Maintaining Spatial Data Setsin Distributed-Memory M achines *

Susanne E. Hambrusch
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907
seh@s. pur due. edu

Abstract

e propose a distributed data structure for maintaining
gpatial data sets on message-passing, distributed memory
machines. The data structure is based on orthogonal bisec-
tiontrees and it capturesrelevant characteristics of parallel
machines. The operations we consider include insertion,
deletion, and range queries. \We introduce parameters to
control how much imbalanceistolerated at processors and
how close to an optimal load to balance. When balancing,
we first determine and broadcast point counts of a data-
dependent partition of the data. Based on this partition,
we propose load balancing methods with different commu-
nication and computation requirements. We present initial
experimental resultsfor the Cray T3D.

1. Introduction

In a distributed computing environment, uniform work-
load across processors is essentia for fast execution times.
In most applications, workload on aprocessor isdirectly re-
lated to the amount of data assigned to the processor. If data
is organized in a data structure, the distribution of the data
structure among the processors needs to be decided. Two
issues influencing data distribution are how to efficiently
determine where a data element is located and, as the data
set changes, how to maintain a balanced load among pro-
cessors. For simple structures, such as arrays, datalocation
and load balancing have have been studied, analyzed, and
incorporated into compiler tools[1, 2,6, 9, 11, 12]. Thedis-
tribution of recursive structures such aslinked listsand trees
have aso been investigated recently [4, 5, 13, 15]. Most
of the techniques developed for dynamic redistribution of
arrays, linked lists, or trees assume that data el ements repre-

* Research supported in part by DARPA under contract DABT63-92-C-
00220NR. The viewsand conclusionsin this paper are those of the authors
and should not be interpreted as representing official policies of the U.S.
government.

Ashfag A. Khokhar
Department of Electrical Engineering
University of Delaware
Newark, DE 19716
ashf ag@eci s. udel . edu

sented by these data structures have no spatial relationship
among each other. In applicationssuch as medical imaging,
geographical information systems, simulation of physical
systems, wesather prediction, and time varying images, data
elements are spatialy related to each other. Reassignment
of data during balancing is dependent on its location. If
spatial characteristics of a data set are lost, processing can
become inefficient.

In this paper we address dynamic load balancing of dis-
tributed data structures for spatial data sets on message-
passing, distributed memory machines. We propose a dis-
tributed data structure based on orthogonal bisection trees
(OBT), dsoknownas2-dK-D trees[3, 14], which broadens
the definition of OBTsto capture relevant characteristics of
paralel machines. The operations we consider include in-
sertion, deletion, and range-queries. To facilitate efficient
location of data, we alow each processor to store a copy
of the OBT. Load baancing thus requires that data remain
organized as an OBT. We propose a method for monitoring
load distributions during the processing of operations. We
introduce parameters which (i) control how much imbalance
is tolerated at the processors during processing and before
balancing, and (ii) determine how close the generated |oad
will beto an optimal load. These parameters give a tradeoff
between the number of times the OBT is balanced and the
amount of imbalance experienced during processing.

We devel op space- and communi cati on-efficient methods
for balancing and analyzetheir performance. Whenan OBT
is to be balanced, processors need to know more than the
structureof the OBT and thetotal number of pointsassigned
to each processor. Idedlly, processors should know where
the changes in the data set occurred. Space constraints do
not alow a processor to know the location of all points
or al changes in locations. We propose a solution which
partitionsthe data set into finer regions as done by the OBT.
This partitioning is data-dependent and it adjusts, in the
number of cuts aswell asthe position of the cuts, to changes
in the data set. The number of data points in the finer
regions are made available to the processors. We present

balancing approaches using these counts and we compare
their space, time, and communication requirements. We
assumethat the dataset correspondsto aset of points. Let N
bethetotal number of pointsdistributed among p processors,
N >> p. We assume that the amount of space available at
each processor isO(k) + f(p), wherek = [N/p] and f(p)
isasmall polynomial in p.

2. Balanced Orthogonal Bisection Trees

An Orthogona Bisection Tree (OBT) of sizep isabinary
tree containing p leaves. For p = 1, the OBT consists of a
singlenode. For p > 2, theroot has two children, with the
left (resp. right) childbeing theroot of an OBT of size |p/2]
(resp. [p/2]). Every node of the OBT has associated with
it apoint set. The original point set of size N is associated
with the root. Let v be a node in the OBT and let v; and
v, beits left and right child, respectively. The point set
associated with node v is partitioned into two sets through
an orthogonal bisection and these sets are associated with v;
and v,., respectively. When making bisections, we adternate
vertical and horizonta cuts.

