Data Replication for External Searching in Static Tree
Structures

Susanne E. Hambrusch
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

seh@cs.purdue.edu

ABSTRACT

This paper explores the use of data replication to improve
external searching in static tree structures. We present gen-
eral and efficient mappings from the nodes of a tree T' to
blocks of size B when nodes of T can be replicated. The
amount of replication is controlled and block utilization and
blocknumber are optimized. We consider total node replica-
tion (measuring the total space used) and individual node
replication (measuring the replication of indivdual nodes).
For an arbitrary tree T of size N and height h, we show
that by using at most %N space one can achieve a block-
number proportional to the optimal blocknumber of [h/B].
We show that when every node can be replicated only a
constant number of times, no significant reduction in the
blocknumber may be possible. Our work also shows that
generating mappings in which all but one block contain ex-
actly B nodes increases the blocknumber by at most 2.

1. INTRODUCTION

Data replication allows better performance with increased
availability of data. In static environments, data replication
does not have to deal with maintaining consistency among
multiple copies [1, 3, 6, 11, 13, 14]. Static environments deal-
ing with large data sets arise frequently. They include envi-
ronments in which updates happen at certain, chosen points
in time and in bulk, and queries are not present at the time
of updating. In this paper we show how to effectively use
data replication to improve external searching in static tree
search structures. Trees are fundamental data structures for
efficient query processing [9, 12] for which mappings to ex-
ternal storage have been developed [2, 4, 7, 8]. The use of
data replication in static environments has been studied in
[5, 7, 10]. We present general and efficient techniques for
mapping trees to external storage. Our techniques deter-
mine what data to replicate, how to control the amount of
replication, and how to ensure good block utilization.

Chuan-Ming Liu
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

liucm@cs.purdue.edu

Let T be a rooted tree consisting of N nodes. When the
data associated with the nodes of T' cannot be replicated
and T is too large to store in main memory, T is partitioned
into blocks of size at most B. We assume that one block
can hold the data of B nodes. We thus generate at least
[N/B] blocks to be assigned to external storage. Two met-
rics commonly used to measure the quality of the generated
blocks are the (i) number of nodes assigned to blocks and
(ii) the blocknumber. Blocks containing fewer than B nodes
are undesirable since they underutilize resources which can
result in increased access to the external devices. The block-
number measures external access during a search. Consider
a path P from root r to a leaf [in T. The blocknumber is
the maximum number of edges (u,v) on path P for which u
and v are in different blocks.

In this paper we describe mappings from the nodes of T to
blocks when nodes can be replicated, the amount of repli-
cation is controlled, and block utilization and blocknumber
are optimized. A node of T can be mapped to more than
one block and is thus available in different blocks. We con-
sider two forms of node replication: total node replication
and individual node replication. For total node replication
we measure the total number of nodes. A mapping of tree
T has a total replication factor T if the the number of nodes
in all blocks is bounded by 7N, 7 > 1. A mapping has an
individual node replication p, if every node is replicated at
most p times, p > 1. Clearly, if a mapping has node replica-
tion p, it also has a total replication of at most p. For both
forms of replication we generate mappings which minimize
the blocknumber and achieve a good block utilization. Block
utilization is captured by distinguishing between complete
and non-complete mappings. When at most one block is
assigned fewer than B nodes we refer to the mapping as a
complete mapping.

In Section 2 we establish bounds on block utilization and
blocknumber for the case when no replication is allowed. In
Section 3 we show that any tree T of height h has a com-
plete mapping to blocks of size B with a total replication
factor of 2 and achieving a blocknumber of O(h/B). Hence,
in an asymptotic sense, by using at most 50% more space,
we can achieve the best possible blocknumber. The number
of times a node is replicated varies in this mapping. Some
nodes experience no replication and are thus assigned to only
one block; in the extreme case, a node can be replicated 22

times. We also show that extending our solution to smaller
replication factors results in a tradeoff between the achieved
blocknumber and replication factor. In Section 4 we describe
mappings not exceeding a given node replication factor p.
For a constant node replication factor we show that there
exist trees for which no significant reduction in the block-
number is possible. Using a technique leading to optimal
mappings with fixed node replication for certain classes of
trees, we describe an algorithm achieving fixed node repli-
cation for arbitrary trees. Section 5 concludes our paper.

