the message length
grows slower. Our experimental results will show that the behavior for s = 2! occurs for other

distributions and algorithms and generally results in poor performance.

5 Experimental Results

In this section we report performance results for the s-to-p broadcasting algorithms on the Intel
Paragon and Cray T3D. We consider machine sizes from 4 to 256 processors and message sizes
from 32 bytes to 16K bytes. We study the performance for source numbers ranging from 1 to
p and the source distributions described in Section 4.

The Paragon has an underlying mesh architecture and applications can execute on sub-
meshes of a specified dimension. The T3D’s interconnection network forms a 3-dimensional
mesh and applications execute on a specified number of virtual processors whose mapping to
physical processors processors cannot be controlled by the user. The T3D has a larger com-
munication bandwidth: every interconnect node has six outgoing channels which are able to
simultaneously support hardware transfer rates of 300 MB/s. The Intel Paragon has 5 channels

per interconnect node with 200 MB/sec per channel.
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The results reported for the Paragon were obtained using the NX communication library,
with the exception of two MPI implementations shown in Figure 3. We have compiled and
run all algorithms on the Paragon under MPI environment. We have observed a performance
loss of 2 to 5% in every MPI implementation. The results reported for the Cray T3D were
obtained using MPI. The performance results reported have been obtained over multiple runs
and are averaged over four best runs. Most implementation issues follow in a straightforward
way from the descriptions given in the previous sections. We point out that we avoid global
synchronization in our algorithms and use data parallelism to synchronize between steps and
iterations.

In this paper we report only the performance for the case when all source processors broad-
cast messages of the same length. In our experiments, using different length messages did not
influence the performance of the algorithms significantly. In particular, for a given algorithm, a
good distribution remains a good distribution when the length of messages varies. Throughout

this section, we use L to denote the size of the messages at source processors.

5.1 Algorithms without Repositioning on the Paragon

In this section we discuss the scalability of the five algorithms described in Section 2 on the Intel
Paragon. We first consider standard scalability parameters such as machine size, number of
source processors, and message length. We then consider other relevant parameters, including
the distribution of the source processors, the dimension of the machine, and the interaction of
the dimension of the machine and the source processor distribution with respect to a particular
algorithm. We show how these parameters impact performance.

The communication operations invoked in Algorithms 2-Step and PersAlltoAll use the imple-
mentations described in [8]. In particular, the personalized all-to-all operations makes message
exchanges consisting of p permutations and uses the exclusive-or operation on processor indices
to generate the permutations. Algorithm 2-Step uses an one-to-all implementation which views
the mesh as a linear array and applies the same communication pattern used in Algorithm
Br_Lin; i.e., processor P; exchanges a message with F;,,/» and then the one-to-all communi-
cation is performed within each machine half. We did not expect Algorithms PersAlltoAll and
2-Step to give good performance on the Paragon. PersAlltoAll exchanges many messages and

Algorithm 2-Step creates significant communication bottlenecks. However, we did want to see
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Figure 3: Performance of algorithms on a 10 x 10 Paragon; number of sources varies from 1 to
100, L = 4K, equal distribution.

their performance against the other proposed algorithms to show the potential disadvantage of
using existing communication routines.

Figure 3 shows the performance of the different broadcasting algorithms on a 10 x 10 Paragon
when the number of sources varies. For comparison sake, we also include the MPT version of
Algorithms 2-Step and PersAlltoAll: Algorithms MPI_AllGather and MPI_Alltoall. The three
curves giving the best (and almost identical) performance correspond to Algorithms Br_Lin,
Br_zy dim and Br_zy_source. Algorithms 2-Step and PersAlltoAll give poor performance and
the MPI versions perform worse than the NX versions. The reason for the poor performance of
these four algorithms lies in the communication patterns and the communication bandwidth.
Algorithm 2-Step suffers congestion at the node which first gathers all the messages. Algorithm
PersAlltoAll suffers because of the large number of sends issued by the source processors. Both
of these shortcomings are even more pronounced in the MPI versions. The performance of the
other three algorithms, Br_Lin, Br_zy_source, and Br_zy_dim scales linearly with the increase in
number of sources. Depending on the number of sources and how the equal distribution places
sources in the machine, performances differ slightly.