Let n,, n;, and n, bethesizes of the point sets associated
with nodes v, v; and v,., respectively, n; + n, = n,. Let p,
be the number of leavesin the tree rooted at v and let £ =
[N/p]. Inacompletely balanced OBT the number of points
associated with alesf iseither £ or £ — 1. In adistributed-
memory environment, the point set associated with leaf i is
assigned to processor P;. P; isthusassigned points within
a rectangular region R; (which can be unbounded). See
Figure 1 for an example. Enforcing the condition that a
processor iseither assigned £ or k — 1 pointsinacompletely
balanced OBT would lead to frequent load balancing steps
in a distributed-memory machine. Hence, one can expect
overall poor performance for completely balanced OBTSs.

We propose the use of balanced OBTs in which the con-
ditions on the sizes of the associated point sets are relaxed.
Let 6 be agiven constant, 0 < § < 1. In abalanced OBT
we havefor every node v

(k-2)a-6) <m< kZ)1+0)and @)

(k-D2a-6) <n < #2140 @
Wethusallow the size of the point set associated with anode
to deviate from the size allowed in a completely balanced
OBT by a constant fraction. For example, for § = % the
number of pointsassigned to aprocessor in abalanced OBT
lies between 2(k — 1) and 3k.

Relaxing the conditionson the size of apoint set assigned
to a processor does not solve the problem of repeated bal -
ancings. For example, if aprocessor isassigned k(1+6)+1
pointsbefore balancing and k(1 + é) pointsafter balancing,

10| 1t

(8) bisectioncutsfor N = 175and p = 35

L6 [g 25 | i

5
P15Pig -—- PyPy

(b)) corresponding OBT with k = 5

Figure 1. Example of an OBT

the insertion of a single point can cause the OBT to be un-
balanced again. To solve this problem, we use another set
of parameters. Thisset includese; and e; withé < ¢; <1
and § < e,. Parameters ¢; and ¢, control the imbaance
tolerated at the processors during the processing phase. As
long as the number of points assigned to a processor liesbe-
tween (k —1)(1— 1) and k(1+ €2), the processor continues
processing. For example, for 6 = 1, ¢1 = 2, and ¢ = 2,
we allow the number of pointsto lie between g%l and 3k
duringthe processing of queries. Therelativeeffect of 6 and
€1 & e onthevaueof k isgraphically depicted in Figure 2.
Let /; be the number of pointsin region R; a some point

«—— Processing Range ——»
<«— Balanced Range —»-

out of balance out of balance

/

k
/ k +kd

Completly Balanced (k = N/p)

k + ke,

Figure 2. Load balancing parameters

during the processing phase. If /; isin the “out-of-balance”
range(i.e, l; < (k—1)(1—e1) orl; > k(1+e€z)), processor
P; initiates a check to determine whether the current OBT
isindeed unbalanced.

3. Processing and balancing overview

At the beginning of a processing phase the OBT is bal-
anced and the number of points assigned to each processor
liesin the balanced range. Every processor holdsa copy of
the OBT and knows N, the current total number of points.
In the processing phase, the point distribution changes dy-
namically. We select as representative operationson spatia
data the operations insert, delete, and range-count. When
processor P; issues the insertion of point (z, y), it uses its
loca OBT to determine the processor assigned the region
containing (, y) and then initiates the insertion a the ap-
propriate processor. A deletion ishandled in asimilar way.
A range-count operation consists of two points (z1, y1) and
(22, y2), which are the lower left and upper right corner of a
rectangle@. When P; issuesarange-count, it needsto know
the current number of pointsin rectangle Q. If @ does not
liewithin R;, P; determines the processors whose assigned
region overlaps with @). Then, P; issues a send to each one
of these processors for their current point count in (). The
implementation of al 3 operationsis straightforward and it
is not the contribution of thiswork.

During the processing phase each processor maintains
the number of points currently assigned to its region. We
refer to this number as the region count. If aregion count
fdls in the “out-of-balance” range with respect to N and
k determined at the beginning of processing, processing is
suspended and balancing starts. The first step of the bal-
ancing phase isto update values needed for balancing. This
corresponds to making the region counts of all processor
available to every processor. Let N’ and k' be the new
total number of points and the new load in a completely
balanced OBT, respectively. Load baancing proceeds if at
least one processor is not balanced with respect to N/ and
k’. Hence, noload balancing isrequired if, for example, the
global trend of change in the workload was experienced by
all processors.