2. MINIMIZING THE BLOCKNUMBER
WITHOUT REPLICATION

In this section we present relevant results for the generation
of blocks when nodes of the search tree cannot be replicated.
Observe that in this case a mapping corresponds to a par-
tition of the nodes. The developed bounds are useful when
comparing the performance gains in mappings with node
replication. Assume tree T has height h and let d be the
maximum number of children of a node in T', d > 2. Let bl*
be the optimum blocknumber in a non-complete mapping of
T. We first show that for any tree T having height h we
have

h
log, B

h »

(5] <o < Tz

Then, we describe a general technique, similar to [4], for
generating a complete mapping from a non-complete map-
ping (i.e., from a mapping in which there is no restriction
on how full blocks have to be). The problem of minimizing
the blocknumber in a tree without replication has been con-
sidered in [2]. Diwan et al. present a linear time algorithm
generating blocks containing between B/2 and B nodes and
achieving minimum blocknumber. We will show that, by
applying our technique, generating the complete mapping
increases the initial blocknumber of bl* by at most 1.

For any tree T having height h we trivially have bl* > [L].
Before we show the upper bound, we first prove that for d =
2 there exists a tree with bl* = O(ﬁ). The generalization
of this bound for arbitrary d is straightforward.

LEMMA 1. An N-node complete binary tree has bl* =
h
[[1052 BJ]'

Proof: Let 75 be the N-node complete binary tree. To show
that the claimed blocknumber can be achieved, identify in
T> complete subtrees containing exactly B nodes. The first
such subtree contains the root of 7> and the other subtrees
are identified in a breadth-first manner. Every subtree gen-
erated forms a block. Once no more subtrees of size B can
be found, each remaining subtree forms a block containing
fewer than B nodes. Since no complete mapping is required,
no further optimization is needed. We refer to it as mapping
P;. The blocknumber of P; is [ﬁ].

We next show that the blocknumber achieved by mapping P>
is optimal. Assume there exists another mapping P achiev-
ing a smaller blocknumber. Starting with the root of T> and
looking level-by-level, locate the first block in P which is
different from a block in P». Such a block must exist. In

this block of mapping P we identify a node v which is a
leaf in the subtree assigned to the block, but which is not
a leaf in the block in P». Choose v such that the difference
in the levels is a maximum. When a search proceeds from
node v to a child of v, a new block is needed. Continue
with a block containing a child of v and repeat the above
argument. The number of blocks requested by partition P
will be equal or larger than the number of blocks requested
for mapping P», contradicting our assumption that P has a
smaller blocknumber. m|

While for a complete tree a blocknumber of fﬁ} is the

best possible, we can do better for other trees. We now show
that [ﬁ] is indeed an upper bound for all trees.

THEOREM 2. Let T be an arbitrary N-node tree of height
h in which a node has at most d children. Then, bl* <

h
Frov-AE

Proof: We again assign subtrees to blocks, with the root
of T being the root of the first subtree. Assume node v is
the root of a subtree to be assigned to a block. Let T, be
the subtree of T rooted at v. We include at least the next
log, B levels of subtree T,,. If T}, contains fewer than log, B
levels, the block contains all nodes in subtree T, and it is
not complete. Once log,; B levels of T;, have been included,
we continue to include nodes of T, level-by-level until the
block is complete. Hence, compared to complete trees, the
blocknumber can only decrease and the bound follows. O

The mappings described above make no effort to assign B
nodes to a block and are thus not complete. We next de-
scribe how to transform these mappings into complete ones.
The transformations increase the blocknumber by at most
one.

LEMMA 3. Let P be a mapping of tree T to blocks of size
B having blocknumber bl. Then, there exists a complete
mapping P’ having blocknumber at most bl + 1.

Proof: The complete mapping P’ is obtained from P in two
phases. First, the blocks of mapping P are considered level-
by-level starting with the block containing the root of T'. If
a block, say block X, contains fewer than B nodes and not
all leaves in X correspond to leaves of T', children of leaves in
X are assigned to X. Nodes are reassigned to block X until
X either contains B nodes or all leaves of X correspond to
leaves in T'. This reassignment of nodes terminates once all
blocks have been processed.