Figure 4 shows the performance for a right diagonal distribution with s = 30 when the
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message size changes. As already stated, the diagonal distributions place the same number of
sources in the rows and columns. Once again, regardless of how small a message size, Algorithms
2-Step and PersAlltoAll perform poorly. The almost flat curve up to a message size of 1K for
Algorithm PersAlltoAll further supports our observation related to Figure 3. The other three
algorithms experience little increase in the time until L = 512 bytes and then we see a linear
increase for larger message lengths.

Figure 5 shows the behavior of the five algorithms when the machine size varies from 4 to
256 processor. Algorithm PersAlltoAll is as good as any other algorithm for small machine sizes
(4 to 16 processors). This feature is also observed when the number of sources is close to p for
small machine sizes.

The first three figures give the impression that algorithms Br_Lin, Br_zy_source, and Br_zy_dim
give the same performance. However, this is not true. In the following we show that different

distributions and different machine sizes effect these algorithms in different ways.
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Figure 6: Performance of three algorithms on a 10x10 Paragon; L = 2K, different source
distributions with s = 30.

Figure 6 shows the performance for s = 30 while using different distribution patterns. The
figure confirms the discussion given in Section 4 with respect to ideal and difficult distributions.
Algorithm Br_zy_source gives roughly the same performance on the first 4 distributions, but for

the square block and cross distribution we see a considerable increase in time. We point out
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that the same performance on the first 4 distributions for Br_zy_source is not true in general.
However, the row and the column distribution show up as ideal distributions. Square block and
cross distributions require more time for all three algorithms. As expected, Algorithm Br_Lin
performs best on them. This is due to the fact that in Algorithm Br_Lin sources can spread to
different rows and columns in the first few iterations, thus utilizing the links more efficiently.
On the other hand, for the square block distribution, Algorithms Br_zy_source, Br_zy_dim have
only few columns and rows available to generate new sources. The big increase in Algorithm

Br_zy_dim for the row distribution indicates the importance of choosing the right dimension

first.
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Figure 7: Performance of three algorithms on a 10x10 Paragon; right diagonal distribution,
total message size is kept at 80K, the number of sources varies.

Figure 7 shows the performance of the three algorithms when the total message size (i.e.,
the sum of the message sizes in the source processors) is fixed. A goal for our algorithms is
to increase the number of processors engaged in the broadcasting as fast as possible and to
increase the message length as slowly as possible. Figure 7 indicates that this strategy works
well on the Paragon: if the data is spread among a larger number of sources, the broadcast
is faster. For example, for a total message size of 80K, data spread among 5 sources takes
approximately 11.4 msec using Algorithm Br_ zy_source. However, the same amount of data

when spread among 40 sources takes only 7.3 msec.
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Figure 8 shows the performance of three algorithms for p = 120 when the dimensions of the
machine vary. It demonstrates that performance is related to the size the dimensions. For the
same number of sources, message size, and number of processors, a distribution gives different
performance (hence is considered good or bad) depending on the dimension of machine. For
a small number of sources (for example s = 8) the machine dimensions may not affect the
performance. For a large number of sources, machine dimensions impact the performance
considerably more. It seems like an anomaly to have faster performance for s = 15 than for
s = 8. The reason lies in the distribution and the number of rows. When s = 8, the equal
distribution tends to place the source processors within columns. This does not allow a fast
increase in the number of sources. On the other hand, for s = 15, the source processors are,

with the exception of size 4 x 30, positioned along diagonals.

5.2 Algorithms with Repositioning on the Paragon

Algorithms Br_zy_source and Br_Lin exhibit good performance for a variety of source distribu-
tions and machine dimensions. However, each algorithm has source distributions which exhibit
algorithm and machine weaknesses. The problems arising from the source distribution can be
avoided by performing a repositioning of the sources. In Section 3 we described a repositioning

and a partitioning approach. We next discuss the performance of the repositioning approach
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using Algorithm Br_zy_source. We use the row distribution as one of the ideal source distribu-

tions for Br_zy_source. Similar results hold for the repositioning algorithm using Br_Lin with

the left diagonal distribution as an ideal source distribution.