The objective of the balancing phase is to generate a
new, balanced OBT. Generating a balanced OBT involves
determining new cuts. New cuts induce new regions. New
regions imply that points have to reassigned. Observe that
the shape of the OBT tree is determined by p and does not
change. Baancing starts at the root of the OBT and, if a
node of the OBT does not satisfy conditions (1) and (2) for
N’ and k', anew cut isdetermined. In order to determine a
new cut, processors need more information than the current
number of pointsin each region. Our approach isto divide
the point space into smaller regions and make the number

of pointsin each smaller region avail able to the processors.
The goal isto generate a partition into small regions so that
the partition is data-dependent and the partitionis not fixed
from one balancing instance to another and can thus adjust
to changes in the data set.

Inthefollowingwe givean overview of how to determine
such a partition. Resulting balancing approaches differ in
the amount of information required by each processor and
the amount of communication needed. The orthogona bi-
sections used for building the OBT give a crude reflection
of the distribution of data. A first partition is obtained by
extending all bisection cutsacrossthe entiredataspace. The
dashed lines shown in Figure 3 show the partition obtained
from these cuts for a particular OBT. We refer to the cuts
inducing the partition as the projected cuts. All our ba-
ancing approaches include the cuts of the OBT in the pool
of projected cuts. Additional cuts are added when a finer
partition is needed. We assume that balancing uses O(p)
projected cuts.

ahorizontal slab

asquare avertical slab

Figure 3. Projected cuts

The horizontal and vertical projected cutsinduce O(p?)
rectangles. To avoid confusion with the rectangular re-
gionsassigned to processors, we refer to these rectangles as
squares. We refer to the number of pointsin a square as
the square count. Observe that it is possible for a region
to be intersected by O(p) projected cutsand thusto contain
O(p?) squares. When balancing using square counts, every
processor knows al square counts and thus requires O(p?)
space. Square count methods determine first whether an
existing projected cut can be used as anew cut for the node.
If it can, no further communication is needed for balancing
the node.

Slab count methodsfind the same set of new cuts, but use
less space. However, book-keeping can be more expensive.
Consider region R; assigned to processor P;. Thehorizontal
projected cutsintersecting R; induce horizontal dabs of the
width of R;. The vertica projected cuts intersecting R;
induce vertical dabs of the height of ;. The number of
pointsin a particular dlab is a dab count. The number of

dabs within R; can be O(p). However, the total number
of dabsis O(p*/?). We describe slab balancing methods
requiring O(p*/?) and O(p logp) space, respectively.

Figure 4 summarizes the costs arising in the different
implementations of the above approaches. If no existing
projected cut can be used to balance a node, the projected
cuts and the available counts guide the identification of a
region in which possible cutslie.

4. Balancing a node of the OBT

In order to balance node v, a new cut needs to be deter-
mined. Weto first determine whether a projected cut can be
used. If no projected cut can satisfy the balancing condition
for v, dab and square methods identify a narrow region in
which anew cut must lie. We assume the point set assigned
to node v is bisected using a vertical cut at z,. W..0.g.
assume that pointsassigned to theright child of v need to be
reassigned to left child of v; i.e., the new cut liesto theright
of z,. Let m; (resp. m,,) betheminimum (resp. maximum)
number of pointsto bereassigned. Balancing nodev means
determining aposition z,- so that the number of points(z, y)
withz, < z < z, liesbetween m; and m,,. Let R bethe
region between the vertical cuts z,, and z,..

When balancing node » using square counts, the points
in a square can be assigned to a different processor. Such
reassignments are recorded, but no point sets are moved.
Our philosophy isto delay sending pointsaslong aspossible.
Points sets are sent only when no projected cut can be used
(and they are necessary to determine a new cut) or and
after the new OBT has been found. Square counts induce
a 2-dimensional array and it is thus natural for processors
to store square counts as such. When sguare counts are
stored in an array, say array SC, we associate with each
square two entries: the processor whose region currently
contains the pointsin the square and the processor who is
currently assigned the points. Determining whether » can
be balanced using a projected cut can be done in O(ap)
time, where « is the number of projected cuts between z,
and z,.. If aprojected cut can be used, ho communication
iS necessary to update counts and reassignments. If no
projected cut baances node v, we invoke the cut finding
procedure described in Section ?7.

Using matrix SC' to store square counts is simple, but
can lead to repeated computationsin matrix SC'. The use of
binary trees avoidsthis. The amount of space and theinitial
set-up cost are O(p?). Projected cut z,. isnow determined by
making queries on vertica trees, starting with the vertical
tree associated with the verticd cut at ,. Finding the
position of z, costs O(« logp) time, compared to O(ap)
time for the matrix. The array maintains the association
between squares and processors. Inthetreeimplementation,
weno longer maintain thisassociationinan explicitway, but

generate thisinformation when needed. Region counts and
necessary associ ations between squares and processors can
bemaintainedinO(min{«/p, logp, plogp}) time. Details
are described in [8].

Balancing methods based on dab counts use the same
pool of projected cuts and determine the same cuts. Slab
counts give a somewhat coarser partitioning of the point
spaceandrequirelessspace. Intheinitial all-to-all broadcast
sending out dab counts, a processor receives and stores
O(p®'?) counts, as compared to O(p?) counts for square
counts. When balancing node v by using a projected cut
it may now be necessary to generate and broadcast counts.
To identify where the difficulties arise, assume first that
slab counts are stored in matrices. Let HS (V.S) be a
metrix for the horizontal (vertical) slab counts. Determining
whether a projected cut can be used to balance node v is
straightforward.

Regionslying between cuts z,, and z,. (i.e., withinregion
R) have anew region count of O. If aregion R; iscut by z,,
its new region count can be determined from the available
vertical dabscounts. Consider now aregion R; immediately
to the left of «,. R;’s region count increases. Neither
vertical or horizontal slab counts contain the information
needed to update R;’s region count. Let y; and y;’ be the
upper and lower y-position of region R;, respectively. To
determine R;'s region count from horizontal dab counts,
consider all horizontal projected cuts between y. and y;'.
Let y be one of them. For any region R; lying entirely in
R, we add HS(y, j) to the region count of R;. For any
region £2; intersected by x,, we need the number of points
in HS(y, j) whicharetotheleft of .. Thisinformationcan
only be generated by processor £;, the processor currently
containing the pointsin £2;. A processor whose region is
intersected by z, determines how each one of its horizontal
dabs partitions around z,.. These counts are broadcast to
the processors that need thisvalue to update region counts.

The updating of the horizontal dab counts can be done
by using the point counts made avail ablefor the updating of
region counts. Inorder to updatethevertical dabs, thepoints
in region R need to be organized into vertical slabs whose
positionscorrespondto theregionsof thepointsimmediately
totheleft of cut «,. Thismeansthat all processorsin region
R (not just the ones immediately to the left of z,) need
to generate point counts. This additional communication
overhead can be avoided by collapsing the vertical dabs
between z, and z, into single vertical dab. When thisis
done, no additional communication is required, but it does
not allow descendents of » to use the projected cuts between
z, and xz, asnew cuts.

When slab counts are stored in matrices, one iteration
uses O(ap,) sequentia time and performs one broadcast.
In[8] we describe two improved implementations. Thefirst
one uses O(p®/?) space and associates with every horizon-

square counts square counts slab counts | slab counts | slab counts
matrix trees matrix trees multi-res
initial all-to-all broadcast o(p?) o(p?) o(p*? 0(p°/?) 0(p°?)
initial set up cost o(r*) o(r) o(»*) ow’?) | o(p¥?
total space o’ o(?) or?) 0(p”?) | O(plogp)
communication none none \/Pv-t0-p, broadcast
computation O(ap) O(min{a/ps logp,plogp}) | O(ap.) [O(plogp) | O(plogp)

Figure 4. Comparing different methods for balancing a node v

tal projected cut (resp. vertica projected cut) a binary tree
with /p leaves. Using these trees, we can determine in
O(a logp) time whether a projected cut can be used to bal-
ancev. Regionand slab countscan be updatedin O(p logp)
time. The second dab count implementation, the multi-
resol ution method, reduces the space to O(p logp) and bal-
ancesanodein O(plogyp) sequentia time. Every processor
usesnow 2 logp arrays, each of size O(p): logp arrays con-
tain sums of vertical dabs counts and the other log p arrays
contain sums of horizontal dab counts. The arrays can be
viewed as holding sums pertaining to different resolutions.

Let m, and m; be the upper and lower bound on the
points needed to make v balanced. Projected cuts fail to
balance node v if there exists a projected cut x, inducing a
region R’ containing fewer than m; pointsand projected cut
z441 induces aregion R containing more than m,, points.
Hence, thereexistsacut & «,, 2, < 2z, < z441 inducing
a desired region R. The points having their z-coordinate
between z, and z,41 residein ,/p, processors. The points
in lying between z, and z,41 arelikely to represent only a
fraction of the assigned points. We designate one of the p,
processors as the leader and have processors send relevant
points to the leader. The leader processor determines the
position of z,, the new cut. The leader also determines
point counts reflecting how the new cut partitionsthe points
in a square or dab. This new cut and computed counts
are then broadcast to all processors that need to know the
position of thecut. We expect that the number of pointssent
to the leader processor will, in genera, be small. In [8] we
describe other solutions discuss additional communication
issues.

5. Overall balancing of the OBT

Balancing starts at the root. A node v is balanced when
all nodes on the path from the root to v have been con-
sidered. Given an unbalanced OBT, the number of nodes
that need to be balanced is not known ahead of time. We
sketch two approaches for balancing an OBT which differ
in communication and computation requirements. The first

approach isto have every processor balance al nodes. The
main motivation for this approach is simplicity. Balancing
can proceed level by level or by using another traversal.
Consider the square methods for balancing a node. If al
nodes can be balanced by using projected cuts, no commu-
nication is needed to generate the balanced OBT. When a
cut needs to be determined from points sets, communication
is as described in Section ??. Clearly, duplication of work
occurs during the balancing .

Our second approach eliminates much of the duplication.
We now have every processor P; handle the nodes on the
path from the root to the leaf associated with P;. Processor
P; thus only balances the nodes necessary to determine its
new region. Once all new regions are known, an all-to-
all broadcast takes place to make the new cuts available to
every processor. The communication arising when anode v
is balanced changes dlightly. For example, when a new cut
isfound from point sets, the leader processor broadcasts the
new cut and generated point countsonly to processorsinthe
subtreerooted a v. Thelast step in balancing the OBT uses
the old and thenew OBT to send the pointsto the processors
they are now assigned to.

6. Preliminary experimental results

The main objective of our experimental work isto gen-
erate evidence that balancing OBTSs leads to overall better
performanceandto demonstratethat our methodsfor bal anc-
ing are effective. Wealso want to establish guidelinesunder
which conditions balancing an OBT improves the overall
performance. We expect that, similar to results obtained
for related work [7, 10], answers depend on parameters and
factors influencing scalability. \We report on preliminary
performance results for OBTs with different loads for the
Cray T3E. We refer to [8] for additiona experimental re-
sults. Our code iswritten in C and uses MPI. The OBT is
implemented using an array of size 2p. Within each pro-
cessor, the assigned point set is maintained sorted lists. We
chose thisrepresentation over datastructureslikerangetrees
for reasons of simplicity and flexibility. Using sorted lists

results in logarithmic time for deletion and linear time for
insertion. Thisallows us to experiment with different costs
per operation. The range-count operation involves query-
ing processors for information pertaining to the assigned
data set and thus allows us to accurately model areal-world
application in asmple way.

Figure 5 demonstrates the need for efficient balancing
methods. Thethreecurveswere obtained by starting off with
three different OBTs for the parameters § = 0.5, ¢; = 0.7,
€2 = 2,and N = p?. The“balanced” curve corresponds to
the performance when the initial OBT 73 is balanced (i.e,
3 < n; < 3k, with dl values in this range being equally
likely). The “processing” curve starts off with an OBT 75
with % < n; < 2k inwhich half the processors are in the
balanced range and the other half arein theprocessing range
only. The“out-of-range’ curve startsoff withan OBT 73 in
which onethird of the processorsisno longer in the process-
ing range, one third is in the processing, but not balanced
range, and thefinal third isin the balanced range only. The
total number of queries executed is p? and aprocessor start-
ing off with n; points executes n; queries, with each one
of the three query types being equally likely. Processors
execute the querieswithout invoking load balancing. Points
for the queries are generated according to a uniform distri-
bution. Hence, one can expect that the distribution of the
points does not change significantly during the processing.

400

350 _ _ balanced
. processing

f
s00f — outofrange

N

a

S
T

Execution Time (msec)
N
=}
S}

h . . .
16 32 64 128
Machine Size

Figure 5. Performance with different loads

For p = 128, Figure5 showsa4- (resp. 5-) fold increase
inthetota processingtimefor OBT 7% (resp. 73) compared
to OBT 737. Thisisatypica behaviour we observed also
for other parameters and it clearly demonstrates the need
for balancing methods. OBTs 7% and 75 have afairly large
fraction of processorsinthe processing and “ out-of-balance”
range. Our expermiments have shown that the number of
processors in the different ranges plays a role as well, but
that by setting the parameters accordingly, the number of
processors in different ranges can be ignored.

For larger p, our balancing methods generate more pro-

jected cuts and thus the counts represent a better sample of
the current point set. We expect our balancing methods to
be efficient for large p and to be able to balance by using
projected cuts as new cuts. For small machine sizes (i.e,
p < 32) we expect balancing to be expensive unless addi-
tional projected cuts are used to avoid determining new cuts
from point sets. Preliminary implementations of the square
count matrix method support these claims.

References

[1] G. Agrawal, A. Sussman, J. