Edge Weight Reduction Problems in Directed, Acyclic Graphs

Susanne E. Hambrusch *
Department of Computer Sciences
Purdue University

West Lafayette, IN 47907, USA
Hung-Yi Tu

Department of Computer Science and Information Management
Providence University

Taichung Hsien, Taiwan, ROC
January 6, 1997

Abstract

Let G be a weighted, directed, acyclic graph in which each edge weight is not a static
quantity, but can be reduced for a certain cost. In this paper we consider the problem of
determining which edges to reduce so that the length of the longest paths is minimized and
the total cost associated with the reductions does not exceed a given cost. We consider
two types of edge reductions, linear reductions and 0/1 reductions, which model differ-
ent applications. We present efficient algorithms for different classes of graphs, including
trees, series-parallel graphs; and directed acyclic graphs, and we show other edge reduction
problems to be NP-hard.

Keywords: Analysis of algorithms; directed, acyclic graphs; longest path computations;
series-parallel graphs; trees.

*Research supported in part by DARPA under contract DABT63-92-C-00220NR.. The views and conclusions
contained in this paper are those of the authors and should not be interpreted as representing official policies,
expressed or implied, of the U.S. government.

1 Introduction

Determining the longest path in a directed graph G is a problem with applications in scheduling
task graphs, circuit layout compaction, and performance optimization of circuits. The problem
can be solved in linear time when G is a directed, acyclic graph and it is NP-hard for general
graphs [4, 5]. Consider the situation when the weight of an edge is not a static quantity,
but can be reduced for a certain cost. The longest path problem arising is that of determining
reductions on edge weights so that the length of the longest paths is minimized and the total cost
associated with the reductions does not exceed a given cost. In this paper we consider two types
of edge reductions, linear reductions and 0/1 reductions, which model different applications.
We present efficient algorithms for determining edge reductions in trees, series-parallel graphs,
and directed acyclic graphs, and we show other edge reduction problems to be NP-hard.

Let G = (V,F) be a weighted, directed, and acyclic graph (dag) with n 4+ 1 vertices,
v, V1, V2, . . ., Uy, and m edges. Edge (v;, v;) has weight d(v;, v;) with d(v;,v;) > 0. If not stated
otherwise, we assume that G contains only one source vg and one sink v,. An edge reduction R
assigns to every edge (v;,v;) a non-negative quantity r(v;, v;). The reduced weight d,.(v;,v;) of
edge (v;,v;) is a function of the edge’s weight and its reduction. An edge reduction R is called

a linear reduction if for every edge (v;,v;), r(v;, v;) is a non-negative real and
dy (v, v;5) = d(vi,v) — r(vg, v5).

An edge reduction is called a 0/1 reduction if for every edge (v;,v;), r(v;,v;) is either 0 or 1

and
) d(wiy) il r(vi, ;) =0
dr(vzavj) - { € X d(viﬂ)j) if T(UZ',U]') =1

where € is a given real with 0 < ¢ < 1. For both reductions we require d,(v;,v;) > 0.

We briefly comment on where edge reductions arise. Linear reductions model, for example,
physical performance optimizations of circuits through gate resizing and buffer insertions [1,
3, 7, 8]. Such optimizations do not change the topology of the circuit and result in circuits
having a smaller delay. At the same time, circuit size and power consumption increase. 0/1
reductions with € = 0 are a basic operation in clustering heuristics for mapping task graphs

to multiprocessors [6, 9]. In a task graph, the edge weights represent the communication cost

and vertices mapped to the same processor experience no communication cost. For € > 0, 0/1
reductions can model scenarios in which there exist fast and slow buses for communication.
Reducing an edge is then equivalent to assigning the corresponding communication to a fast
bus.

Given a reduction R for graph G, the reduced graph G'r is obtained from G by replacing
each edge weight d(v;,v;) by its reduced weight d,(v;,v;). Throughout, L(GRr) denotes the
length of the longest path in Gr and M(GR) denotes the total reduction; ie., M(Ggr) =
2 (viw)EE r(v;, vj). In this paper we investigate the following three edge reduction problems:

o (G, L)-problem

Given L, find an edge reduction R* such that L(Gpr+) < L and M(Gp~+) is a minimum;
i.e., for any edge reduction R’ with L(Gr/) < L, we have M(GR+) < M(Gr).

o (G, M)-problem
Given M, find an edge reduction R* such that M(Gpr+) < M and L(Gg+) is a minimum;
i.e., for any edge reduction R’ with M(Gg/) < M we have L(Gp~) < L(Ggr).

o Tradeoff problem
Given a tradeoff function f(GRr) = L(GR) + v - M(GR) defined for every edge reduction

R, with v being a constant, find an edge reduction R* minimizing the tradeoff function.

In Section 2 we consider linear reductions in in-trees. An in-tree is a tree in which the
out-degree of every vertex is at most 1. We present O(n) time algorithms for solving the
(G,L)-, (G, M)- and the tradeoff problems in in-trees. Section 3 presents O(mlogm) time
algorithms for the linear reduction problems in series-parallel graphs. Sections 4 and 5 consider
0/1 reductions. We show that for series-parallel graphs each one of the three 0/1 reductions
problems can be solved in O(m?) time and that 0/1 reduction problems are NP-hard for general

dags.
2 Linear reduction for in-trees

A directed tree is an in-tree if the out-degree of every vertex, except the root, is 1. In this
section we present O(n) time algorithms for the three different versions of linear edge reduction
in in-trees. Clearly, our results also hold for out-trees. We point out that the algorithms for

series-parallel graphs given in the next section result in O(nlogn) time algorithms for in-trees.

However, the algorithms given for series-parallel graphs can handle multiple edges between two
vertices (which the algorithms given below cannot).

Let v, be the root of the in-tree. For convenience, we add an artificial source vg and edges
(vg, v;) with d(vg,v;) = 0 for every leaf v;. Even though the resulting graph is no longer an

in-tree, the structure crucial to the algorithm is preserved and we refer to it as an in-tree.

2.1 Finding an optimal reduction for a given L

In the (G, L)-problem we generate a reduction R* satisfying L(Gpr+) < L and minimizing
M (Gp+). The optimal reduction R* generated by our algorithm satisfies the following canonical
property. Let R be a reduction. R is canonical if for any other reduction R’ with M(Ggr) =
M (Gpr) the length of the path from v; to root v, in Gg is not longer than its length in Gpr,
for each vertex v;. Stated in terms of reductions, in a canonical reduction the reductions occur
as close to the root as possible. See Figure 1 for an example of two optimal reductions, one
canonical and one not. Let Lg(v;,v,) and Lg(vg,v;) be the length of the path from v; to v,
and the length of the longest path from vy to v; in GR, respectively. Furthermore, we refer to
an edge (v;,v;) with r(v;,v;) = d(v;,vj) (resp. r(v;,v;) = 0) as an edge with full (resp. zero)
reduction. An edge (v;,v;) with 0 < r(v;,v;) < d(v;,v;) is called an edge with partial reduction.

