Minimizing Broadcast Costs under Edge Reductions in Tree
Networks

Susanne E. Hambrusch* Hyeong-Seok Limf
Department of Computer Sciences Department of Computer Science
Purdue University Chonnam National University
West Lafayette, IN 47907, USA Kwangju, 500-757, Korea
seh@cs.purdue.edu hslim@chonnam.chonnam.ac.kr

May 14, 1998

Abstract

We study the broadcasting of messages in tree networks under edge reductions. When an
edge is reduced, its cost becomes zero. Edge reductions model the decrease or elimination
of broadcasting costs between adjacent nodes in the network. Let T" be an n-vertex tree
and B be a target broadcast cost. We present an O(n) time algorithm for determining the
minimum number of edges of T" to reduce so that a broadcast cost of B can be achieved. We
present an O(nlogn) time algorithm to determine the minimum number of edges to reduce
so that a broadcast initiated at an arbitrary vertex of T' costs at most B. Characterizations
of where edge reductions are placed underly both algorithms and imply that reduced edges
can be centrally located.
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1 Introduction

The broadcasting of messages in a communication network is a fundamental operation in parallel
and distributing systems. Whether a broadcasting strategy is efficient depends on the underly-
ing communication model, in particular on how available communication links can be used. In
the blocking communication model, a message is transmitted to only one adjacent processor at
any time. Transmitting the message can be viewed as making a telephone call and as blocking
the communication abilities for both the sender and receiver. The blocking communication
model has been studied extensively extensively from a theoretical point of view [6, 7, 9, 14] and
it underlies numerous broadcast algorithms [1, 2, 10, 11, 12].

In this paper we study broadcasting in tree networks under edge reductions for blocking
communication. Edge reductions model the decrease or elimination of broadcasting costs be-
tween adjacent nodes of the network. For example, when a communication link is replaced by
a faster link, the communication time reduces and may become negligible compared to other
costs. We study where to place such edge reductions so that broadcasting costs are minimized.
Edge reductions in longest path computations have previously been studied in [8] and have
application in circuit layout and project management [3, 5].

Let T = (V, E) be an n-vertex tree with unary edge weights. When vertex ¢ sends a message
to vertex 7, 1 and j are engaged in communication for one time unit. Then, vertices 7 and j are
free to continue broadcasting. Assume that some vertex s broadcasts a message to all vertices of
T. Let B, be the minimum cost of a broadcast initiated by s (i.e., the time at which the message
arrives at the last vertex). Clearly, the order in which messages are sent out from a vertex to its
adjacent vertices is crucial when determining B;. Further, the cost of a broadcast initiated at
vertex s can differ from that of a broadcast initiated at some other vertex. In problem Br_Min
we determine, for a given tree T', the set of vertices from which a broadcast of minimum time
can be initiated. Let Bpsin(T) be this broadcast time; ie., Byin(T) = minj<s<n{Bs}. In
problem Br_Arb we bound the cost of a broadcast initiated at an arbitrary vertex of T i.e.,
Barp(T) = maxi<s<n{Bs}. In [14], Slater et al. present an O(n) time algorithm for determining
Brin(T). The vertices at which initiating a broadcast costs Bpsin(T') represent the center set

and they form a star consisting of at least 2 vertices. In [14] it is also shown that the value of



B4,4(T) is the sum of By, (T) and the longest path length to a vertex in the center set.

Assume we are given a tree T and a target broadcast cost B. In problem Br_Min under edge
reductions we determine which edges to reduce so that the resulting tree Tz has a broadcast cost
of at most B (i.e., Byin(Tr) < B < Buin(T)) and the number of reduced edges is a minimum.
In Br_Arb under edge reductions we determine a reduction so that B4,4(Tr) < B < Banp(T') and
the number of reduced edges is a minimum. In this paper we present an O(n) time algorithm
for Br_Min and an O(nlogn) time algorithm for Br_Arb under edge reductions. We show that
for both problems there exists an optimal reduction in which the reduced edges form a tree.
This implies that when edge reductions correspond to fast communication links, such links can
be centrally located.

The paper is organized as follows. In Section 2 we review the O(n) time algorithm for
determining Bsin(T") described in [14]. Our edge reduction algorithms make use of this algo-
rithm in a preprocessing step and work with the broadcast entries it generates. In Section 3 we
first develop characterizations of where the edge reductions are placed in an optimal reduction
for Br-Min. We then present the O(n) time algorithm. Problem Br_Arb is discussed in Sec-
tion 4. Since the final broadcast cost is now the sum of a longest path length and the cost of a
Br_Min instance, different characterizations are established in Section 4.1. The edge reduction
algorithm for problem Br_Arb is presented in Section 4.2. The data structures achieving the

O(nlogn) time bound are described in Section 4.3. Section 5 concludes.

2 Review of the O(n) algorithm for Br_Min

The algorithm described in [14] solves problem Br_Min in O(n) time by performing a sweep
through T which starts at the leaves. Our algorithms for Br_Min and Br_Arb under edge
reductions use this algorithm as a preprocessing step and uses the entries it generates. For
completeness sake, we describe the algorithm given in [14]. In order to avoid confusion, we
refer to this algorithm as Algorithm CF (CF for center finding). Algorithm CF generates the

following;:

1. Algorithm CF roots tree T' at some vertex, say vertex c. For every vertex u, let p(u) be

the parent of u.



Procedure Determine b(u)
Input: vertex w which has uy,ug,...,u, as the marked adjacent vertices.
Output: b(u)

(1) Arrange vertices uq,ug,...,uq so that b(u;) > b(ug) >

- 2 b(ug)

(2) b(u) = maxi<i<q{b(ui) + 14}
Figure 1: Procedure Determine_b(u).

2. Algorithm CF determines center set C, C C V. For every vertex u € C, a broadcast

initiated at u has cost By (T)-

3. For every vertex u, Algorithm CF determines a broadcast entry b(u); b(u) represents the
cost of a broadcast initiated at vertex u to the vertices in the subtree rooted at u. The

b-values determine the order in which vertex u sends the message to its children.

Algorithm CF starts by initializing the b-entries so that every leaf u has b(u) = 0 and every
other vertex has b(u) = co. A vertex is either marked or unmarked. A marked vertex has its
final b-entry and its parent in the rooted version of T' is known. Initially, every leaf is marked
and its parent is the other vertex on the incident edge. Every other vertex is unmarked.

Let deg(u) be the degree of vertex u. Next, Algorithm CF considers all vertices u adjacent
to deg(u) — 1 leaves. For every such vertex u we invoke procedure Determine_b(u) given in
Figure 1. Vertex u then has a b-entry, but it has not yet been marked (and no parent vertex has
been recorded). Once the leaves and possibly their adjacent vertices have been processed, the
main iteration of Algorithm CF begins. In each step of this iteration, Algorithm CF selects an
unmarked vertex with minimum b-value (ties are broken by using the vertex index). Let vertex
u be the unmarked vertex chosen. Let z be the one unmarked vertex adjacent to u. Vertex u

is marked and z is made the parent of u in the rooted tree. Then,

e If vertex z is the last unmarked vertex, z is the root of tree 7'. We invoke Determine_b(z)
to determine the final value of b(z). Note that b(z) received a value in a previous iteration

which now increases. Algorithm CF then terminates.

e If z is adjacent to deg(z) — 1 marked vertices, invoke Determine b(x). Vertex z thus



receives a b-value.
o If z is adjacent to more than 1 unmarked vertex, no action is taken.

Let ¢ be the vertex processed last (i.e., the last unmarked vertex) with children ci,...,¢c,. Let
s be the smallest index such that b(c;) +s = b(c), 1 < s < ¢. Initiating a broadcast at ci,...,cs
or ¢ results in a broadcast cost of b(c) and C = {c,c1,...,cs}. We refer to [14] for the details
on how to implement Algorithm CF in O(n) time.