Assume the reassignment phase generates m blocks contain-
ing fewer than B nodes. Let By, Ba,... , Bn be these blocks
and m1,n2,...,Ny, be the number of nodes in these blocks,
with n; < ny < ... < ny < B. The second phase gen-
erates a complete mappring by reassigning subtrees. The
reassignments may increase the blocknumber by one. From
the actions taken in the first phase it follows that every
leaf in a block B; is a leaf of T. Assume the nodes in blocks
By,...,B;_1 have already been assigned to their final blocks
in complete mapping P’. Block B; may have been changed

by the actions already taken. We next determine the index
j such that n; + ...+ ni4j—1 < Band n; +...+niy; > B.
In the case of equality, B;,... ,Bit+; form one block in P’.
Otherwise, we assign the nodes in blocks Biy1,... ,Bitj—1
to block B;. To make Block B; complete, it receives from
block B;; the number of nodes still needed to be complete.
The nodes assigned to B; form either a single subtree in
B;; or their removal leaves one subtree in B;;;. (In case
B;4; contains more than one tree, a traversal of one tree in
B;; generates the desired result.) We then continue with
block B'L+j+1.

After both phases have been applied to the initial mapping
P, at most one block contains fewer than B nodes and we
thus have a complete mapping P’. The blocknumber in-
creased by at most one. This happens on a path from the
root to a leaf which was reassigned during phase 2.]

We can thus conclude with the following corollary.

COROLLARY 4. Let T be an arbitrary tree and let bl* be
the optimum blocknumber in a non-complete mapping of T.
Then, there exists a complete mapping for T achieving a
blocknumber of at most bl* + 1.

3. MAPPINGS WITH A TOTAL REPLICA-
TION BOUND

We now turn to the efficient generation of complete blocks
when nodes of 7' can be replicated and an upper bound on
the total number of nodes is given. We describe an algo-
rithm which generates a complete mapping for 7 < % hav-
ing a blocknumber of at most [2—%6427 4 2 This compares
favorably to the bound of O(h/log, B) which is the best
possible for some trees when 7 = 1. The mapping can be
generated in O(N) time. Related work on replication is dis-
cussed in [7]. In particular, the paper describes a mapping
of a complete binary tree of height h for 7 = 2 achieving a
blocknumber of fﬁ].

Our algorithm consists of three phases: preprocessing, path
creating, and balancing. We first discuss each one of the
three phases in detail. We then discuss an O(NN) time main
memory implementation.

PHASE 1: Preprocessing.

For every node v in T' we first determine the quantity desc(v),
the number of descendents in the subtree rooted at v. Let
p(v) be the parent of node v in T. A node v is marked as a
subtree leaf if desc(v) < 2B and desc(p(v)) > 2B. A subtree
leaf represents a subtree of T’ containing at most 2B nodes.
Such a node v and its descendents form one block. Finally,
the descendents of a subtree leaf v are removed from T and
the resulting new tree is used in Phase 2.

Figure 1(a) shows a tree T' with B = 6 after the prepro-
cessing phase. Subtree leaves are represented as cubes. The
integer on the cube represents the number of nodes in the
subtree (and stored in the corresponding block). For B = 6,
a subtree leaf corresponds to at most 12 nodes and the par-
ent of a subtree leaf is the root of a subtree containing more
than 12 nodes.

PHASE 2: Path-Creating.

Let T’ be the tree generated by the preprocessing phase.
The path-creating phase consists of a bottom-up traversal
of T' in which subtrees of height B are identified and re-
moved from 7”. The last step of the traversal may generate
a subtree of height less than B. The subtrees are used to
generate paths which are assigned to blocks.

Let H be a generated subtree of T’ having height B. In
the first subtrees identified by the path-creating phase, the
leaves of H correspond to nodes of T marked as subtree
leaves. In the later steps, leaves of H will either be subtree
leaves or path leaves (path leaves will be defined shortly).
Let g be the root of subtree H. Node e of H is an end-node
if all children of e are either subtree leaves or path leaves.
For every end-node e in H, we create a block containing the
nodes on the path from root ru to e. We refer to ry as the
start-node and to e as the end-node of the path. After all
paths have been generated, subtree H - with the exception
of root 7y - is removed from T’. Node rg is now a leaf and
is marked as a path leaf.

When applying the path-creating phase to the tree shown in
Figure 1(a), we first identify node k as the root of a subtree
H of height B = 6. The path of length 6 from k to p forms
one complete block, block B,. Subtree H contains two other
end-nodes, nodes y and ¢, and we generate two more blocks
B, and By, as shown in Figure 1(b). Block B, contains 3
nodes and has y as the end node and block B; contains four
nodes and has t as the end node. This process results in
making three copies of node k. The subsequent steps of the
path-creating phase view node k as a path leaf. Four more
blocks, namely blocks B;, B, By, and B, are generated.

PHASE 3: Balancing.

After the path-creating phase, every block generated so far
contains between 1 and 2B nodes of T and it represents ei-
ther a path or a subtree. A block assigned a path contains
at most B nodes and a block assigned a subtree contains
at most 2B nodes. The balancing phase generates a com-
plete mapping by reassigning nodes. The reassignments will
increase the blocknumber by at most 2.

The balancing phase proceeds top-down. It starts with the
blocks containing a copy of the root of 7. Assume the cur-
rent block considered by this top-down traversal contains a
path P of length < B. The end-node e of path P is incident
to nodes which are either in paths or in subtrees.

e End-node e has at least one child which is the start-node
of a path in a block.

In this case there exists at least one child of e which is in
a block containing a path of length exactly B. Choose one
such child, say v, and let P, be the path of length B con-
taining v as the start node. In order to make the block con-
taining path P complete, reassign B — |P| nodes from path
P, to the block containing path P. Subsequent steps will
make the block containing the shortened path P, complete.

Figure 2 illustrates how the balancing phase changes blocks
formed by the path-creating phase. As indicated in Fig-
ure 1(b), block B initially contains three nodes, including
root a and c as the end-node. Block B; contains 6 nodes

(a) tree T after preprocessing; cubes represent subtree leaves.

/1

abc

k l
N

\

AN N
Q

-

@

=
N

o
-
«
=2
x

N N
=
<
\

kimnop

\

‘

\,

kgst

(b) after path-creating; blocks created are indicated in
tree and are shown explicitly.

Figure 1: Illustrating phases 1 and 2 for B = 6.

Figure 2: Illustrating phase 3 for B = 6.

and has a child of ¢ as the start-node of its path. Block
B, is made complete by taking the first three nodes of the
path in B;. Subsequently, block B; contains three nodes,
with h being the new start-node. Block B; is made com-
plete by taking three nodes of block B,. Block B, becomes
complete by taking three nodes from subtrees rooted at the
children of p. The process of assigning nodes from subtrees
to incomplete blocks is described next.

o All children of end-node e are subtree leaves.

When e is incident to only subtree leaves, we reassign in a
greedy fashion as many nodes as necessary to create a block
of size B. If possible, we use subtrees in its entirety. If this
is not possible, we include the needed number of nodes in a
level-by-level manner.

Continuing the discussion of Figure 2, the process described
above identifies the three nodes assigned to block B,. End-
node p has two children, one representing a subtree of size
10 and one of size 5. In the solution shown in Figure 3, three
nodes from the subtree of size 10 are assigned to block B,.
This assignment partitions the seven remaining nodes into
three subtrees, as indicated in Figure 3. The light edges
in Figure 2 indicate adjacency relations to nodes in other
blocks.

After all blocks containing paths have been handled, ev-
ery block which originally contained a path is complete and
no change in the blocknumber occurred. To complete the
balancing phase, blocks containing subtrees are made com-
plete. These blocks contain between 1 and 2B nodes. We
first consider the blocks containing more than B nodes. For

10 O

59 R

Figure 3: Making block B, complete: nodes «, 3, and y are assigned to B,.

each such block, we identify the exactly B nodes by either
choosing subtrees or choosing nodes from one subtree in a
breadth-first manner. These B nodes form a new block.
Creating complete blocks this way increases the blocknum-
ber of the mapping by at most 1. Blocks containing subtrees
with fewer than B nodes are handled using the strategy un-
derlying Lemma 3. Reassignments made increase the block-
number by at most 1.

We next sketch an O(N) time internal memory algorithm.
Assume tree T is stored so that for every node v, v’s par-
ent and a list of v’s children are available. The prepro-
cessing phase corresponds to traversing 7' in O(N) time,
starting at the root, and identifying all subtree leaves. The
path-creation phase corresponds to a bottom-up traversal
of the tree which starts at the subtree leaves. The traver-
sal performs the necessary height computations to identify
the roots of subtrees used for generating the paths assigned
to blocks. For every root g of such a subtree H, we gen-
erate all paths from rgy to end-nodes in H and then mark
ry as a path leaf. In addition to generating the paths, the
path-creation phase generates for every path leaf ry

e links to the blocks containing node rx and

e 3 link to one block containing a path of length exactly
B.

At least one such block exists for every rg, except for the
root of T. For every subtree leaf v, the traversal generates
a link to the one block containing the subtree rooted at v.
The total amount of work done in the path-creation phase
is O(N).

The balancing phase traverses tree 7' again in a top-down
fashion. For every node of T identified as a root rg of a
subtree, the traversal generates complete blocks containing
ru as follows. For every block Bl containing node 7, deter-
mine the other end-node on the path stored in Bl. Let this
be node e and let ry: be a child of e in T'. If rg/ is a path
leaf, node 75+ of T has access to a block Bl’ containing B
nodes. We use block Bl' to make block Bl (which contains
nodes 7y and e) complete, as described by the algorithm.
Block B!’ now contains a shorter path and one end-node
changed. Observe that for generating a complete mapping
we do not need to update information about the new end-

node of this path. The described process of making a block
complete can be applied block Bl complete. When all chil-
dren of node e are subtree nodes, the balancing follows the
description given earlier in a straightforward way. Overall,
balancing and thus the generation of the complete mapping
takes O(N).

THEOREM 5. The nodes of an arbitrary N-node tree T
can be mapped to complete blocks using at total replication
factor T < 3/2 and achieving a blocknumber of O(L%). The
mapping can be generated in O(N) time by an internal mem-
ory algorithm.

Proof: Consider first the blocknumber of the mapping. The
preprocessing phase identifies subtrees of height at least
log, B. Once these subtrees are removed from T, a path
from the root to a subtree leaf encounters at most [(h —
log,; B)/B] blocks. Since the balancing phase increases the
final blocknumber by at most 2, the claimed bound follows.
In an asymptotic sense, the blocknumber achieved by the
mapping is optimal.

We next show 7 < 3/2. The path-creating phase starts
operating on a tree T’ obtained from T by forming subtree
leaves. Recall that a subtree leaf is the root of a subtree in
T of size at most 2B (and the parent of v is the root of a
subtree of size > 2B). The bound on the total space needed
by the mapping uses a “charging argument”. We show that
every node of tree T receives at most two charges and that
the total number of charges is bounded by %N .

Let | be a subtree leaf. Every node of T in the subtree rooted
at [receives one charge. Let H be a subtree of T" selected
in the path-creating phase. Every subtree selected (except
possibly the last subtree containing the root of T') has height
B. Let P be a path from the root of H to an end-node e.
The length of path P is at most B. We do not charge the
nodes on path P. (Charging these nodes would give a node a
charge equal to the number of times the node is replicated.)
Consider first the situation when all the children of end-
node e are subtree leaves. The total number of nodes in the
subtrees rooted at the subtree leaves is at least 2B. We give
|P| < B of these nodes one additional charge. Observe that
every node in such a subtree has already been charged once
and thus at most half of them end up with two charges.

B=75, h=800, d=6
T

300 : : : 4

251 o

Blocknumber

1 11 12 13 14 15
T values

Figure 4: Maximum blocknumber in terms of con-
tributions by the path-creating (dark) and balancing
(light) phase as 7 changes.

When end-node e contains a child which is a path leaf [, the
charging is done as follows. Path P from the root of H to
end-node e has length at most B. Node [is the start node
of a path P’ of length B in a subtree handled earlier in the
path-creating phase. None of the nodes on path P’ have yet
been charged. We now assign a charge of 1 to |P| nodes on
path P'. Later steps assign no further charge to the nodes
on path P'.