Lemma 2.1 gives a characterization of edge reductions in optimal canonical reductions.

Lemma 2.1 Let R be an optimal reduction. Then, R is the opltimal canonical reduction if and
only if for every path P from vg to v,, if P contains reduced edges, then there exists one edge
(vi,vj) on P such that each edge on P from v; to v, has full reduction and each edge on P from

vg to v; has zero reduction.

Proof: Assume first that R is an optimal canonical reduction and that G contains a path
P =< vg,...,0,0j,...,0q,0p,...,0, > not satisfying the characterization. Let (v;,v;) and
(vq,vp) be two distinct edges on P such that edge (v,,vs) has either partial or zero reduction,
and edge (v;,v;) has either partial or full reduction. Let R’ be a reduction generated from R

by setting:

' (vg,vp) = min{d(v,,vs), 7(va, vs) + r(v;, v;)}
max{r(v;, v;) — dy(vq,v3),0}
r(vy, vy) for any other edge (v, vy).

PP
(SR~
SEEE
5.8

//
[l

Vg0
2T 15

15

? 10-3=7
O 15-6=9
0

DG

A non-canonical reduction.

0? 10-0=10
Vp)—_15-9=6

\ @ 9-9=0
N /
Vo015 (V2 10601

The canonical reduction.

Figure 1: An intree with an optimal and an optimal canonical reduction, both achieving L = 16

and M(GR) = 27.

The total reduction in R is identical to that in R';i.e., M(Ggr) = M(Ggs). R’ is obtained from
R by moving as much reduction as possible from edge (v;, v;) to edge (v4, vp). Thus, the length
of path P in Ggs is as in Gr. The length of every other path from vy to v, is either unchanged
or has been reduced. Hence, we have L(Gr) > L(G) which implies that R’ is also an optimal
reduction. However, the length of the path from v, to v, in Gr/ now is smaller than that in
GRr. This implies that R is not a canonical reduction, a contradiction.

Assume now that R is an optimal reduction and that every path from vy to v, has the
property stated. Assume reduction R is not canonical. This implies that there exists another
optimal reduction R’ and a vertex v; on a path P from vy to v, such that the length of the
path from v; to v, in G is larger than that in Gr; ie., Lr(v;,v,) > Lr/(vi,v,). Choose v; as
close to root v, as possible. Let v; be the next vertex on path P from v; to v,.

If edge (v;,v;) had zero reduction, Lg(vj,v,) > Lp/(vj,v,) would follow and vertex v;
would be chosen instead. Hence, (v;,v;) has either partial or full reduction in R. Since R is an
optimal reduction, there exists a longest path from vy to v, in G which goes through vertex v,
(otherwise edge (v;, v;) would not need a reduction). If edge (v;, v;) has partial reduction in R,
every edge in G'g on a path from v to v; has zero reduction and we have Lr(vg, v;) > Lp/(vg, v;).

Hence,

L(GR) = LR(UO,T)Z') + LR(vi,vn) > LR'(UO’W) + LR'(Ui7vn) = L(GR/),

contradicting the assumption that both R and R’ are optimal reductions. If edge (v;,v;) has
full reduction in R, all edges on the path from v; to v, also have full reduction in K. Thus, we
have Lp(v;,v,) = 0 < Lg/(v;,v,), contradicting our assumption Lg(v;,v,) > Lp/(vi,v,). The
lemma follows. O

While there can exist many optimal reductions, there exists only one optimal canonical
reduction. We next describe how to find the optimal canonical reduction R* in O(n) time. Let
L(vg, v;) be the length of the longest path from vy to v; in G. When L(vg,v,) < L, no edges
need to be reduced and we have r*(v;, vj) = 0 for every edge (v;, v;). Assume that L(vg, v,) > L.

We determine R* by setting, for every edge (v;,v;),

d(v;, vj) if L < L(vo,v;)
r*(vi,v;) = < L(vo,v;) + d(vi,v;) — L if L(vg,v;) < L < L(vg, v;) + d(v;, vj)
0 otherwise.

Clearly, reduction R* gives L(Ggr+) = L. The O(n) running time of the algorithm follows

trivially. The following theorem completes the optimality argument of R*.

Theorem 2.1 Let R* be the reduclion generated by the above algorithm. Then, R* is an

optimal canonical reduction.

Proof: From the way R* is constructed it follows that L(Gpr+) < L and that R* is canonical
(i.e., reductions occur as close to the root as possible). Assume that R* is not optimal and let
R’ be the optimal canonical reduction with M(Gpr+) > M(Gprs) and L(Gpr) < L. Then, there
exists an edge (v;,vj) with d(v;,v;) > r*(v;,v;) > r'(v;,v;). Choose edge (v;,v;) so that no
edge on the path from vy to v; qualifies. Edge (v;,v;) has either partial or full reduction in R*.

From the way R* is determined, it follows that every edge on a path from vy to v; has zero
reduction in R*. Since R’ is a canonical reduction, every edge on a path from vy to v; in R’ also
has zero reduction. In R* as well as R', every edge on the path from v; to v, has full reduction

and there exists a longest path from vy to v, containing edge (v;,v;). We thus have
L(GR/) = L(?JO, Ui) + dTI(T)Z', ?J]') > L(?Jo, ?)Z') + dr*(vi, T)]') = L,

contradicting the assumption L(Ggr/) < L. It thus follows that R* is an optimal canonical

reduction. O

2.2 Finding an optimal reduction for a given M

We now turn to the (G, M)-problem in which we are given M and determine a reduction R*
with M(Gp«) < M minimizing the length of the longest path from vy to v,. We first describe
an O(nlogn) time algorithm and then describe how to improve its running time to O(n).

Let OPT_L(G, L) be the O(n) time algorithm for solving the (G, L)-problem described in
the previous section. In the (G, M)-problem we are searching for the smallest L* such that

OPT_L(G, L*) generates a reduction R* with M(Gpr+) < M. Let
Mpin(L) = min{ M (Gpr)|R is a reduction with L(GRr) < L}.

Among all reductions inducing the value of M,,;,(L), we only consider the optimal canonical

reduction. For an optimal canonical reduction, according to Lemma 2.1, the edges close to the

root receive reduction first. The number of edges receiving partial reduction is between 0 and
the number of leaves in the tree. Further, for any L’ and L” with L"” < L', the number of
edges receiving a reduction (total or partial) in the canonical reduction inducing the value of
Mnin(L') is no larger than the number of edges receiving a reduction in the canonical reduction
achieving L”. From the way optimal canonical reductions for a given L are determined, it thus
follows that M,,;,(L) is piecewise linear and decreasing. In addition, M,,;,(L) is concave-up
(i.e., the slopes are increasing in L). Figure 2(b) shows function My (L) for the in-tree shown
in Figure 2(a).

Function M,,,;,(L) allows us to perform a binary search for L*. Actually, the binary search
we perform may not produce L*, but a value close to it. Let L(wvg,v;) be again the length of
the longest path from vy to v; in G. For every vertex v;, except the root and virtual source
vg, edge (v;,v;) induces the entry L(vg, v;) + d(v;,v;). Let L =< Ly, Lg, ..., L,—1 > be the list
containing these entries in non-decreasing order. List £ is built in O(nlogn) time. Assume
invoking algorithm OPT _L(G, L;) generates optimal canonical reduction R;. Since L;_; < L;,
we have M(Gp,_,) > M(GR,). Let k be the index such that

M(Gpg,_) > M > M(Gg,).

By using algorithm OPT_L and binary searching index k on list £, index k can be determined in
O(nlogn) time. If M(GR,_,) = M, then Rj_; is the optimal reduction which we are searching
for. Assume thus that M(Ggr,_,) > M > M(GRg,). We next describe how to generate the
optimal reduction R* from the optimal canonical reductions Ri_1 and Rj.

Since Ry_y and Ry are optimal canonical reductions, an edge (v;,v;) having full reduction
in Ry also has full reduction in Rj_q, and thus (v;, v;) has full reduction in R*. An edge (v;,v;)
having zero reduction in Rj_; also has zero reduction in Ry, and thus (v;,v;) receives zero
reduction in R*. Let £, be the set containing the remaining edges for which the reduction is
not yet defined. Let Ly — Ly_y =6, 6 > 0. The following characterization of the edges in F, is

used in determining their reductions in R*.

Lemma 2.2 For every path P from vy to v, in G, P contains at most one edge belonging to sel

E,. In addition, for every edge (v;,v;) in E,, we have rp_q(v;,v;) — ri(v;,vj) = Ly — Li_q = 6.

67\ -

43

longest path length L

Figure 2: FunctionM,;, (L) for an in-tree.

Proof: Assume there exists a path P containing two or more edges in set E,. Let (v,,vs) be
the edge on P in set E, closest to root v,. In Ry, edge (vy,vp) has either partial reduction or
zero reduction. (If (v,, vp) received full reduction in Ry, then (v4,vy) would have full reduction
in Rx_q, and the edge would not be in E,.) We only give the argument for the case when
(vq,vp) has partial reduction in Rj. The case when (v,,v;) has zero reduction is handled in a
similar way.

Since Ry and Rjy_y are optimal canonical reduction, we know the following. Edge (v,,vs)
has full reduction in Ry_q. (If it had partial or zero reduction, (v,, vs) would be the only edge
on P in set E,.) Let (v, v,) be the in-coming edge on path P incident to v,. Edge (v.,v,) has
zero reduction in Ry and it has either full or partial reduction in Ry_q. (If (v, v,) had zero
reduction in Rj_q, all edges on path P from vy to v, would have zero reduction and P would
not contain two edges belonging to E,.)

Since Rj_q is generated by invoking OPT_L(G, Li_1) and edge (v.,v,) has either full or

partial reduction in Rx_1, according to the reduction-setting rules of algorithm OPT_L we have
Li—1 < L(vo,v:) + d(ve, vg).
By the similar arguments, since edge (v.,v,) has zero reduction in Ry, we have
L(vg,v:) + d(ve,vq) < L.

The quantity L(vg, v.)+ d(v.,v,) induces an entry, say Lg, in list £. We thus have L1 < L, <
Ly, contradicting our assumption that Lp_1 and Lj are consecutive entries in list £. Hence,
path P contains at most one edge belonging to set £,.

Now, we prove that for every edge (v;,v;) in E,, we have ryp_q(v;,v;) — ri(vi,v;) = Lg —
Ly_1 = 6. Let edge (v,,v) be an edge in E,. When (v,,vp) has partial reduction in both Ry
and Rj_q, we have

Tk(Va, vp) = L(vo,v,) + d(vg,v5) — Ly
and

Te—1(Va, v8) = L(v0,va) + d(va,vp) — Lr_1.

Since Ly — Lx—1 = &8, we have rp_1(vq,v5) = L(vg,vq) + d(vg, o) — L, + 6 = ri(vg,vp) — 6.

10

Hence, r—1(vq.05) — ri(vq, vp) = 6 follows. The other three cases of possible reductions on edge

(vq,vp) in Ry and Rj_q are handled in a similar manner. o

We can now state how R* is generated from Rj; and Rj_;. We set

d(vi7vj) if Tk(viavj) = d(’lji’vj) (1)
T*(T)i,’vj) = 0 MM (G if 'rk—l(viyfvj) =0 (2)
ri(vi, v;) + Tﬁ%k (vi,0;) € E, (3)

The justifications for (1) and (2) have already been given. M — M(GR,) represents the
amount of reduction that can be spent in addition to M(Gp,). This remaining amount is evenly
distributed among the edges in £,. It remains to show that using (3) gives r*(v;, v;) < d(v;, v;).

Lemma 2.2 implies M(GRr,_,) — M(GR,) = 6 X |E,|, where Ly_q 4+ é = Ly and § > 0. Since

M-M(Gr,)

5] < 6 and thus

M(Grg,_,) > M, we have
M-M(G
r*(vi,v) = (v, o) + 7|Ei| 2
rk(vi, ?)j) + 6
Th—1(vi, 7))

d(v;, v;5).

IN 1A

In summary, given index k with M(Gg,_,) > M > M(GR,), the optimal reduction R* for
a (G, M)-problem can be generated in O(n) time. An O(nlogn) overall time bound for our
algorithm for solving the (G, M)-problem follows. The remainder of this section describes how
to reduce the running time to O(n) by using prune-and-search. Our improved algorithm also
performs O(logn) searches to determine index k, but each search reduces an upper bound on
the size of the relevant data by half.

Let £ now be the unsorted list containing the entries L(vg, v;)+d(v;, v;). Assume that at the
beginning of each iteration we have identified in list £ two entries L, and Ly with L, < Ly < Ly.
For the first iteration we set L, = —oo0 and L, = +oo. Let R* be the optimal reduction. In the

beginning of each iteration, the edges of GG are partitioned into four sets, £,, £, £,, and Fj:

o Set F, contains the edges which have zero reduction in both R, and R,. These edges will

receive zero reduction in R*.

e Set Fy contains the edges which have full reduction in both R, and R;. These edges will

receive full reduction in R*.

11

e Set F, contains edges for which it has already been determined that they have partial
reduction in R*. This includes the edges having partial reduction in both R, and Rj.
In addition, edge (v;,v;) belongs to E, if (i) (v;, v;) has full reduction in R, and partial

reduction in Rj, and (ii) every edge going to vertex v; has zero reduction in R,.

e Set £, contains all edges not included in set £,, F,, and Ey. For each edge in F,, the

type and the amount of reduction remains to be decided.

Figure 3 gives an example on how edges are partitioned. In Figure 3(b) we drew the in-tree so
that associations to edge sets can be seen more easily. Edges completely to the left of vertical
line L, = 8 belong to £, and edges completely to the right of the vertical line Ly = 26 belong
to Es. Thus, E, = {(vy,vs), (v3,vs), (ve, v12), (v7,v10)} and Ey = {(v12,v14), (v14,v15)}. Using
the rules stated above to partition the remaining edges, we get E, = {(vs, v15), (vs, v15)}, and
£, = {(017011), (011,‘015), (1’47719)7 (‘0977115)7 (?J107@13)7 (U137012)}-

Next we describe how to perform binary search so that the size of the relevant data reduces
by half in each iteration. Let L, be the sublist of £ containing the entries L; with L, < L; < L,
nap = |Lqp|. The relationship between n,;, and |F,| is crucial. Observe that not every edge in
set F, induces an entry in sublist L,5. For example, edge (v11,v15) € E, induces the value 32
which is not between L, = 8 and L, = 26. However, an edge (v;, v;) € E, satisfying one of the

two following conditions induces an entry in list Lgp:
1. (v;,v;) has partial reduction in R, and zero reduction in Rp, or
2. (v;,v;) has full reduction in R, and zero reduction in Ry.

The first condition applies, for example, to edge (v4,v9) € E, which induces the entry 10, and
the second condition applies, for example, to edge (vg, v15) € £, which induces the entry 22.
Only an edge in F, that has full reduction in R, and partial reduction in R, does not induce an
entry to list L45. Such an edge in F, is incident to at least one other edge in F, which induces
an entry in Lg;. Observe that each path from vy to v, contains at most one edge from F, not
inducing an entry in L, and that it is always the edge in F, closest to the root. Hence, the

number of edges in F, can at most double the number of entries in L,p; i.e., |Ey| < 2ng.

12

(b) In-tree drawn to indicate partition into sets when L, = 8 and L = 26.

Figure 3: Partitioning the edges.

13

We next describe our procedure for searching for index k. Let My be the total reduction
spent on the edges in set Ey;ie., My =3, .)en, d(u,v). Let M, , be the total reduction
made on the edges of set Fj, in reduction R,. Let L, be the “¢¢—th smallest element in list
Lqp. Recall that this list contains all entries L; with L, < L; < Ly. Let 6 = L, — L,. We next
determine the reduction on each edge of £, in R, using the method described earlier. Depending
on whether an edge of £, receives zero reduction, partial reduction, or full reduction in R,, we
partition £, into three sets, £, ,, £, ,, and E, ¢, respectively. The total reduction of reduction

R, is determined as follows:
M(Gr,) = My + (Mya = 6 X |EgJ) + Mo g + Mo,

with

M, s = Z d(u,v) and M, , = Z rq(vs, v5).
(viyv;)EE, § (vi,v;)ELu,p

If now M(GR,) = M, then we have R* = R, and the algorithm terminates. Consider first
the case when M(Gpg,) > M. L, is a new lower bound (since L, < Ly < Ly holds) and the

next iteration continues with L, and L. The edge sets and reductions are updated as follows.
1. The edges in F, , are added to F, and are deleted from F£,,.

2. Edges from E,, and F, s that qualify for £, are moved from set F, to F,. The total

reduction made on the edges in the new set F, in reduction R, is computed.

Assume now that M(Ggr,) < M. In this case we have found a new upper bound and
continue the next iteration with L, and L,. The edge sets and reductions are now updated as

follows.
1. The edges in F, s are added to £y and are deleted from E,. My is updated.

2. Edges from £, , that qualify for £, are moved from set £, to F,. The total reduction

made on the edges in the new set F, in reduction R, is computed.

It is easy to see that the work done in an iteration is bounded by O(|E,|). That the upper
bound on the number of edges in F, reduces by half from one iteration to the next is seen as

follows. First, an edge (u,v) € £, with L(vg,u)+ d(u,v) = L, is no longer in F, by the end of

14

the iteration. Hence, when L, < L} < Ly, we have ng, < % and when L, < L, < L, we have
Naq < 2. We already argued that |Ey| < 2n4,. This implies that the size of the new set |E,|
is bounded by n4, and the upper bound on |F,| reduces by half. Hence, searching for index
k takes O(n) time. After having determined index k, reduction R* is generated from Rj and

Rj_q in O(n) time as described earlier. The O(n) time bound for the (G, M)—problem follows.
2.3 Optimal reduction for the tradeoff problem

The approach used for the (G, M)-problem leads to an O(n) time solution for the tradeoff
problem in in-trees. Recall that in the tradeoff problem we are to determine a reduction R*
minimizing the tradeoff function f(Gr) = L(Gr)+7v-M(GR). As stated in the previous section,
M i (L) represents the minimum total reduction needed to reduce the longest path length to L,
and M,,;,(L) is a piecewise linear, decreasing and concave-up function. We can thus represent
M in(L) by a sequence of linear functions of L, a; X L+by, a3 X L+bg, ..., an_2X L+b,_o, with
all a;’s being negative. Function a; X L+ b; is associated with interval, [L;, L;41], 1 <@ < n—2,
where the L;-values are as defined in the previous section. In interval [L;, Liy1], Mpmin(L) is
described by a; X L + b;. Since M,,;,(L) is concave-up, we have a; < az < --- < a,_2 < 0.
Function f(GRr) can be re-written as a function of the longest path length L; i.e., F(L) =
L+ 7 - My (L). Minimizing f(GR) is equivalent to minimize F(L). We distinguish between

the following four cases.

Casel. 1+7v-a,-9 <0.

In this case the minimum of F(L) occurs at L = L,_.

Case 2. 1+7v-a; > 0.

In this case the minimum of F(L) occurs at L = L;.

Case 3. There exists an a; such that 14+ v-a; = 0.

In this case the minimum of F(L) occurs at L = L;.

Case 4. There exists an a; such that 14+ v-a; <0and 147 -a;41 > 0.
In this case the minimum of F(L) occurs at L = Lj44.

The heart of the algorithm is the search for index 7 in Cases 3 and 4 without generating the

15

whole M,,;,(L) function. Index j can be determined in O(n) time by using an approach similar
to the one used for the (G, M)-problem. In each iteration we again have a lower bound L,, an
upper bound Ly, and a new value L,. The value of ¢, can be determined in O(|F,|) time and
the upper bound on |F,| is reduced by half in each iteration. We omit the details of the O(n)

time search algorithm.

3 Linear reduction for series-parallel graphs

In this section we present O(mlogm) time algorithms for performing linear edge reduction in
series-parallel graphs. The graphs can now have multiple edges between two vertices (thus
m could be arbitrarily larger than n). We start by giving the necessary definitions regarding
series-parallel graphs and outline a dynamic programming solution. We first give an O(m?)
time algorithm and then describe how to improve the running time to O(mlogm).

A series-parallel graph (sp-graph for short) G is a dag with exactly one source vy and one

sink v,, recursively defined as follows:
1. A dag consisting of a single edge from vg to v, is an sp-graph.

2. Given two sp-graphs G and G5, the dag G35 obtained by identifying the sources of Gy
and G5 with each other and by identifying the sinks of G; and G5 with each other is an

sp-graph. This type of operation is called a parallel composition.

3. Given two sp-graphs G1 and G, the dag G5 obtained by identifying the source of G4

with the sink of G5 is an sp-graph. This type of operation is called a series composition.

An sp-graph G can be represented by its decomposition tree D. Each node N of decomposition
tree D corresponds to a subgraph G'n of G. A leaf of D corresponds to a single edge of G.
If N is an internal node of D, then G corresponds to the subgraph of G obtained by either
a parallel or a series composition of the subgraphs associated with the children of N. Testing
whether a given dag G on n vertices and m edges is an sp-graph can be done in O(m) time [10].
Furthermore, the decomposition tree D for a given sp-graph G can be constructed in O(m)

time by using the recognition algorithm in [10].

16

Let N be anode in the decomposition tree and let Gy be the associated subgraph of G. Let
M (L) be the minimum edge reduction reducing the length of the longest path in Gn to L.
In the following we show how to determine function My (L) for the root of the decomposition
tree. All three reduction problems can be solved using the function associated with the root.
The My(L) functions are computed in a bottom-up fashion from the decomposition tree. Let
(vi,vj) be an edge of G corresponding to leaf N of the decomposition tree. Then, function
Mp(L) is defined in the interval [0, d(v;,v;)] by the linear segment ¢ x L 4+ b with @ = —1
and b = d(v;,v;). For L > d(v;,v;) the value of the function is 0. Consider now an internal
node N of the decomposition tree which has two children, Ny and N5. Assume the functions
Mp, (L) and My, (L) associated with these children have already been determined. If node N

represents a parallel composition of graphs G, and Gy, , then we have
Mn(L) = My, (L) + My, (L).

If node N represents a series composition of graphs Gy, and Gy, , function My (L) is defined
as

MN(L) = min{MNl(Ll) + MNQ(L2)|L =L+ LQ}.

Figures 4(a) and 4(b) show the result of such an operation for parallel and series composition,
respectively. The time spent on computing function My(L) depends on its representation.
We next show that My(L) is piecewise linear. The function associated with a leaf of the
decomposition tree consists of a single linear segment and is thus piecewise linear. Assume that
the functions associated with Ny and N, consist of k1 and kg linear segments, respectively. A
parallel composition adds corresponding values and thus generates a function consisting of at
most kqy + ko linear segments. Consider a series composition. Let L’ and L"” be two values
so that there exists no interval endpoint between L’ and L”. Then, the change in reduction
occurring between L’ to L” corresponds to either a reduction in Gy, or in Gy,. When an
endpoint is reached, this can change (the reduction may now occur in the other subgraph or in
the same subgraph at a different rate). A series composition thus generates a linear function
consisting of at most &y + k2 linear segments, each coming from either My, (L) or M, (L).
Consider representing each function as a list of intervals, where each interval is associated

with a linear function. For example, if My (L) consists of k linear functions, a; X L + by, ag X

17

M(L)

120

M(L) M(L) BrA sope=-8

A slope = -3

5 10 15 20 25 30

Gy Gy

(a) M(L)-function for a parallel composition.

M(L)

(b) M(L)-function for a series composition.

Figure 4: M(L)-functions built through parallel composition and series composition.

18

L+ by, ...;ap X L 4 by, then a; X L + b; is associated with an interval [L;, L;11], 1 < ¢ < k.
(Recall that the function is 0 for positions greater than Ly41.) Using this representation, a
parallel or series composition can be done in time linear in the number of intervals. The time
needed to determine the My (L)-function corresponding to the root of the decomposition tree
is then bounded by O(m?).

We are able to reduce the time to O(mlogm) by employing a different representation of the
functions and making use of the following two properties. The M y(L)-functions are concave-
up (i.e., the slopes are increasing in L with a; < a3 < ... < a;) and they are monotonically
decreasing (i.e., the slopes are negative). Assume each function associated with a child of a node
has increasing slopes (this trivially holds for the leaves). Then, a series composition merges
sorted lists and a parallel composition adds the values of two sorted lists. Both operations
result in increasing values and thus an My(L) function with increasing slopes. Monotonically
decreasing follows from the definition of the M (L) functions.

Before describing a more efficient representation of the functions, we briefly discuss how
M (L)is generated. In a parallel composition, we insert each interval of My, (L) into My, (L).
Let [L;, L;41] be an interval in M, (L) having slope a;. We identify in My, (L) the line
segment containing position L;yq. Assume it is segment [L;, L;11] with slope a;. This segment
is transformed into two new segments: [L;, L;11] whose slope is a; 4+ a; and segment [L;41, Lj41]
whose slope is a;. The slope of every segment in My, (L) to the left of L; and in the range
[L;, L;] increases by a;. Offsets change accordingly. In Figure 4(a), M, (L) corresponds to the
interval [0, 15] with the linear function —3 x L + 45. Inserting interval [0, 15] into My, results
in the interval [10, 20] being split into intervals [10, 15] and [15,20]. Interval [10, 15] has slope
(=2) 4+ (—3) = =5 and offset 50 4 45 = 95.

In a series composition, we also create My (L) by inserting each interval of My, (L) into
Mp, (L). Let [L;, Li+1] be an interval in My, (L) having slope a;. We identify in My, (L) the
intervals [L;, L;41] with slope a; and [L;41, L;y2] with slope a;4q such that a; < a; < aj41. We
create the interval [L;41, L;41 4+ (Liy1 — L;)] having slope a; and increase the position of every
endpoint to the right of L; 11 by Liy1 — L;. For a; = a;, we can view segment [L;, L;11] as being

extended. The offset of every interval to the left of L;; increases accordingly. For example, in

19

Figure 4(b) the series composition inserts segment A with slope —3 between segments C' and
D. The intervals associated with linear segments D) and F are shifted to the right by 15. The
offset of linear segments A, B, and C increases by 30.

The O(mlogm) time is achieved by representing each function My (L) in a balanced binary
tree, called the function tree Ty. Balanced tree representations are also used in [2] for maximum
flow problems in sp-graphs. The leaves of a function tree correspond to the endpoints of intervals
arranged according to increasing positions (and thus increasing slope). For interval [L;, L;11]
we thus have an entry for L; and one for L;1;. The slope and offset of interval [L;, L;y1] are
associated with the leaf corresponding to L;. The function tree does not have the position of
L;, the offset and slope of segment [L;, L;y1] stored explicitly at the leaf. Each one of these
three values is stored in a distributed fashion on the path from the leaf to the root of T. Every
node v of Ty contains three entries, subp(v), subs(v), and subo(v). Let u be a leaf. Then, the
position of the endpoint represented by w is the sum of the subp(-)-values encountered on the
path from u to the root of the function tree. Slope and offset are obtained by adding the subs(-)
and subo(-)-entries, respectively, on the same path. In addition to these entries, we maintain at
every node v of the tree an entry mazp(v) which contains the sum of the subp(-)-values along
the rightmost path in the subtree rooted at ». Also, we maintain at every node v an entry
mazs(v) which contains the sum of the subs(-)-values on the same rightmost path.

Assume we are given two function trees T; and T, with my and mgy leaves, respectively.
Assume my > my. We can generate, in O(mg) time, the intervals represented in 73, as well
as their slope and offset. Consider first a parallel composition. We describe how an interval
[Li, Li+1] with slope a; and offset b; is inserted into 7, assuming all intervals to the left of
[Li, Liz1] were already inserted. However, in the actual implementation the insertions are
processed simultaneously. We insert a new leaf v representing L;11, using mazp(-)- and subp(-)-
entries to guide the search. The difference between the sum of the subp(-)-values from the root
to the new leaf and L;;; determines the value of subp(v). Intervals to the left of v and greater
than or equal to L; experience an increase in the slope by a;. Observe that there exists a leaf
corresponding to endpoint L; and thus recording this increase corresponds to updating subs(-)-

entries on a single path. The updating of the offset entries is done in a similar way. Remaining

20

balancing issues arising in the insertion are straightforward and are omitted.

Consider next the case when 77 and T5 are combined through a series composition. Then,
the insertion of an interval [L;, L;+1] with slope a; and offset b; into T} is handled as follows. We
determine the position of a new leaf v having slope a; by using the mazs(-)- and subs(-)-entries.
The position of each leaf to the right of v (including v) increases by L;41 — L;. To record this,
we increase the subp(-)-values of right children of the nodes on the path from the root to v. The
insertion does not change the slope values of other nodes. Entry subs(v) is set to the difference
between a; and the the sum of the subs(-)-values from the root to v. The entries subo(-) are
updated in a similar way.

It is clear that inserting one interval into Ty costs O(logmy) time, where m; is the current
number of leaves in function tree T;. Handling the my — 1 intervals one after the other gives

O(mgzlog my) time for combining two function trees. However, by handling the my—1 insertions

m1+mo

T2) time.

simultaneously, function trees 77 and 73 can be combined in O(m3log

We first insert into 77 the mg — 1 new leaves. Then, the balancing and updating of entries
proceeds level by level within 77. Assume that the number of leaves between the j-th and
(j + 1)-st new leaf is n;. Then, the total time needed to update and balance the new function
tree is bounded by

m2—1

O(mgy + logmy + Z (14 logn;))

i=1
which is

my + moy

O(log my + mzlog).

mo
This holds since E}njl_l n; < my and the work is maximized when the newly inserted leaves
are as far apart as possible. The function associated with the root of the decomposition tree of

an sp-graph can thus be determined in time

I'(m) = max {T(mq) + T(mz) + O(log my + mylog ™+ ma

my+mo=m,mz<m my

)}
which is O(mlogm).
Once function M(L) associated with the root of decomposition tree D has been determined,

all three reduction problems can be solved in O(mlogm) time. For the (G, L)-problem we

simply compute M(L). The reductions on the edges can be generated by traversing the tree

21

from the root back to the leaves and using the information stored in the function tree associated
with each node. This can be done within the O(mlogm) time bound. For the (G, M)-problem,
we determine the smallest L such that M(L) < M. Again, determining the reduction on the
edges is done by traversing the decomposition tree and the associated function trees once more.
To find the optimal tradeoff between M and L, we build function f(L)= L+~ -M(L) by using
the function tree associated with the root of the decomposition tree. Then, we determine the
L resulting the minimum of f(L). To determine the reduction giving the minimum of f(L) we
again traverse the decomposition tree and its associated function trees.

We conclude this section by pointing out that the linear reduction problems can be solved
in polynomial time for general dags by phrasing them as linear programs. For example, the
(G, M)-problem can be formulated as follows. Let tg,11,...,¢, and r(v;,v;) for every edge

(v;,vj) in G be the variables. Then,

Minimize ¢, — {g
subject to t; +d(v;,v;) — r(vi,v;) <t; for every (v;,v;) € E

d(vi,v;) —r(v;,v) >0 for every (v;,v;) € E
E(vi,vJ)EE 'T’(?Ji,?)j) < M
to=0and t; >0 for1<i<n

4 0/1 reduction for series-parallel graphs

We now turn to 0/1 edge reductions. The cost of a reduction now corresponds to the number
of edges reduced. The weight of a reduced edge is ¢ X d(v;, v;), where € is given, 0 < e < 1. In
this section we use an approach similar to the one used for linear edge reductions for sp-graphs
to solve 0/1 edge reductions for sp-graphs in O(m?) time. Our algorithms allows multiple edges
between two vertices.

Let D be again the decomposition tree of sp-graph . Let N; be a node of D and let G y;
be the subgraph of GG corresponding to the subtree of D rooted at vertex N;. Assume that Gy,
has m; edges. For vertex N; we construct an array T; of size m; + 1. Entry T;[j] represents
the minimum length of the longest path in G, when at most j edges are reduced. We thus
have T;[0] > T;[1] > T;[2] > ... > T;[m; — 1] > T;[m;]. The Tj-arrays are determined from
the decomposition tree in a bottom-up fashion, with a node using the arrays associated with

its children. The final answer for all three reduction problems is determined from the array

22

generated for the root of D.

If node N; is a leaf of decomposition tree D, G'y, corresponds to a single edge. Assume this
edge is (vq,). Array T; has size two and we have T;[0] = d(v,, vp) and T;[1] = € x d(vq, v).

If N; is not a leaf, T; is constructed as follows. Assume N; has two children, N; and N,
and that arrays 1; and 7T, have already been determined. If node N; represents a parallel
composition of graphs G'n, G'n,., the entries in 7; can be defined as follows:

T[] = min {max{T.[p], Ti[q]}}.
pta=j
By making use of the fact that the entries in arrays T, and 7 are sorted, T; can be constructed
in O(m;) time. One possible solution is given below.

We determine 7; by scanning arrays 17 and 7, twice, each time from right to left. During
the first scan of the arrays we determine the entries of T; induced by entries in array 71,.. Assume
the scan in 7, is at position p. We determine the smallest ¢ such that 7j[¢ — 1] > T}[p] > Ti[q].
Let j = p+ q. Then, T,[p] is a possible solution for T;[j]. If we already recorded a better
solution for T;[j], we discard p and ¢. Otherwise, we record it as the currently best one. We
then consider T,[p — 1]. When we now search for an entry in array 7}, we search for an index ¢’
with ¢’ < ¢. Hence, all requests made to array T; can be satisfied by executing one right to left
scan. We then scan both arrays again to determine the entries of 7; induced by entries in array
T;. Finally, a left to right scan of array 7} is performed. We may have recorded in T;[j + a] a
solution that is worse than the one recorded in 7;[j]. (Observe that a solution recorded for 7;[7]
is also a solution for T;[j 4+ a] with a > 1.) Hence, we propagate the solution recorded in 7}[;]
to the right until a better solution is encountered. In total, it takes O(m;) times to generate 7;
from lists 1} and T,.

If node N; represents a series composition of graphs G'n, Gy, , the entries in 7; can be

defined by
Ti[j] = min {T;[p] + Ti[q]}.
pta=j
Let m;, m;, and m, be the number of edges in the graphs G,, G, Gn,, respectively, with

m; = m;+ m,. We construct 7; by enumerating the values of 7}.[p] + Ti[¢] for all pairs of (p, q),

0 <p<m,and 0 < ¢ < my. This takes O(m;m,) time.

23

Let C'(N;) be the cost to compute table 7; for node N;. Then we have
C(N;) < C(Ny) + C(N,) + mym,

and thus C(N;) = O(m?). Hence, the array T},.; associated with the root of decomposition tree
D can be determined in O(m?) time. The three reduction problems can now be solved in O(m?)
time as follows. For the (G, L)-problem we determine the smallest j such that T,..[j] < L.
Quantity j represents the minimum number of edges that need to be reduced in order to achieve
the path length of at most L. By traversing the tree from the root back to the leaves and using
the list associated with each vertex, the edges receiving a reduction can be determined in an
additional O(m) time. For (G, M)-problem, entry T,,.:[M] represents the minimum longest
path length that can be obtained by reducing at most M edges. Clearly, the size of the array
associated with a vertex does not have to exceed M. Again, determining which edges get
reduced is done by traversing the tree once more. To find the optimal tradeoff between M and
L, we evaluate T,,5¢[7] + 7 - j for 0 < 7 < m. The pair (T,,0¢[j],7) resulting the minimum

tradeoff value gives the solution to the tradeofl problem.

5 0/1 Reduction for general dags

In this section we show that 0/1 reduction problems are NP-hard for general dags. The theorem
below proves that the corresponding decision problem is NP-complete for ¢ = 0. By changing
the weights of the edges in the graph constructed, NP-completeness follows for other values of

€. We discuss the weight changes for ¢ = % at the end of this section.

Theorem 5.1 Given a weighted dag G and two positive reals M and L, it is NP-complete to
decide whether there exists a 0/1 reduction R with ¢ = 0 such that M(Gr) < M and L(GRr) < L.

Proof: The problem is easily shown to be in NP. NP-completeness follows by a reduction from
monotone 3-SAT [5]. Let X = {xy,29,...,2,} be n variables and C' = C; ACy A --- A C
be an instance of monotone 3-SAT. A clause containing only un-negated variables is called a
positive clause and a clause containing only negated variables is called a negative clause. Let

Ci = ul vu?vaud, where uf is referred to as a literal, 1 < 57 < 3. We next describe how to

24

Figure 5: The clause graph G; corresponding to clause C; = u} V u? vV u?. (a) shows the clause
graph corresponding to a positive clause and (b) shows the clause graph corresponding to a

negative clause.

construct a weighted dag G = (V, £') and determine M and L such that G has a 0/1 reduction
R with M(GRr) < M and L(GRr) < L if and only if C is satisfiable.

Graph G contains k clause graphs, G1,G4,..., G, which are connected by consistency
edges. Clause graph G, corresponds to clause (), and we distinguish between positive and
negative clause graphs (depending on the type of the corresponding clause). Each clause graph
is made up of 3 components and one attachment. Each component is an 8-vertex graph and the
attachment is a 2-vertex graph. Positive and negative clause graphs are constructed somewhat
differently. Figure 5(a) shows a positive and Figure 5(b) shows a negative clause graph. A
clause graph contains multiple edges between some of its vertices. Multiple edges between the

same pair of vertices have the same weight and thus only one weight is shown.

25

Let U}, U2, U2, and A; be the three components and the attachment of clause graph G,
respectively. In each component Uij we name the following vertices and edges as shown in
Figure 5: edges {1 and iy are called the true-edges, edges f; and f; are called the false-edges,
pf is the source and qf is the sink of component Uij, and ¢; and ¢y are the vertices incident
to the consistency edges. The path from pz to qf containing edges {; and f; is called the
upper path, and the one containing {3 and f; is called the lower path. The three components
and the attachment are connected by edges of weight 0 as shown in Figure 5. Positive and
negative clause graphs differ in the way the upper and lower path in a component interact,
in the position of edges ¢; and f; on the upper path, and in how the components and the
attachment are connected.

As already stated, the k clause graphs are connected by consistency edges. Consistency
edges are edges of multiplicity 2 and each such edge has a weight of 12. Let »{ and u?, 1 < 7,
be two literals formed by the same variable, say z;, and assume that z; does not form a literal
in clauses Cy1,...,Cj_1. Graph G contains a consistency edge from vertex ¢; in component
b

Uf to vertex cy in component U:

;» and one from vertex ¢; in component U]l-’ to vertex cg in

component U?. To complete the construction of &G, we add a source p and a sink ¢ and edges
of weight 0 from p to every pf and from every q{ to ¢. Figure 6 shows the graph G created for
the formula C' = {(z1 Vaa Vaz) A(z1 Vaa V) AN(TTVT5 VT6)}-

Clearly, given a monotone 3-SAT formula C', the corresponding graph G can be built in
polynomial time. G has a total of 26k 4+ 2 vertices. The length of the longest path from source
p to sink ¢ is 40. G contains k such longest paths, one for every clause. For a positive clause
graph G, this path contains vertices p and p}, edge {; of component U}, edge e; of G;, edge 1,
of component U?, edge ey, edges {; and f; of component U?, and vertex ¢?. Figure 7(b) shows
such a path. Finally, we set M = 6k and L = 30. We claim that G has a 0/1 reduction in
which at most 6k edges are reduced and the length of every path from p to ¢ is at most 30 if
and only if clause C' is satisfiable.

Since there exist two edge-disjoint paths of length 32 (one is the upper path and the other
is the lower path) in every one of the 3k components, reducing the path length to 30 without

reducing more than 6k edges implies that we reduce exactly two edges per component. Fur-

26

27

thermore, no multiple edges can be reduced. Assume that¢: X — {7, F'} is a truth assignment
satisfying C'. We construct a 0/1 reduction R for G as follows. Let z; be a variable with
t(z;) = T. Then, in every component U]I? with u? = x; or u;’ = T;, edges {1 and {y are reduced.

On the other hand, if ¢{(z;) = F, then in every component U]I? with u;’ = z; or u? = 7T;, edges fi
and fo are reduced. We are reducing exactly two edges per component and thus reduce a total
of 6k edges. It remains to be shown that the reduced graph Gr contains no path exceeding 30.

Let P be any path from p to g. The structure of P is one of the following:

(i) Path P contains source pf and sink qf of some component UZ‘7 Any such path has cost 32
in G. Either {1 and 3 or f; and f; are reduced. Hence, path P contains either one true

or one false edge that is reduced, and the cost of P in G is 22.

(ii) Assume P contains vertices of a single clause graph G;, with the vertices belonging to
different components or the attachment. The majority of the cases described below make
use of the fact that any upper path in a component has either its true- or its false-edge
reduced. Assume G is a positive clause graph. The situation for a negative clause graphs

is symmetrical and is omitted.

(a) P goes through vertex p}, edge t; of U}, edge e, edges t; and f; of U? and vertex

k3

q?, as shown in Figure 7(a). The length of P in G is 36 and it is at most 26 in G p.

edge ey, edge ¢ of U?

7?7

(b) P goes through vertex p!, edge t; of U}

77

edge eq, edges 1y
and fi of U? and vertex ¢?, as shown in Figure 7(b). The length of P in G is 40 and
it is at most 30 in GR.

(c) P goes through vertex pl, edge t; of U}, edge e;, edge ¢; of U2, edge ey, edge {1 of
U2, edge e3, and the attachment of clause graph G;, as shown in Figure 7(c). The
length of such a path in G' is 31. Since at least one of the three literals of positive

clause C; is assigned “T”, at least one of the three true-edges on the upper paths of

the components of G; is reduced. This implies that P is at most 21 in Gg.

(d) P goes through vertex p?, edge 11 of U2, edge ey, edges ¢; and f; of U? and vertex

¢?,as shown in Figure 7(d). The length of P in G is 36 and its length in Gp is at

most 26.

28

Figure 7: Paths in positive clause graph G; going through different components and/or the
attachment.

29

(e) P goes through vertex p?, edge t; of U?

[

edge ey, edge {1 of U2, edge ez, and the

attachment of G;, as shown in Figure 7(e). The length of P in G is 27 and does not

need to be reduced.

(f) P goes through vertex p?, edge t; of U?, edge e3, and the attachment of GG;, as shown
in Figure 7(f). The length of P in G is 23 and does not need to get reduced.

(iii) Assume now that path P contains edges belonging to different clause graphs. Our con-
struction of G allows such a path to contain edges of no more than two different clause
graphs. Let P contain edges from components U? and U]b, t # j. P either contains
vertices ¢; of U# and ¢y of U]b or vertices ¢; of U]b and ¢ of U?. Any such path has length
32 and it contains a {3 and an fy; edge belonging to different components. Components
U and U;-’ correspond to literals formed by the same variable. We thus have in both

components either all true or all false edges reduced. This implies that any such path has

a length of exactly 22 in Gpg.

Hence, reducing 6k true- or false-edges according to the truth assignment satisfying C
results in a reduced graph G'r containing no path exceeding 30. We now complete the proof by
showing that if there exists a 0/1 reduction R with M(GRr) < 6k and L(GRr) < 30, then C' can

be satisfied. We start by giving properties that any such reduction R must satisfy.

Property 5.1 In a component U} belonging to a posilive clause graph the setl of reduced edges
is either {t1,t2}, or {f1,t2}, or {f1, f2}. In a component U? belonging to a negative clause

graph the set of reduced edges is either {t1,t2}, or {11, fo}, or {f1, f2}.

Proof: As already stated, in order to reduce the length of every path to 30 and reduce at most
6k edges, two edges per component need to get reduced. Clearly, reduction R may reduce both
true-edges or both false-edges. For components belonging to a positive clause graph it is also
possible that edges f; and {5 are reduced. Observe that reducing edges f; and {; preserves a
path length of 32 within this component. In a symmetrical way, for components belonging to

a negative clause graph, it is possible that edges f, and ¢; are reduced. a

Property 5.2 Let U} and U][? be two components linked together by consistency edges. Then,

either the ty edges of U} and U]l? are reduced or the f, edges of U and U]b are reduced.

30

Proof: Assume the ¢, edge of component U? is reduced, but the ¢, edge of component U][? is
not. By Property 5.1, the f; edge of component U} is not reduced. This would imply that Gr
contains a path of length 32 containing edge ¢; and vertex c¢; of U][-’ as well as vertex ¢y and

edge f, of U?. The other situations result in similar contradictions. 0.

Property 5.3 If G; is a posilive clause graph, al least one of the lthree t1 edges in G; is reduced.

If G; is a negative clause graph, at least one of the three fi edges in G; is reduced.

Proof: Let P be a path from source p to sink ¢ going through clause graph G; and containing
edges e, eq, e3 of G;. Such path has length 31 in . Since the edges in the attachment cannot
be reduced, at least one of the three edges having weight 10 is reduced in R. These three edges
correspond to true-edges in a positive clause graph and correspond to false edges in a negative
clause graph. d.

Given a graph G and a reduction R, a truth assignment ¢ : X — {7, F'} satisfying C is
constructed as follows. For every variable z;, find a component U;«’ corresponding to a literal
u? formed by z;. If the {3 edge of component UJI-’ is reduced, set {(z;) = 1. If the f; edge of
U][? is reduced, set {(z;) = F. Property 5.2 guarantees that any literal formed by z; induces the
same truth assignment. By Property 5.3, at least one literal is true in each clause, and thus

t: X — {T, F} satisfies C'. This concludes our NP-completeness proof. a

The assumption € = 0 is not crucial to the argument used in the proof. For example, the
following change in the edge weights of the multiple edges gives an NP-completeness proof for
€= % Multiple edges having a weight of 12 now have a weight of 16. The ones having a weight
of 6 now have a weight of 8, and the edges in the attachment now have a weight of 6. The
longest path length in G remains 40. An argument identical to the one already used shows that
there exists a 0/1 reduction R with M(GRr) < 6k and L(GRr) < 35 reducing at most 6k edges

if and only if C' can be satisfied.

6 Acknowledgements

We would like to thank the anonymous referees for their helpful and constructive comments

which lead to an improvement in Section 3.

31

References

[1] A. Al-Khalili, Y. Zhu, and D. Al-Khalili. A module generator for optimized cmos buffers.
In Proceedings of 26th ACM/IEEFE Design Automation Conference, pages 245-250, 1989.

[2] H. Booth and R.T. Tarjan. Finding the minimum-cost maximum flow in a series-parallel
network. Journal of Algorithms, 15:416-446, 1993.

[3] H.-C. Chen, D.H.-C. Du, and L.-R. Liu. Critical path selection for perfomance optimiza-
tion. IEFE Transactions on Computer-Aided Design of Integrated Chircuils and Systems,
12(2):185-195, 1993.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

[5] M.R. Garey and D.S. Johnson. Computers and Intractability : A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[6] A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling directed
acyclic graphs on multiprocessors. Journal of Parallel and Distributed Compuling, 16:276—
291, 1992.

[7] D. Marple. Transistor size optimization in the tailor layout system. In Proceedings of 26th
ACM/IEEFE Design Automation Conference, pages 43-48, 1989.

[8] F. Obermeier and R. Katz. An electrical optimizer that considers physical layout. In
Proceedings of 25th ACM/IEEE Design Automation Conference, pages 453-459, 1988.

[9] C.H. Papadimitriou and J.D. Ullman. A communication-time tradeoff. SIAM Journal of
Computing, 16(4):639-646, August 1987.

[10] J. Valdes, R.E. Tarjan, and E.L. Lawler. The recongnition of series parallel digraph. SIAM
J. Comput., 11(2):298-313, May 1982.

32