Vertex c is the root of the rooted version of tree T. Throughout the paper, if not stated
otherwise, we assume that T is rooted at c. We further assume that the children of each vertex u
are arranged by non-increasing b-values. We illustrate the last iteration of Algorithm CF using
tree T' shown in Figure 4(a). The integers next to the vertices represent the corresponding
b-values. The shaded vertices represent the vertices in center set C. When vertex ¢y is selected
and marked, it has b(c;) = 5 and vertex ¢ is unmarked with b(c) = 6. Every other vertex is
already marked. After c; is marked, we have x = c¢. Procedure Determine_b(u) sets b(c) = 7
and Algorithm CF terminates.

Algorithm CF will be applied to the initial tree T" as well as to trees Tr with edge reductions.
We conclude this section with a brief description of the changes of Algorithm CF for a tree with
0/1 weights. Step (2) in Algorithm Determine_b(u) changes. Let n; be the number of unreduced

edges among (uj,u), 1 < j <i. We set

b(u) = 112?5’2{”(“@‘) +n4}.

Maintaining the O(n) time is straightforward. When edge (u,u;) is reduced, a message at
vertex u at time ¢ is also available at time ¢ at w;. When (u,u;) is not reduced, the message
arrives at u; at time ¢ + n;. The quantity b(u;) + n; for a reduced edge (u,u;), i > 1, cannot
result in the smallest index inducing the maximum. This holds since there exists a j, j < 1,

with b(u;) > b(u;) and n; = n,;. Hence, b(u) is determined correctly.
3 Br_Min under edge reductions

In problem Br_Min we determine (i) the set of vertices at which initiating a broadcast costs

minimum time and (ii) the order in which each vertex sends out the message to adjacent vertices.



Algorithm CF described in the previous section solves Br_Min in O(n) time. In problem Br_Min
under edge reductions we further determine an optimal reduction R containing the edges to be
reduced. Let Tr be the tree obtained from T" when every edge in R has weight 0. As already
stated, reduction R is an optimal reduction when By, (Tr) < B and the number of edges in R
is a minimum. In this section we describe Algorithm Reduce_Br_Min which determines such an
optimal reduction in O(n) time. When it is clear from the context, we refer to problem Br_Min
under edge reductions simply as problem Br_Min.

Assume Algorithm CF has been applied to tree 7. We assume throughout that c¢ is the
last vertex processed by Algorithm CF and that set C contains the vertices in the center set.
Furthermore, p(u) denotes the parent of u when T is rooted at ¢ and the children of u are
arranged by non-increasing b-values. Optimal reductions are not unique. In Lemmas 1-3 we
show that among all optimal reductions there exists one which satisfies the characterization
given in Lemma 3; i.e., there exists an optimal reduction so that the reduced edges form a tree
and vertex c is incident to a reduced edge. This characterization is the basis for our O(n) time

algorithm.
Lemma 1 There exists an optimal reduction R* so that the edges in R* form a tree.

Proof: Assume the edges in R* do not form a tree, but a forest F*. Then, there exist two
edges e = (u,v) and € = (v/,v") in R* such that there is no path between them in F*. We
choose e and €’ so that no edge on the path between them is in R*.

Let ¢* be the last vertex processed when Algorithm CF is applied to tree Tr«. Let = be
the lowest common ancestor of edges e and €' when is T rooted at ¢*. Let u (resp. u') be the
vertex of edge e (resp. €') closer to z. Either u or ' can be equal to z, but not both. W.lLo.g.,
assume u 7 = and let y be the child of  on the path from x to w. For the situation shown in
Figure 2(a), let R’ = R* — {(u,v)} U {(z,y)}. The situation for e and e’ can also be as shown
in Figure 2(b); i.e., z = v/ and v' = y. In this case, let z be the vertex adjacent to y on the
path from y to u and let R' — {(u,v)} U{(y,2)}. R and R* reduce the same number of edges
and Bpsin(Tr+) = Bugin(Tr'). Reduction R’ is thus also an optimal reduction. Compared to

R*, one reduction is performed closer to the root ¢*. If the edges in R’ form a tree, we have



(a) (b)

Figure 2: Positions of e and e’ when E* does not form a tree (‘=" indicates a reduced edge).

obtained the desired reductions. Otherwise, apply the edge reduction swap again. This process

will eventually produce a desired reduction. O

The next two lemmas show that there exists an optimal reduction R* forming a tree for

which vertex c is incident to a reduced edge.

Lemma 2 There exists an optimal reduction R* so that R* forms a tree and c* is incident to

an edge in R*.

Proof: Assume that the edges in R* are connected, but that no edge is incident to c¢*. Let ¢
be the vertex incident to ¢* so that all edges in R* are in the subtree rooted at c;. Let u be
the vertex closest to ¢ incident to a reduced edge. Let p*(u) be the parent of u in tree Tg+
with root ¢*. By reducing edge (u,p*(u)) and not reducing one of the edges incident to u in
R*, we obtain a reduction R’ with Bpin(Tr*) > Bumin(Tr). Making this change may have
caused the edges in R’ to get disconnected. However, by applying Lemma 1 to R’, we obtain
another optimal reduction containing edge (u,p*(u)) and R’ connected. We repeat this process

of trading edges until an edge incident to c¢* is reduced. O

Lemma 3 Let R* be an optimal reduction so that the edges in R* form a tree and vertex c* is



incident to an edge in R*. Then, vertex c is incident to an edge in R*.

Proof: Let ci,...,cq be the children of vertex ¢ in T' and let T'/c; be the tree obtained from
T when the subtree rooted at ¢; is deleted, 1 < j < g. We use B.(T/c;) to denote the cost of
broadcast in T'/c; initiated at c. We make use of the following two inequalities which hold for

every j, 1< j < ¢:

b(e;) < B(T/c;) &

B(T'/¢j) 2 Bpy(T) — 1 (2)

The first equation holds since b(cj) > B.(T/cj) would imply that ¢ is not the last vertex
processed when Algorithm CF is applied to 7. To show (2), assume there exists a ¢; such
that B.(T/cj) < Bp(T) — 1. Consider the following broadcast in T' initiated at c;: vertex
c; sends the message to ¢; ¢ broadcasts the message to all the other vertices in subtree T'/c;;
simultaneously, c; broadcasts the message to the vertices in the subtree rooted at c;. Let B, (T)
be the cost of this broadcast. Then, B, (T) < max{1+ B.(T/c;),1+b(c;)}. Using (1) and the
assumption 1+ B.(T/c;) < Br¢(T), we get Be;(T) < 1+ Bc(T/cj) < Bp(T). This contradicts
that a broadcast initiated at ¢ has minimum cost and (2) follows.

Assume that in reduction R* vertex c is not incident to a reduced edge. Let ¢; be the child
of ¢ in T so that all edges in R* are in the subtree rooted at ¢; (¢; = ¢* is possible). A broadcast
initiated at c¢* reaches vertex c via ¢; and then continues in tree T'/c;. At least one time step
is needed to broadcast from ¢* to ¢ and thus b*(c*) > 1+ B.(T'/c;). Making use of (2) gives
b*(c*) > Bp¢(T). Since b*(c*) = Brin(Tr+) < B by definition of Br_Min, we get B > Bin(T),

a contradiction. O

We are now ready to describe Algorithm Reduce Br Min which is given in Figure 3. As
already stated, the first step is to invoke Algorithm CF on tree T. Reduction R is determined
by considering every vertex uw and determining which of u’s incoming edges are reduced. We
distinguish between two types of reductions. A forced reduction is placed on every edge (v;,u)
with b(v;) > B. Choice reductions are placed on 3 edges to achieve a broadcast cost of B for

vertex u. Algorithm Reduce_Br_Min chooses the leftmost 3 edges for the choice reductions.



Algorithm Reduce_Br_Min

(1) execute Algorithm CF on tree T';
vertex ¢ is the root of the rooted tree T;
every vertex u receives its broadcast value b(u);

(2) for every vertex u of T do
let vi,v,...,v4 be the children of u with b(vi) > b(vg) > ... > b(v,)

(2.1) let | be the largest index such that b(v;) > B
make forced reductions: reduce edges (v;,u), 1<i<I

(2.2) m =max{b(vi4+1) + 1,b(vi12) +2,...,b(vy) + ¢ —1}
if m > B then
make m — B choice reductions:
reduce edges (vjy1,u), (U2, u),- .-, (Vrm—B,u)
endfor

Figure 3: Algorithm Reduce_Br_Min.

We point out that for the problem Br_Arb we need different choice reductions when underlying
instances of Br_Min are solved.

From the way Algorithm Reduce Br_Min places reductions, it follows that the reduced edges
form a tree containing vertex c and that the broadcast cost is B. We next describe the center
set Cg for tree Tp. When Algorithm Reduce_Br_Min reduces edge (u,v), a broadcast initiated
at either vertex u or v results in a broadcast cost of B. Hence, vertices 4 and v are in Cgr. A
vertex ¢; € C not incident to a reduced edge is not necessarily in Cgr. Figure 4(a) shows such an
example. We have C = {c,c1,c2,c3,¢4}, Cr = {c,c1,c2,¢3,¢5}, and ¢4 is in C, but ¢4 is not in
Cr. On the other hand, for the trees shown in Figure 4(b) we have C = Cr = {¢c, c1, 2, ¢3, 4,05}
and Cg contains vertices not incident to reduced edges.

We say that Cg is a simple center set if it contains only vertices incident to reduced edges
and it is an extended center set if it contains vertices not incident to reduced edges. Center
set Cr is a simple center set if at least two edges need to be reduced to achieve broadcast cost
B — 1. This is equivalent to the existence of at least two vertices in T which experience a

broadcast cost of B. Figure 4(a) shows a tree T with a simple center set.



(a) Buyin(T) = 7 and B = 4; reduction R with a simple center set
in which not every vertex in C is in Cg.

(b) Bymin(T) = 11 and B = 8; reduction R with an extended center set.

Figure 4: Simple and extended center sets; vertices in center set are shaded.
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In an extended center set, the vertices in Cr not incident to a reduced edge have a common
parent which we call the extended center vertex z.. Figure 4(b) shows an extended center set
with £, = ¢. When TR contains an extended center vertex z. having a child z; such that
edge (z¢,z;) is not reduced and z; € Cr, reducing (x., ;) achieves a broadcast cost of B — 1.
Hence, in an extended center set the reduction of a single edge decreases the broadcast cost.
Extended center sets play only a minor role in Br_Min, but they have considerable impact on
the algorithm for Br_Arb. From the way reductions are made by Algorithm Reduce Br_Min, it
follows that when Cg is an extended center set, we have z. = ¢ and all reductions are on edges
incident to c.

We conclude this section with the optimality of the reduction generated by Algorithm Re-
duce Br_Min. Let bg be the resulting broadcast values obtained when Algorithm CF is applied
to tree Tr. Observe that vertex c is not necessarily the last vertex processed. However, there
exists an order of choosing vertices with the same bg-value so that c is the last vertex processed.

Hence, w.l.0o.g. we can assume that c is the last vertex processed.

Theorem 4 Algorithm Reduce_Br_Min solves problem Br_Min under edge reductions in O(n)

time.

Proof: Let R be the reduction generated by Algorithm Reduce_Br_Min. It is clear that
Bprin(Tr) = B and that the edges in R form a tree. Let R* be an optimal reduction. Us-
ing the previous lemmas, we can assume that the edges in R* form a tree and that vertex c
is processed last when running Algorithm CF on Tgr«. We show that there exists an R* with
R* = R.

Consider a vertex v and assume that R and R* reduce the same edges on the path from ¢ to
v. Let uq,us, ..., ur be the children of v with b(u1) > ... > b(ug). Assume that R reduces edges
(v,u1), (v,u2),--., (v,u;). If R* also reduces these [ edges and no more, we are done handling
vertex v. Otherwise, we proceed as follows.

Assume first that there exists a vertex u, such that edge (v,u,) is reduced in R, but not in
R*, r <. Choose r to be as small as possible. Then, edges (u,v1), ..., (u,v,_1) are reduced
in R as well as R* and bgr(u,) < b*(u,) = b(uy). The equality holds since no further edges are

reduced in the subtree rooted at u, in R*. Since R* is an optimal solution, we have b(u,) < B.

11



Edge (v,u,) thus has a choice reduction in R (i.e., it is reduc ed to decrease the delay of
the message arriving at the nodes uy,ur41,...,u;). Hence, there exists a 3, 8 > 0, so that
b(uryp) + B+ 1> B.

If R* contains an edge (v, ur4q), @ > 1, which is reduced, we change R* so that edge (v, u,)
is reduced and edge (v, ur44) is not. This swap does not change the broadcasting cost and thus
results in another optimal solution. If the new R* does not form a tree, we apply Lemma 1.
If there exists no edge (v, ur4q), @ > 1, which is reduced in R*, R* would not be an optimal
solution. This follows since there exists a 3 such that b(u,;3)+/3+1 > B. We can thus assume
that there exists an optimal solution which also reduces edge (v, uy).

Finally, consider the situation when R does not reduce edge (v,u,), but R* does. Observe
that R and R* agree on their action of the first » — 1 edges incident to v. Not reducing the
edges (v,u;), r < j <k, or any edges in the subtrees rooted at these vertices does not cause
tree Tr« to exceed the target broadcast cost. It thus follows that R* does not need to make
a reduction on edge (v,u,). Since R* is optimal solution, R* will not make such a reduction.
It follows that there exists an R* = R and thus R is an optimal reduction. The O(n) time
bound for generating R follows from the O(n) time bound of the Algorithm CF and how edge

reduction are determined. O

4 Br_Arb under edge reductions

In problem Br_Arb under edge reductions we determine, for a given tree T' and a target broadcast
cost B, a reduction R so that (i) a broadcast initiated at an arbitrary vertex is completed by
time B in Tg and (ii) the number of reduced edges is a minimum. Recall the cost of a tree T'
in Br_Arb: B,(T) = maxi<i<n{Bi}, where B; is the cost of completing a broadcast initiated
at vertex i. Slater et al. show in [14] that for trees with unary weights B; = d(i, ¢;) + Barin(T),
where d(i, ¢;) is the length of the path from i to ¢; and ¢; is the vertex in center set C closest
to vertex 4. Let d,;, = maxi<i<p d(i,¢;). It then follows that Ba,(T) = dpm + Barin(T)-

In Br_Arb under edge reductions the decision on where to place edge reductions is thus
determined by the cost of an Br_Min instance and a longest path length. In Section 4.1 we

present characterizations of an optimal reduction which allow us to efficiently identify one op-

12



timal reduction among all possible optimal reductions. In particular, we show that we can
again assume that the reduced edges form a tree containing vertex ¢ and that the cost of an
Br_Arb instance under edge reductions is the sum of a longest path length and the cost of an
Br_Min instance. Making use of these characterizations leads to a solution for Br_Arb which
considers all possible distances and solves an Br_Min instance for each distance. If Algorithm
Reduce_Br_Min were invoked each time, O(n?) time would follow. In Section 4.2 we describe
Algorithm Reduce Br_Arb which achieves the claimed O(nlogn) time bound. Algorithm Re-
duce_Br_Arb also considers all possible distances, but avoids recomputations and makes updates
on existing reductions. In order to make these updates fast, we introduce entries defined on the

edges and we change how Algorithm Reduce_Br_Min selects edges for choice reductions.
4.1 Characterizations for Br_Arb

The next two lemmas show that there exists an optimal reduction in which reductions are made
as characterized in Lemma 3; i.e., the reduced edges form a tree containing vertex c. Let R*
be an optimal reduction and let ¢* be the last vertex processed when Algorithm CF is applied

to tree Tp+.

Lemma 5 There exists an optimal reduction R* so that the edges in R* form a tree and c* is

incident to a reduced edge.

Proof: The reduction trading operations described in the proofs of Lemmas 1 and 2 do not
increase the broadcast cost. We now show that reduction trading does not increase the cost
of the Br_Arb instance. Assume R* does not satisfy the lemma and let R’ be the reduction in
which a reduction on edge (u,p*(u)) is removed and a reduction is placed on edge (v,p*(v)),
where v is an ancestor of 4 in Tg+. From the way edges are chosen in Lemmas 1 and 2, it
follows that the path from p*(u) to v does not contain a reduced edge.

When vertex v is not in the center set of Tr«, neither the longest path length to a center
vertex nor the broadcast cost increases. Hence, the cost of reduction R’ is not larger than that
of R*.

When vertex v is in the center set, v is a child of ¢*. Placing the reduction on edge (v, c*)

can increase the longest path length to a vertex in the center set. It can also result in vertex

13



¢* no longer being the last vertex processed when applying Algorithm CF. More specifically:

e The longest path length can increase by 1. This can happen when the size of the center
set decreases and a vertex in Cg+ is no longer in Crr. Or, it can happen when the length
of the path from a vertex in the subtree rooted at u to vertex v increases by 1 (since edge

(u,p*(u)) is no longer reduced).

e Since edge (u,p*(u)) looses its reduction, it is possible that ' (v) > b*(v). This can result

in vertex v being the new root of tree Txr.

We next show that neither of these two events increases the cost of reduction R'. If ¥ (v) =
b*(v), we have Bpyin(Tr) = Bain(Tr+) — 1 and ¢* remains the root of the tree. Any increase
in the longest path length is thus offset by the decrease in the cost of the underlying Br_Min

instance. Hence, the cost does not increase for Br_Min.

TR* 6 c*=p*(v)

(a) CR* = {’U,C*}, BMin(TR*) =6 (b) CRI = {’U,C*,’Ul,’UQ,’Ug}, BMin(TR’) =6
Figure 5: Example for v becoming the new root when ¥'(v) = b*(v) + 1 and b*(v) = b*(c*) — 1.

Assume ' (v) = b*(v) + 1. Since edge (v,c*) is not reduced in R*, we have b*(v) < b*(c*).
When b*(v) < b*(c*) —2, vertex ¢* remains the root and a broadcast initiated at ¢* is completed
by time b*(c¢*) —1; i.e., Bain(Tr') = Barin(Tr+)—1. The broadcast cost decreases by 1 and thus
offsets any increase in the longest path length. The cost of B.p(Txr) does not increase. The
interesting case is b*(v) = b*(c*) — 1. Center set Cr+ contains ¢* and v and v is the only vertex

in Cp+ not incident to a reduced edge. Let B« (Tg+ /v) be the cost of a broadcast initiated at c*

14



in the tree obtained from Tz« when vertex v and the subtree rooted at v are deleted. We have
B (T~ [v) = b*(c*) — 1 = b/(c*). Since we assume b*(v) = b*(c*) — 1, we have V' (v) = b*(c*).
When Algorithm CF is applied to Tg/, vertex v is processed last and is made the root. However,
the broadcast cost does not change; i.e., Basin(Tr') = Barin(Tr+). Figure 5 shows trees Tg-
and T for which this happens. For clarity, the edges are directed towards the corresponding
roots. Observe that longest path length to a vertex in the center set is 3 for both trees. We
next show that the longest path length cannot increase in Tgr.

Center set Cp contains v (since it is the root) and ¢* (since edge (v, ¢*) is reduced). It also
contains children of vertex v in Tr/. In particular, let w be the child of v so that the subtree
rooted at w contains u (recall that edge (u,p*(u)) lost its reduction in the reduction trading).
Since w induces cost Bpsin(Tr) = b'(v) = b*(c¢*), w is in Cg. In Figure 5(b), we have w = v3.
Consider now a path from some vertex z to v containing edge (u,p*(u)). The length of this
path increases by 1 in Tg compared to Tg+. However, vertex w is now in the center set and
the length of z to the closest vertex in the center set does not increase. Since C'r« contains no
vertices incident to unreduced edges besides v and c*, and these vertices are in Cr/, the length
of the distance from any other vertex to a vertex in the center set does not increase. Hence,

Brp(Tr') = Barp(Tr+) and the lemma follows. O

Lemma 6 Let R* be an optimal reduction forming a tree so that vertexr c* is incident to a

reduced edge. Then, vertex c is incident to a reduced edge.

Proof: Assume that in reduction R* vertex c is not incident to a reduced edge. Let ¢; be the
child of ¢ in T' so that all edges in R* are in the subtree rooted at ¢;. Recall the inequalities
from Lemma 3: B.(T/c¢;) > Buyin(T) — 1 and b*(¢*) > Bpin (T). While the second inequality
led to a contradiction for problem Br_Min, it does not do so for Br_Arb. The cost of reduction
R*, which is at most B, is now the sum of two quantities: a longest path length and Bz, (Tr*)-
It is conceivable that an optimal reduction increases the broadcast cost for the sake of reducing
the distance to the vertices in the center set.

To show that vertex c is incident to a reduced edge we show that, when Algorithm CF is

applied to tree Tg~, vertices can be marked so that vertex c¢* is not the root, but a vertex on
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the path from ¢ to p(c*) is. We can then apply Lemma 5 to obtain a reduction containing an
edge incident to the new root. By repeating this argument we eventually generate a reduction
satisfying the lemma.

Using the above inequalities we have B (Tgr+) = b*(c*) > Buyin(T) and B.(T/c¢;) =
b*(c) > Buin(T) — 1. Let dy,ds,... be the children of ¢* in Tr« arranged by non-increasing
b*-values. Consider a child d; not on the path from c to c*. A broadcast initiated at vertex d;
in tree T costs at most Bz (T) — 2. The broadcast cost for d; can only decrease in R* and
thus b*(dj) < Bain(T) — 2. When Algorithm CF is applied to tree Tg+, vertex c is marked
before ¢*. Since b*(d;) < Buin(T) — 2 for all but one child of ¢*, ¢* already has a b*-value
at the time vertex c¢ is marked. Vertex c¢* is not chosen and thus c*’s b*-value at that time
is at least Basin(T) — 1. Since b(c*) < Bpin(T) — 1 (otherwise the broadcast cost for tree T'
would be larger than By, (T')), it follows that ¢*’s and ¢’s b*-value at the time c¢ is marked is
Burin(T) — 1. Hence Algorithm CF can mark vertex ¢* instead vertex c. This implies that the
root of the resulting tree is a vertex on the path from ¢ to p(c*), not vertex c*. Let ¢’ be the
new root. If ¢ = ¢/, we use Lemma 6 to reposition reductions so that an edge incident to c¢ is

reduced. If ¢ # ¢/, we apply the argument again with ¢* = ¢. |

Let R* be a reduction satisfying the characterization of Lemma 6. Let C* be the center set
for tree T+ and let d* be the length of the longest path from a vertex in T« to a vertex in
C*. In Br_Arb, edges receive reductions for distance as well as broadcast reasons. Arbitrary
vertices can now be extended center vertices. For example, Figure 6(a) shows a tree T with
Basin(T) = 8. Figure 6(b) shows the optimum solution for B = 6 and d = 2. Eight edges are
reduced, all for the purpose of achieving distance at most 2 to a vertex in the center set. Vertex
3 is the extended center vertex and the two children of x3 are in the center set. Vertex xz3
is the last vertex processed when applying Algorithm CF. It is the only vertex experiencing a
broadcast cost of 4.

Let b*(u) be the broadcast value for vertex u when Algorithm CF is applied to tree Tg+ and
let Barin(Tr+) = B*. As already indicated, vertex c is not necessarily the last vertex processed
and b*(c) < B* is possible. The following lemma gives a characterization of an optimal solution

which forms the basis of our algorithm.
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Figure 6: Tree with Byin(T) = 8 and an extended center set for B = 6 and d = 2.
Lemma 7 Let R* be an optimal reduction. Then, Bayp(Tgr+) = d* + B* = B.

Proof: Let x and y be two vertices such that y € C* and the distance from z to y in Tg~ is d*.
Assume first that C* is a simple center set. In this case, ¢ is the vertex processed last. When
C* is a simple center set there exists either a vertex w € C* such that w has two children w,
and we with b*(wq) = b*(we) = B*, or all vertices with a broadcast cost of B* form a path P
starting at vertex ¢ and ending at some vertex w. In the first case, a broadcast initiated at x
costs d* + B*. In the second case, vertex c¢ has a child not on path P also inducing a broadcast
cost of B* for c. Independent of the position of vertex z, a broadcast initiated at = costs time
d* + B*.

Assume now that C* is an extended center with vertex z. as the extended center vertex.
Vertex z. is now the last vertex processed. Let z1,zo, ... be the children of z,, in non-increasing
order of their b*-values. Let z; be the smallest-indexed child of z. inducing b*(z.) = B*.
Observe that edges incident to z, may be reduced (because edges can be on long paths).
Vertices z1,...,z; are in C*. If the path from x to y does not lie in the subtree rooted at z,, a
broadcast initiated at x costs d* + B*. Assume thus that the path from z to y is in the subtree
rooted at z.. If y = z; with j <, then a broadcast initiated at z costs d* + Basin(Tr+). The
same is true when y = x.. Finally, y can be positioned so that there exists a path from z. to y
consisting of reduced edges. Again, a broadcast initiated at x costs d* + B*.

We have thus shown that d* + B* is a lower bound for B,,(Tr+). Clearly, it also is an
upper bound and thus B,(Tg+) = d* + B*. O
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4.2 Description of Algorithm Reduce_Br_Arb

In the previous section we showed that the cost of an optimal reduction is the sum of a longest
path distance and the cost for an Br_Min instance. Assume again that Algorithm CF has been
applied to tree T and that T has been rooted at vertex c¢. Let h(v) be the height of the subtree of
T rooted at vertex v. Algorithm Reduce Br_Arb determines an optimal solution by considering
all possible longest path values. Clearly, h(c) is an upper bound. If a tree T were to contain a
path of cost h(c), a broadcast initiated at vertex ¢ would cost at least h(c). Since the sum of the
longest path and the cost of a broadcast initiated at ¢ cannot exceed B, dpq; = min{h(c), B/2}
is an upper bound.

For each distance d, 1 < d < dpaz, let Ty be the tree containing the minimum number
of reductions so the length of the longest path from any vertex to vertex c¢ is at most d and
Burin(Ty) = B — d. Algorithm Reduce Br_Arb generates Ty, _,...,T1. During the generation
of the trees, an edge (i) may not be reduced, (ii) may have a distance reduction (i.e., it is
reduced to decrease the length of a longest path), or (iii) may have a broadcast reduction (i.e.,
it is reduced to decrease the broadcast time from the vertices in the center set). For each

distance d, iteration d determines the best reduction having

(i) every edge (u,p(u)) with h(u) > d has a distance reduction and all other reductions are

broadcast reductions

(ii) an extended center set, a longest path length of exactly d + 1 from a vertex to ¢, and

distance at most d from any vertex to a vertex in the center set.

Observe that the distinction between the “distance to vertex ¢” and the “distance to a vertex
in the center set” is crucial in the discussion of the algorithm.

Whether a broadcast reduction done for achieving cost B —d needs to be made for broadcast
cost B — d + 1 depends on b-values and whether newly made distance reductions influence
broadcast costs. To make this decision quickly, we use broadcast entries on edges, the be-
entries. Recall how choice reductions on the edges into a vertex u were made in Algorithm
Reduce_Br_Min: if, say, 8 choice reductions are to be made, Reduce_Br_Min makes them of

the B leftmost unreduced edges. Making choice reductions this way in the Br_Min instance
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underlying each iteration of problem Br_Arb makes it difficult to determine the impact of
distance reductions on existing broadcast reductions. We now make the choice reductions so
that preference is given to vertices of large height. Let u be a vertex with children v; and vs.
When giving preference to subtrees of large height, then, if either edge (vi,u) or edge (ve,u)
can receive a choice reduction, we reduce (vy,u) iff h(vy) > h(ve). We point out that it is
possible solve Br_Min in O(n) time when giving preference to vertices of large height in choice
reductions.

Algorithm Reduce Br_Arb does not explicitly solve Br_Min instances. Instead, the be-
values determined in a preprocessing step contain the necessary information about reductions
in Br_Min instances. Every edge (u, v) receives a broadcast edge value be(u, v). If be(u,v) = B,
edge (u,v) has a broadcast reduction for every target broadcasting value < B'. Edge (u,v) is
not reduced for a target value > B’ + 1. Hence, B’ is the largest broadcast value for which
edge (u,v) receives a broadcast reduction. The be-entries are determined by giving preference
to vertices with a larger height when making choice reductions. In Section 4.3 we describe how
to compute the be-entries an O(nlogn) time.

As an example, consider vertex u in Figure 9(a). Its eight children have the b-values
12,10, 10, 10, 8,8, 8,6 and the h-values 4,5, 3,6, 6,6, 6, 6, respectively. Vertex v; induces b(u) =
8 + 7 = 15. One edge (v;,u) with 1 < ¢ < 7 receives a be-value of 14. Vertex vy is one of the
vertices of the largest height and we set be(vs,u) = 14. The be-values for the eight edges are
12,11, 10,14,13,9,8, 6, as shown on the edges.

Assume that distance d 4+ 1 has been considered and that tree T4, has been generated. At

this point, an edge (u,p(u)) is in one of 3 states:

e (u,p(u)) has a distance reduction; implies h(u) > d+ 1. Distance reductions made remain

as d decreases.
o (u,p(u)) is not reduced; implies h(u) < d + 1 and be((u,p(u)) < B—d — 1.

e (u,p(u)) has a broadcast reduction; implies h(u) < d + 1 and be((u,p(u)) > B —d — 1.

Broadcast reductions can be removed or change into distance reductions as d decreases.
Observe that the longest path from a vertex in Tz, to center vertex c can be smaller than d+1
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(since broadcast reductions can decrease the longest path length). Compared to Tyy1, tree Ty
will have more distance reductions and fewer broadcast reductions.

Figure 7 gives an outline of Algorithm Reduce Br_Arb. The first task for a particular
distance d is the generation of set £ which contains the vertices to be considered as extended
center vertices for distance d. When u is an extended center vertex, a broadcast initiated
at u costs B — d and the broadcast cost experienced by every other vertex is < B —d — 1.
When the extended center set contains vertex v and a child v of u having height d, no distance
reduction needs to be made on edge (u,v). Hence, extended centers may not require all distance
reductions to be made.

Set £ contains the vertices to be considered as extended center vertices in iteration d. A
vertex cannot be considered in each iteration. Doing so would result in O(n?) time. When u has
no child of height d, making u an extended center vertex does not save on distance reductions.
Hence, only vertices u having a child v with h(v) = d are of interest. Let u be a vertex with
children vy, ...,v4. Tree Ty;1 has a broadcast cost of B —d — 1. Vertex u is considered as an
extended center vertex and put into set £ if at least one child has height d and there exists a
child v; such that (i) edge (v;,u) has a broadcast reduction (i.e., be(u,v;) > B —d —1) and (ii)
the subtree rooted at v; does not contain any broadcast reductions (i.e., b(v;) < B —d —1).