In summary, if all children of a node v are subtree leaves,
then at most B nodes in the subtrees rooted at v receive
two charges and at least B of these nodes receive only one
charge. All other nodes of tree T receive at most one charge.
Thus, at most half of the N nodes of T receive two charge
and the total number of charges made is at most %N . O

Since a total replication factor of 3/2 results in an asymptot-
ically optimal blocknumber, we do not consider larger repli-
cations. The obtained result can be generalized to smaller
replication factors and a tradeoff between total replication
and blocknumber can be established. For arbitrary 7, 1 <
T < 3/2, the preprocessing phase identifies the subtree leaves
as the nodes v which have desc(v) < -5 B and desc(p(v)) >

T%lB. The path-creating phase generates a mapping in

which a block contains between 1 and —Z- nodes and the

7—1

blocknumber is at most [(h—log, —15 B)/B]. The balancing
phase increases the blocknumber by at most [—]. Figure 4
shows the increase in the blocknumber as 7 approaches 1.
Observe that this plot gives an upper bound on the block-
number and that this upper bound is the best possible for
complete trees. In summary, using O(7N) space, we can
generate a complete mapping of an arbitrary tree achieving
a blocknumber of at most [(kh —log; = B)/B]+ [=+].

We conclude this section by pointing out a limitation of
the mapping. When a search in tree T proceeds towards
the root (e.g., from a leaf to the root), information can be
added to each block which identifies the next block needed.

In this case, the blocknumber of the tree corresponds to the
blocknumber used by the actual search. For other types of
tree searches, the mapping described has some limitations.
Additional information would be needed to identify blocks
and to make the blocknumber of of mapping correspond to
the blocknumber of the search. We point out that this is
not the focus of our work. We concentrated, in this and the
next section, on showing that there exist mappings achieving
a good blocknumber and on how replication impacts the
blocknumber.

4. MAPPINGS WITH A NODE REPLICA-
TION BOUND

The previous section described an algorithm having total
replication factor 7 < 3/2. In this mapping, the number of
times a node is replicated depends on the structure of T
and on B. In this section we consider complete mappings
in which every node is replicated at most p times, p > 2.
While for a constant total replication factor we can show
that there exist mappings achieving an asymptotically opti-
mal blocknumber, a constant node replication factor brings
no significant reduction in the blocknumber. In particular,
we can show that any mapping of an N-node complete bi-
nary tree with node replication p has a blocknumber of at

h
least |'10g p+10gB].

For complete binary trees, a blocknumber of m
can be achieved by using the following approach which also
underlies our solution for general trees. Assign to every
block a path P and a subtree S rooted at the end-node of
path P. Nodes on the path experience replication, with the
start-node of path P having the highest node replication
(i.e., this node appears in up to p blocks). Nodes in S have
a replication of 1. Choose P and S such that |P|+ |S| < B
and the start-node of P is replicated at most p times. Paths
are created similar to the path-creating done for total node
replication. For complete binary trees we choose |P| = log p
and let S to be a complete binary tree containing B — log p
nodes. This approach makes at most p copies of every node
and results in a blocknumber of m. Using an
argument similar to the one used in Theorem 2, we can show
that this upper bounds holds also for arbitrary binary trees.

The remainder of this section describes an algorithm gen-
erating a complete mapping for arbitrary trees having node
replication at most p. The algorithm has an O(pN) internal
memory time bound. While for many binary trees this algo-
rithm achieves a blocknumber better than the upper bound
stated in the above paragraph, we do not know of a general
better upper bound.

In the mapping generated, every block contains a path and
a subtree rooted at the end-node of the path. Nodes on the
path are replicated nodes of T', with the start node of the
path having the highest replication. Assume node u of tree
T is replicated rep(u) times and » has k children. The al-
gorithm uses information on the current replication, block-
number, and block utilization to decide how many repli-
cations can be used for each child of u. Each replication
corresponds to one path containing node u. For all paths
containing children of u, the algorithm decides which paths
to continue (by adding node u) and which to terminate. The

complete mapping is generated in two phases. In the block-
creating phase we traverse tree 7' in a bottom-up fashion.
We bring up information about subtrees which allows us to
determine which paths to continue and where to terminate a
path. The termination of a path creates a block containing
a path with at most B nodes on it. The balancing phase
generates a complete mapping by assigning to blocks a path
as well as a subtree rooted at the end-node of the path.

PHASE 1: Block-Creating.

The block-creating phase traverses tree T from the leaves
towards the root. Assume node u has children uq,... ,uk.
Assume we have determined the following entries for every
child u; of u:

e bl(u;), the maximum blocknumber of the mapping gen-
erated for the subtree rooted at node wu;,

e rep(u;), the replication number of node w; in this map-
ping, 1 < wu; < p,

e m_len(u;), the maximum length of a path containing
node u; (the length of a path is the number of nodes
on it), 1 < mlen(u;) < B.

Let m_bl = maxi<i<x bl(u;). For all children u; with bl(u;) <
m_bl, the continuation of the started paths would use up
node replications for node u, but it would not help de-
creasing the current blocknumber. To avoid this “waste”
of node replications, we terminate every path at u; when
bl(u;) < mobl; i.e., we create rep(u;) blocks containing a
path with node u; is the start node. Assume that children
of u with bl(u;) < m_bl have been handled. Rename the re-
maining children of u so that the children are uq,... ,%; and
for every child we have bl(u;) = m_bl, 1 < i <[. How many
copies to make of u and which paths to assign the copies is
decided as follows:

e Case 1: All paths having maximum blocknumber have
length less than B and can be continued.
If for every child u; we have m_len(u;) < B and
Di<icirep(ui) < p, we set rep(u) = 32 ;< rep(ui),
bl(u) = m_bl, and m_len(u) = maxi<i<i mAlen(u;)+1.
This case applies to node u shown in Figure 5 for which
a total of five paths are continued. Observe that the
three paths containing node u4 are terminated since
the blocknumber for the subtree rooted at u4 is only
3.

e Case 2: Not all paths of maximum blocknumber can
be continued.
If >, ci<; Tep(ui) > p, at least one path having a child
of u as a start-node has to be terminated. Terminating
a path results in a blocknumber of m_bl+1 for vertex u.
Hence, there is no advantage in continuing any of the
paths. We terminate all paths having the children of
u as a start-node and set rep(u) = 1, bl(u) = mbl+1,
and m_len(u) = 1.

e Case 3: One path contains B nodes.
If there exists a child u; such that m_len(u;) = B, node
u; is in a block which is complete. Nodes u and u; are

thus placed into different blocks and this increases the
blocknumber by 1. As for case 2, there is no advantage
in continuing any of the other paths. We set rep(u) =
1, bl(u) = m_bl + 1, and m_len(u) = 1.

Let P be the mapping generated by the path-creating phase.
Every block of mapping P contains a path with at most B
nodes on it and every node is replicated at most p times.
Let bl be the blocknumber of P. The subsequent balancing
phase generates a complete mapping with a blocknumber of
at most bl + 1.

PHASE 2: Balancing.

The balancing phase starts by considering the blocks con-
taining a copy of the root r of T'. Initialize set A to contain
all block having a copy of r. Choose and delete an arbitrary
block, say block B;, from set A. Let f; be the start-node on
the path in block B; and I; be the end-node on this path.
To make block B; complete, we use tree 7' to determine the
B —|B;| nodes added to block B;: starting with node l;, tra-
verse, in T, the subtree rooted at /; in a level-by-level fashion
and include B — |B;| nodes. Next, consider all the blocks
containing at least one of the B — |B;| selected nodes. For
a block B, containing such a node u, we delete from block
B, node u as well as all the nodes from u to the start-node
of the path in B,. Block B, is then added to set A.

The process of adding subtrees to blocks and shortening
paths continues until blocks containing a leaf node are en-
countered. At this point, every block which does not con-
tain a leaf of T is a complete block. Since nodes move to
blocks closer to the root, the reassignments made so far do
not increase the initial blocknumber. Let B;, Bs,... , B, be
the remaining non-complete blocks. Assume we are process-
ing block B; and have processed Bi,... ,B;—1, 1 < ¢ < r.
If the current number of nodes in B; is equal to B, B; is
not changed and we continue with B;;+1. Assume thus that
|B;| < B. We assign nodes from B;y1, Biya,... to block B;
until B; contains exactly B nodes. If the last block giving
nodes to B; is Bjyj, then blocks B;y1,...,B;4;—1 no longer
exist and B;; has a new start-node. The process continues
with block B;;;. Once completed, all blocks, with the ex-
ception of block B,, are complete. The blocknumber may
have increased by 1 and thus be bl 4+ 1. This concludes the
description of the algorithm for generating a complete map-
ping with a given maximum node replication.

Unlike to the total node replication case, we are not able
to show a non-trivial bound on the blocknumber achieved.
For arbitrary binary trees, the blocknumber generated is
bounded by O(m). For arbitrarifb binary trees

and no node replication, Theorem 2 gives O(;;5) as an up-
per bound on the blocknumber. Thus, for constant p, there
is no provable asymptotic improvement compared to allow-
ing no node replication. In contrast, constant total node
replication allows an asymptotically optimal blocknumber.

5. CONCLUSION

We presented complete mappings of static tree structures
to blocks of size B under the assumption that nodes can
be replicated. The quality of a mapping was measured in
terms of the blocknumber achieved and the amount of repli-

bl 4 4 4 3
m_len 6 12 50 26

rep(u) =5
bl(u) =4
m_len(u) =51

Figure 5: Node u before and after applying Case 1 when p = 6; u receives a replication of 5.

cation. We considered total node replication and individual
node replication. Our results showed that by allowing 50%
more space, we can generate a complete mapping achieving
a blocknumber proportional to the optimal one of [h/B]. In
this complete mapping, individual node replication depends
on the structure of the tree and can be large. When the indi-
vidual node replication is bounded, the blocknumber cannot
be reduced as much. This is an indication that for search
and access structures with node replication, bounding the
total space is more effective than bounding individual node
replication. Bounding the total replication allows replica-
tion decisions to be made on the basis of which replications
are the most useful ones, while keeping the total space used
under control.

6. REFERENCES
[1] Y. Breitbart and H. Korth. Replication and
consistency: being lazy helps sometimes. In Proc. of
16-th ACM Symp. on Principles of Database Systems,
pages 173-184, 1997.

[2] A. A. Diwan, S. Rane, S. Seshadri, and S. Sudarshan.
Clustering techniques for minimizing external path
length. In Proc. of 22nd Internat. Conf. on Very Large
Data Bases, pages 342-353, 1996.

[3] A. W.-C. Fu and D. W.-L. Cheung. A transaction
replication scheme for a replicated database with node
autonomy. In Proc. of 20th International Conference
on Very Large Data Bases, pages 214-225, 1994.

[4

[llaa)

J. Gil and A. Itai. How to pack trees. Journal of
Algorithms, 32, 1999.

[5] J. Hellerstein, E. Koutsoupias, and C. Papadimitriou.
On the analysis of indexing schemes. In Proc. of 16th
ACM Symp. on Principles of Database Systems, pages
249-256, 1997.

[6] M. Herlihy. Concurrency and availability as dual
properties of replicated atomic data. Journal of the
ACM, JACM, 37(2):257-278, Apr. 1990.

[7] M. H. Nodine, M. T. Goodrich, and J. S. Vitter.
Blocking for external graph searching. Algorithmica,
16(2):181-214, Aug. 1996.

[8] S. Ramaswamy and S. Subramanian. Path caching: A
technique for optimal external searching. In Proc. of

[9]

[10]

[11]

[12]

[13]

[14]

18th ACM Symp. on Principles of Database Systems,
volume 13, pages 25-35, 1994.

H. Samet. Applications of Spatial Data Structures,
Computer Graphics, and Image Processing.
Addison-Wesley, 1990.

S. Subramanian and S. Ramaswamy. The P-range tree:
A new data structure for range searching in secondary
memory. In Proc. of the 6th Annual Symposium on
Discrete Algorithms, pages 378-387, Jan. 1995.

P. Triantafillou and F. Xiao. Supporting partial data
accesses to replicated data. In Proc. of the 10th
International Conference on Data Engineering, pages
32-42, Feb. 1994.

J. S. Vitter. External memory algorithms. In Proc. of
17th ACM Symp. on Principles of Database Systems,
pages 119-128, 1998.

O. Wolfson, S. Jajodia, and Y. Huang. An adaptive
data replication algorithm. ACM Transactions on
Database Systems, 22(2):255-314, June 1997.

O. Wolfson and A. Milo. The multicast policy and its
relationship to replicated date placement. ACM
Transactions on Database Systems, 16(1):181-205,
Mar. 1991.