Let Algorithm Repos_zy_source be the repositioning algorithm invoking Br_zy_source. In

this algorithm we first perform a permutation to redistribute source processors according to

the row distribution. The row distribution we generate positions the rows so that the number

of new sources increases as fast as possible. The exact position of the rows depends on the

number of rows of the mesh. The cost of the permutation achieving the repositioning depends

on s, where the s source processors are located, and the message length.
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Figure 9: The difference between Repos_zy_source and Br_zy_source on a 16 x 16 Paragon;
different input distributions, L = 6K, varying the number of sources.

Figure 9 shows the percentage difference between Algorithms Repos_zy_source and Br_zy_source

on four input distributions when the number of sources increases from 16 to 192. The behavior

shown is representative for other machine and message sizes and can be summarized as follows:

e Repositioning results in a significant gain for distributions like the cross and square block
distributions. In terms of actual time, the gain for repositioning on the cross distribution
lies between 13 and 31 msec. A gain of 13 msec is observed when s = 192, while for all
other source numbers the gain lies between 20 and 31 msec.

e The somewhat erratic behavior for the equal distribution can be explained from the
position of the sources in a 16 x 16 mesh. For example, for s = 50, the generated
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distribution is similar to a row distribution and thus Algorithm Repos_zy_source costs
more than Br_zy_source.

e Repositioning for the band distribution costs up to 6.5% more. Translating this into
actual time, when s is less than 150, Repos_zy_source costs between 1 and 2 msec more.
For s = 192, repositioning costs 7.5 msec more. The band distribution for a 16 x 16 mesh
consists of a single diagonal band of width s/16. The communication characteristics for
the band distribution are thus similar to those of an ideal distribution. Not surprisingly,
nothing is gained by repositioning.

Our overall observations are that the gain of repositioning tapers off for any distribution
when the number of sources gets large. When repositioning is done on an ideal or almost ideal
distribution, we observed an increase of 1-2 msec when the message size is < 16K and s < p/2.
Clearly, if the input distribution is close to an ideal distribution, it does not pay to reposition.

We point out that our algorithms do not analyze the input distribution.
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Figure 10: Repos_zy_source and Br_zy_source on a 16 x 16 Paragon; different input distributions,
s = 75, varying the message length.

The effect of the message length on the repositioning is illustrated in Figure 10. The figure
shows the percentage difference for the same four distributions on a 16 x 16 machine and 75
sources when the message length increases. For a message size of less than 1K, repositioning
pays only for the cross distribution. As the message size increases, the benefit of repositioning

increases for all distributions. Not surprisingly, the gain tapers off for large message lengths.
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In Section 3 we have proposed to combine the repositioning with a partitioning approach.
We first generate an ideal source distribution and then create two broadcasting problems, each
on one half of the machine. Let Algorithm Part_zy source be such a partitioning algorithm
using Br_zy_source within each machine half. We have compared Part_zy_source against the
performance of Repos_zy_source and Br_zy_source. Our results showed that for the Intel Paragon
the partitioning approach hardly ever gives a better performance than repositioning alone. The
reason lies in the cost of the final permutation. The exchange of large messages done in the
final step dominates the performance and eliminates the gain obtained from broadcasting on
smaller machines.

The conclusion of our experimental study on the Paragon is that repositioning pays more
often than not. If the following three conditions hold, one can expect the repositioning algorithm

to give a better and more predictable performance:

1. The number of sources processors is moderate; s < p/2 appears to be the breakpoint.

2. The number of processors is not too small. For p < 16, there is little difference between

the algorithms and different source distributions.

3. The message length is at least 1K and at most 16K.

When all three conditions are satisfied and the initial distribution of sources is close to an ideal
distribution, the cost of repositioning is a small fraction of the overall broadcasting cost. When
performing a repositioning as recommended above we observed a cost of 1-2 msec for generating
an ideal distribution. Since the gain obtained from repositioning is significant for more difficult

patterns, our results suggest that Algorithm Repos_zy_source should be used on the Paragon.

5.3 Performance on the T3D

In this section we present performance results on the Cray T3D for three of the s-to-p algo-
rithms discussed in Section 2. The algorithms are MPI_AllGather, an MPI version of 2-Step,
MPI_AlltoAll, an MPI version of PersAlltoAll, and Algorithm Br_Lin implemented using MPI
send and receive primitives. Since only production level access to the T3D was available, our
implementations had no control over the mapping of virtual to physical processors. For this

reason we did not consider the s-to-p algorithms whose performance is sensitive to the topology
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of the underlying communication network. We first present scalability results for Algorithm
MPI_AllGather and then compare and contrast these results with those for the other two algo-

rithms.
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Figure 11: Performance of MPI_AllGather on the T3D for different distributions; a) varying
machine size while s = 32 while total length of all the messages = 128K, b) varying problem
size, p = 128, L = 16K.

Figure 11 shows the scalability of the MPI_AllGather with respect to machine size and
problem size assuming different source distributions. It shows that for small machine sizes the
distribution of the source processors has little impact on the performance. For larger machine
sizes, the equal distribution consistently performed better. For the data shown in Figure 11(a),
the equal distribution takes 28% less time than the other distributions. Similarly, in 11(b), the
equal distribution outperforms the other distributions. The convergence and deterioration of
MPI_AllGather when s approaches p is as expected.

Figure 12 shows the performance of MPI_AllGather on different distributions when the
problem size and machine size are fixed and the number of source processors varies. The data
shown supports our earlier claim: for a given problem size, better performance is obtained when
the broadcast data is initially distributed over a large number of source processors. The type of
distribution has significant impact on the performance when s < p/4. The figure demonstrates
again that the equal distribution tends to give better performance. The computing environment
used to obtain results on the T3D does not allow us to conclude that the equal distribution is

an ideal distribution for MPI_AllGather. Our results only indicate that the distribution of the
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Figure 12: Performance of the MPI_AllGather on a 128-processor T3D assuming total length

of all the messages fixed at 128 K and the number of sources varies.

sources has an impact on the performance.
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Figure 13: Performance of three algorithms on a 128 processor T3D for L = 4K; (a) sources

vary from 5 to 128, equal distribution; (b) different source distributions with s = 40.

Figure 13 compares the performance of the MPI_AllGather, MPI_AlltoAll, and Br_Lin. In

13(a), the number of sources varies. Contradictory to our results on the Paragon, MPI_AlltoAll

gives the best performance on the T3D. This is primarily due to the large communication

bandwidth available on T3D combined with the fact that MPI_AlltoAll does not combine mes-

sages and does not need to wait for messages. Using the parameters introduced in Figure 2,
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MPI_AlltoAll has a small wait cost. While MPI_AllGather has an equally small wait cost,
the congestion arising at processor Py can be associated with the higher cost compared to
MPI_AlltoAll. As the number of sources increases, the performance of MPI_AllGather and
MPI_AlltoAll converges. The reason for the poor performance of Algorithm Br_Lin lies pri-
marily in the higher wait cost and the cost of combining messages (and the resulting delay for
starting the next iteration).

Figure 13(b) shows the performance of the three algorithms under different source distri-
butions. MPI_AlltoAll performs well for all distribution patterns. For all three algorithms the
performance varies for the different source distributions. For T3D we cannot identify ideal
distributions for the algorithms considered. We conjecture that the equal distribution performs
well for MPI_AlltoAll and MPI_AllGather since the placement of source processors tends to
be uniform and may resemble a uniformly random distribution. Therefore, a random distribu-
tion appears to be a good choice for the T3D. However, generating a random distribution and
communicating such a distribution to all processors may entail more overhead than what was
needed in the repositioning algorithms on the Paragon. From the results obtained for the T3D
we conclude that an algorithm which minimizes wait cost and thus tends to make good use of

the large communication bandwidth can be expected to give a good performance.

6 Conclusions

We have described different s-to-p broadcasting algorithms and analyzed their scalability and
performance on the Intel Paragon and Cray T3D. We showed that the performance of each
algorithm is influenced by the distribution of the source processors as wells as by the relationship
between the number of sources and machine size. Each algorithm has ideal distributions and
distributions on which the performance degrades. Our work shows that the scalability of s-to-p
implementations on the T3D is influenced by the same parameters that influence the scalability
on the Paragon. Due to the larger communication bandwidth, the differences are not quite as
striking on the T3D. While the use of standard communication primitives results in very poor
performance for the Paragon, it gives a good performance for the T3D. On the Paragon, the
best performance is achieved by using the repositioning approach which reduces the dependence

of the input distribution on the performance.
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