Figure 8 describes Algorithm Process_Extended _Set which determines for each vertex u in
€ the cost of the reduction when u is an extended center vertex. Step (1) determines the child
v; of u such that (u,v;) has a broadcast reduction, 7 is a maximum, and b(v;) is a minimum
over all such edges. Choosing the vertex with the minimum b-value results in a center set of
maximum size. This is crucial for the correctness argument. We then remove the broadcast
reduction on edge (u,v;). Observe that u is indeed an extended center vertex: when applying
algorithm CF to the corresponding tree: vertex u is the last vertex processed and its broadcast
cost is B — d. Further, reducing one edge, namely (u,v;) decreases the broadcast cost for u by
1. Step (3) determines v, the vertex inducing a broadcasting cost of B —d at vertex u (ties are
broken in favour of the smallest index). The center set contains all vertices incident to reduced
edges and vertices {u,v1,...,v,}. Edges (u,v;) with j <s, h(v;) = d and be(u,v;) < B—d—1

do not require a distance or broadcast reduction. All other edges (z,p(x)) with h(z) = d receive
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Algorithm Reduce_Br_Arb

/* Generate initial reduction */
dpper = min{h(c), B/2};
for each child v of u do
if h(v) > dmazr +1 then edge (u,v) gets a distance reduction
else if be(u,v) > B — djpgy — 1 then edge (u,v) gets a broadcast reduction
endfor
tot_red = number of edges having received a reduction;
current_best = total_red;

for d =d,;4; down to 1 do
(1) /* Generate and process set & */
&E={%
for each vertex v with h(v) =d do
if be(v,p(v)) > B—d—1 and b(v) < B—d—1 then £ = EU {p(v)}
endfor
new-d_red = number of unreduced edges receiving a distance reduction in Ty
Process_Extended_Set (£)

(2) /* Make new distance reductions */
for each edge (v,p(v)) with h(v) =d do

(v,p(v)) gets a distance reduction
endfor

(3) /* Increase broadcast cost to B—d */
for each edge e with be(e) =B —d—1 do

if ¢ has no distance reduction then remove the reduction on e
endfor

(4) /* compute cost of reduction for Ty */

rem_b_red = number of removed broadcast reductions;

tot_red = tot_red + new_d_red — rem_b_red;

if tot_red < current_best then current_best = tot_red
endfor

Figure 7: Outline of Algorithm Reduce Br_Arb.

21



a distance reduction. Step (4) determines the cost of the resulting reduction.

Algorithm Process_Extended_Set(€)

for each vertex u in £ do
(1) among all children vj,v2,... of u let ¢ be the largest index such that
edge (v;,u) has a broadcast reduction (implies that b(v;) is a minimum) ;

(2) remove the broadcast reduction on edge (v;,u)

(3) determine the smallest-indexed vertex vy, s >4, such that
vs induces a broadcast cost of B —d for vertex u

(4) determine the cost of the reduction having u as the
extended center vertex:
in_cen = number of vertices v; with h(v;) =d, j <s, and
(vj,u) has no broadcast reduction
cost_ext = tot_red + new_d_red —in_cen — 1
if cost_ext < current_best then current_best = cost_ext

(5) restore the broadcast reduction on edge (v;,u)
endfor

Figure 8: Outline of Algorithm Process_Extended_Set.

After the vertices in set £ have been handled, Step (2) of Algorithm Reduce Br_Arb de-
termines the new distance reductions for 7,; and Step (3) removes the broadcast reductions no
longer necessary for a broadcast cost of B — d. Step (4) determines the cost of the reduction
which makes all distance reductions for distance d and has a broadcast cost of B — d.

Figure 9 illustrates Algorithm Reduce_Br_Arb for a vertex u and its 8 children with a target
cost B = 17. The be-values correspond to the integers on the edges. The “current broadcast
time” entry within a vertex corresponds to the cost of a broadcast initiated to the vertices in
the subtree. Figure 9(a) shows vertex u and its children with associated b-, be-, and h-entries
in the original tree T'. Current broadcast values are thus identical to initial broadcast time
values. Figure 9(b) shows vertex u and its children in 77. In T%7, a broadcast initiated at u
costs 10. Edge (u,p(u)) has a distance reduction (since h(u) = 7). Five of u’s incoming edges
have a broadcast reduction. Observe that the subtree rooted at v; contains further broadcast

reductions (since b(v1) = 12). The subtrees incident to ve,v3,v4, and vs contain no broadcast
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current
broadcast time

initial
broadcast
time

be-value

12

12 10 10 10 8 8 8 6
h b h b h b h b h b h b h b h b
4 12 5 10 3 | 10 6 10 6 8 6 8 6 8 6 6
Vi Va Vs Va Vs Ve V7 Vs

(a) Vertex u with children v1,vs,...,vg in T; B = 17.

10 10 10 10 8 8 8 6
h b h b h b h b h b h b h b h b
4 |12 5 | 10 3 | 10 6 | 10 6 8 6 8 6 8 6 6
Vi V2 Vs Va Vs Ve V7 Vs

(b) Vertex u and its children in 77 with B — 7 = 10.

10 10 10 10 8 8 8 6
h b h b h b h b h b h b h b h b
4 |12 5 | 10 3 | 10 6 | 10 6 8 6 8 6 8 6 6
Vi V2 Vs Va Vs Ve V7 Vs

(c) Vertex u as the extended center vertex in iteration d = 6.

11 10 10 10 8 8 8 6
4 | 12 5 | 10 3 | 10, 6 10, 6 8 6 8 6 8 6 6
Vi V2 Vs Va Vs Ve V7 Vs
(d) Vertex u in Ty with B — 6 = 11.

Figure 9: Ilustration of Algorithm Reduce_Br_Arb
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reductions. Consider now the iteration with d = 6. Vertices v4 and vs satisfy the condition that
places u into £. When vertex u is processed in Process_Extended_Set, the broadcast reduction
on edge (vs, u) is removed (since vs has the smallest b-values). This causes the broadcast cost at
u to increase to 11 and vertex vy is the vertex inducing cost 11. The extended center set contains
v1,...,0g,v7. The solution for d = 6 with u as the extended center is shown in Figure 9(c). It
contains 4 broadcast reductions and one distance reduction on incoming edges for u. Observe
that edges (vs,u), (vs,u), and (v7,u) do not require a distance reduction. Figure 9(d) shows
the status of the edges in Ts. A broadcast initiated at u (or any other vertex) now costs at most
11. In T§, five of u’s incoming edges have a new distance reduction. The broadcast reduction
on (u,vs) is removed, while the broadcast reductions on (u,v1) and (u,v2) remain.

The next theorem shows the correctness of Algorithm Reduce Br_Arb. Its O(nlogn) run-

ning time is discussed in the next section.
Theorem 8 Algorithm Reduce_Br_Arb solves problem Br_Arb under edge reductions.

Proof: Let R* be an optimal solution for Br_Arb. Among all optimal reductions we choose one
whose reduced edges form a tree containing vertex ¢ and which gives preference to vertices of
large height (the height is defined with respect to the tree rooted at c¢). Let ¢* be the last vertex
processed when Algorithm CF is applied to tree Tr~. Let h*(u) be the height of vertex u in
Tr~ (edges in Tg+ are directed towards ¢* and reduced edges do not contribute to the height).

Making use of Lemma 7, the cost of R* can be expressed as Baq(Tr+) = d* + B* = B.
Clearly, 1 < d* < min{h(c), B/2}. To show that Algorithm Reduce Br_Arb generates a solution
of cost Ba.y(Tr*), consider iteration d*. Tree Ty-y1 contains the reductions at the beginning
and T4+ the reductions at the end of iteration d*, respectively. The height of vertex ¢* in Tg~

is either d* or d* + 1. We considers these two cases separately.

Case 1: h*(c*) =d*

We show that Ty« is an optimal reduction. Assume R* is chosen so that it agrees with Ty« on
as many reduced edges as possible. When R* corresponds to a simple center set, the longest
path from ¢* (or from any vertex incident to a reduced edge) to a vertex in Tg~ is d*. When

R* corresponds to an extended center set, every vertex u in the center set with (u,p(u)) not in
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R* has h*(u) < d*. Whether a simple or extended center set, h*(c*) = d* implies that every
distance reduction made in Ty~ is in R*. To show that the broadcast reductions of Ty« are also
in R* we only need to consider edges (u,p(u)) with h(u) < d*.

Observe that the directions on the edges in T~ and Tr- differ only for the edges on the path
from ¢ to ¢*. Edges on this path are reduced in Ty+ (because they have a distance reduction)
as well as Tg» (because the tree formed by the reduced edges contains c). Let (u,p(u)) be an
edge with h(u) < d*. Assume (u, p(u)) is reduced in Ty-. We consider two cases, depending on

why edge (u, p(u)) received the broadcast reduction in Ty.

e b(u) > B —d*: (u,p(u)) has a forced broadcast reduction in Ty«. Since a broadcast
initiated at p(u) costs at most B — d* in Tg- and the reduced edges form a tree, edge

(u,p(u)) is also in R*.

e b(u) < B —d* and b(p(u)) > B — d*: Assume (u,p(u)) has a broadcast reduction in
Ty and (u,p(u)) is not in R*. Were (u,p(u)) not reduced in Ty«, the broadcast cost for
vertex p(u) would increase to B — d* + 1. Let u' be the leftmost child of p(u) inducing
B —d* +1 when edge (u,p(u)) is not reduced in Ty+. Then, there exists a child v” to the
left of «' (including u') such that edge (u”,p(u)) is in R*, but (u”,p(u)) is not reduced
in Ty«. This implies b(u") < B — d* and h(u") < d*. Generate reduction R’ such that
R = R*—{(u",p(uw))} U{(u,p(u))}. Clearly, R’ is another optimal solution and it agrees
with Tz« on more edges. This contradicts our assumption that R* and R agree on as

many edges as possible. Hence, (u,p(u)) is in R*.

It follows that every edge having a broadcast reduction in Ty« is in R*. Since R* is an optimal

reduction, there exists no edge which is reduced in R*, but not in T4-. Hence, Ty« = Tg+.

Case 2: h*(c*) =d*+1

Reduction R* has now an extended center set with ¢* as the extended center vertex. Further,

c* has a child v belonging to the center set with h*(v) = h(v) = d* and edge (v, c*) not in R*.
In iteration d*, Algorithm Reduce_Br_Arb considers only selected vertices as extended center

vertices. More specifically, a vertex z. is put into set £ when z. has a child v; such that

h(v;) = d*, no edge in the subtree rooted at v; has a broadcast reduction, and (v;,z.) has a
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broadcast reduction in Ty«11. The first two conditions are obviously satisfied for vertices c*
and v. We next show that vertex ¢* has a child v; for which all three condition are satisfied.

A broadcast initiated at ¢* costs B — d* in T+, while a broadcast initiated at a child of ¢*
costs at most B —d* — 1 in Tg+. Let u’ be the leftmost child of ¢* inducing cost B —d* for ¢* in
Tr-. A broadcast initiated at c* costs at most B —d* — 1 in Ty« 1. Hence, there exists an edge
(u,c*) such that u is to the left of u', (u,c*) is reduced in Ty« 1, but (u,c*) is not in R*. It
follows that no edge in the subtree rooted at u is reduced in Ty 11 (otherwise (u,c*) would be
in R*). Since the algorithm gives preference to edges of large height, we have h(u) = d*. (If the
height of u were less, the existence of edge (v, ¢*) would contradict Algorithm Reduce Br_Arb.)
Vertex u is thus a child of ¢* which satisfies the conditions for placing c* into set £.

Let R’ be the reduction whose cost is computed when c¢* is handled in Process_Extended_Set.
We next show that the number of edges reduced in R’ equals that of the reduced edges in R*.
Analog to Case 1, the edges on the path from ¢ to ¢* are reduced in both reductions. Hence,
when referring to an edge (u, p(u)) below, the parent is the same vertex in both trees. Consider
first an edge (u,p(u)) with p(u) # ¢* (and u not on the path from ¢ to ¢*). When h(u) > d*,
the edge is reduced in both R' and R*. For an edge with h(u) < d*, we argue as done in Case
1. Tt then follows that R’ and R* agree on the action for the edges with p(u) # c*.

Consider now the children of vertex p(u) = ¢*. Clearly, an edge (u,p(u)) with h(u) > d*+1is
in both R" and R*. If b(u) > B—d*, edge (u, p(u)) is reduced in both R’ and R*. The interesting
edges are (u,p(u)) with h(u) < d* and b(u) < B — d* when b(p(u)) > B — d*. Consider how
reduction R’ is determined in Process_Extended_Set. Let vs be the vertex determined in Step
(3); i.e., vg is the vertex inducing broadcast cost B — d* after edge (v;, u) looses its broadcast
reduction. Let R” be the reduction represented by tree Ty« 1 without the broadcast reduction
on (vj,u). Observe that in R” the reductions for distance d* have not yet been done (i.e., edges
(vg, ¢*) with h(vg) = d* do not yet have a distance reduction).

Let v; be the leftmost vertex inducing broadcast cost B — d* in R*. We next show that
s > t. Assume to the contrary that s < ¢. Let [, (resp. mgp) be the number of edges not
reduced among edges (vj,c*), a < j < b, in R" (resp. R*). In R", vertex v; is the leftmost

vertex inducing B — d* and thus
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b(vs) + 11,5 =B —d* and b(v) + 115 + 5410 < B —d*.
In R*, v; is the leftmost vertex inducing cost B — d* and thus
b(vs) + mi1s < B —d* and b(v) + mi s +mgi1y = B — d*.

It follows that /1 s > my 5. From the way vertex v; was chosen in Step (1) of Process_Extended_Set
it follows that no edge (vg,c*) with s < k < ¢ has broadcast reduction and, if it has a distance

reduction, it has h(vg) > d*. This implies [541 > myy1,4. Using these two inequalities, we get
b(’Ut) +mis+Msr1t = B—-df < b(’l)t) + l1,5 + ls—l—l,t <B- d*,

which is a contradiction. It thus follows that s > t. When s > ¢, every distance reduction made
in R’ is also in R*. Similar to the argument given for Case 1, we can show that R* and R’
agree on the broadcast reductions done. Hence, R’ is an optimal solution and the correctness

of Algorithm Reduce_Br_Arb follows. O

4.3 Data structures for achieving O(nlogn) time

In this section we describe the data structures giving O(n logn) time. Algorithm Reduce_Br_Arb
assumes that the height and b-value of every vertex and the be-value of every edge have already
been determined. Height and b-values can easily be computed in O(n) time. The computation of
the be-values when giving preference to vertices of large height in choice reductions is described
in Section 4.3.1. The optimum reduction is determined by considering decreasing distance
values and generating trees Ty, . ,...,71. For each distance value d, we invoke Algorithm
Process_Extended_Set which handles the potential extended set vertices for distance d. Since
a vertex u can be considered as an extended set vertex a number of times (each time in a
different iteration), Process_Extended_Set uses additional data structures in order to achieve
the O(nlogn) overall time. In Section 4.3.2 we describe these data structures. The remaining

implementation issues of Reduce Br_Arb are straightforward and are sketched in Section 4.3.2.
4.3.1 Computing the be-entries

Recall that if be(u,v) = B’, edge (u,v) is reduced in an Ft-problem with target broadcast value

< B'. Assume u is a vertex with children vi,v2,...,v4 and b(v1) > ... > b(v,). For a target
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broadcast cost B’ with B’ > b(u), no edge in the subtree rooted at u needs to be reduced. For
a target broadcast cost B’ with B’ < b(v;), edge (v;,u) needs to be reduced. We thus have
b(v;) < be(vi,u) < b(u) — 1.

When every v; is a leaf, we have b(v;) =0, 1 <7 < ¢, and
be(vi,u) = q—1,be(ve,u) =q—2, ... ,be(vg,u) =0.

When determining the be-values for arbitrary vertices, our solution asks queries about the height
and about quantities initially of the form b(v;) + i. Let H, be a data structure for vertex u

containing vertices v1,v2,...,v4 and their heights and supporting the following queries:
o Delete(#H,,v;): delete vertex v; from H,,

e Max-Range(#,,i): determine the index of the vertex having maximum height among

Viy--. 54

By imposing a binary tree H, upon vertices v1,vs,...,v, and maintaining appropriate entries,
each query takes O(loggq) time. The entries in H, represent for each node a of the tree the
quantity maxz_h(a) which contains the maximum height (and the vertex inducing this height)
among the leaves in the subtree rooted at a.

A second data structure, B,, organizes, for each vertex u, vertices vi,vg,...,v, by their

b'(v;) = b(v;) + i value. Data structure B, supports the following operations in O(logg) time:
e Delete(B,,v;): delete vertex v; from B,

e Max(B,): determine the maximum entry b'-entry in B,, (ties are broken in favor of vertices

with small indices).
e Decrease(By, h): the value of every entry b'(v;) with ¢ > h decreases by 1
e Value(B,,%): compute the current b'(v;) value of vertex v;.

B, is implemented by imposing as a binary tree on vy, vy, ..., v,. In order achieve O(logq) time
for each operation, we maintain decrease- and max-values for each node in B,,. Let d(a) and

maz_b'(a) be the decrease- and max-value for node a, respectively. The current value of ¥’ (v;) is
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Algorithm Comp Be(u)

while 7, and B, are not empty do
(1) r = Max(B,) and h = Max-Range(#,,)
(2) be(vp,u) = Value(B,,r) —1
(3) Decrease(By,h)
(4) Delete(B,,vy) and Delete(Hy,vp)
endwhile

Figure 10: Determining the be-values for the children of w.

determined by subtracting the d(-)-values of the nodes on the path from the root to leaf v; from
the original value of b'(v;) (which remains stored at leaf v;). Entry maxz_b'(a) corresponds to
the current maximum b'-value associated with vertices in the subtree rooted at a (this includes
the d-values for nodes in the subtree at a, but not the ones outside the subtree). Operation
Max(B,) can be implemented in O(1) time by using the maz_b'-value associated with the root
of B,. Operation Decrease(B,, h) first locates leaf v, and then follows the path from this leaf
to the root. Assume we are at node a and reached node a from child b. Node b could have a
new, smaller maxz_b'(b) value. If b is the right child of a, we check whether maz_b'(a) needs to
be updated (maz_b'(a) decreases if node b contributed its value and maz_b'(b) was decreased).
If b is the left child of a, let ¢ be the right child. We then set d(c) = d(c¢) —1 and check whether
maz_b'(a) needs to be updated. The remaining details are straightforward.

Setting up data structures H, and B, for vertex u costs O(q) time. Once H, and B, are
available, be(vi,u), be(vy,u), ... ,be(vg,u) are computed by invoking Algorithm Comp_Be(u)
outlined in Figure 10.

At any iteration of Comp_Be(u), r is the index of the leftmost child of u currently inducing
the maximum broadcast value at u (edges having already received a be-value make no contri-
bution). Further, h is the index of a vertex to the left of r (including r) such that (vj, ) has no
be-value yet and vy has maximum height. Edge (vp,,u) is the next edge to receive its be-value.
Then, the b'-values for the vertices to the right of v;, are decreased and vy, is deleted from both
data structures. For the example given in Figure 9(a), the first iteration generates r = 7 since

v7 has maximum b'-value (i.e., b’'(v7) = 847 = 15). There exist four vertices of maximum height
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6 and the algorithm chooses h = 4. It then sets be(vs,u) = 14. The correctness of Algorithm
Comp_Be(u) is straightforward and we omit further details. The O(nlogn) running time for

computing the be-values follows from the described implementations of the data structures.
4.3.2 Algorithm Process_Extended Set

In this section we describe the data structures used by Algorithm Process_Extended_Set so that
the total work done in Process_Extended_Set is bounded by O(nlogn). We assume that the h-,
b-, and be-entries have been already been determined. Recall that these entries are determine
with respect to the tree rooted at vertex c¢. Algorithm Reduce Br_Arb accesses vertices sorted
by h- an be-entries and such lists can be set up easily. In order to achieve O(nlogn) time for
the processing of all extended center vertices, we set up the following two data structures. For
every vertex u which has at least one child of height d, list H, 4 contains the children of u
having height d. The children do not need to be arranged in a particular order. Clearly, these
lists can be set up so that for a given vertex u and degree d, a pointer to list H, 4 is generated
in O(logn) time.

The second data structure is similar to the B, trees used for computing the be-entries: for
every vertex u with children v1,...vq, b(v1) > b(v2) > ... > b(vy), we create a binary tree
structure B],. Vertex v; has initially the entry ' (v;) = b(v;) + i associated with it. When
reductions are made, these entries are updated to reflect the current broadcast time. The data

structure supports the following operations:

e Rightmost(B]): returns the rightmost vertex v; such that edge (v;,u) has a broadcast

reduction
e Decrease(B,,, h): the value of every entry ' (v;) with ¢ > h decreases by 1
e Max(B.,): return the maximum b'-value (ties are broken in favor of smaller indices)

Step (1) of Algorithm Process Extended-Set corresponds to v; =Rightmost(B],). Next, the
necessary updates for the temporary removal of the broadcast reduction on edge (v;,u) are
performed. Then, v; = Max(B],). Step (4) determines the cost of the new reduction. We use

list H,, 4 to determine the number of edges contributing to in_cen. This can be done by simply
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scanning the entries in list H,, 4. Overall, vertex u is handled in O(log ¢+ |H,, 4|) time. For each
distance d, vertex u is handled at most once and an edge (v;,u) can cause u to be considered
at most once. Hence, the total cost for vertex u during Reduce Br_Arb is O(qlogq). The time
spent in Process_Extended_Set for all vertices is thus bounded by O(nlogn).

We conclude this section with a brief discussion of the remaining steps of Algorithm Re-
duce_Br_Arb. As already stated, Reduce_Br_Arb has available the vertices sorted by height
and b-values as well as the edges sorted by be-values. For every edge, we record whether the
edge is reduced and the type of reduction. The vertices of height d are used to determine the
new distance reductions in Ty. The edges with be-value B —d — 1 are used to determine the
removal of broadcast reductions. Ignoring the preprocessing steps and the work done in Pro-
cess_Extended_Set, the work done in Reduce_Br_Arb is O(n). Hence, Algorithm Reduce_Br_Arb

solves Br_Arb under edge reductions in O(nlogn) time.

5 Conclusions

We presented an O(n) time algorithm for problem Br_Min and an O(n logn) time algorithm for
Br_Arb under edge reductions in trees with unary weights. For both problems we showed that
there exists an optimal reduction in which the reduced edges form a tree containing the root of
the broadcast tree without edge reductions. A natural generalization is to consider trees with
arbitrary, positive weights. Our algorithm for Br_ Min under edge reductions can be generalized
to handle arbitrary weights. The running time increases to O(nlogn). However, our approach
for Br_Arb under edge reductions fails for trees with arbitrary weights. The main reason is that
for Br_Arb with arbitrary weights it is no longer true that the cost of a broadcasting from an
arbitrary vertex is the sum a longest path distance plus the cost of a Br_Min instance. The
actual cost can be lower. While this cost can be characterized, the characterization does not

seem to lead to an efficient algorithm.
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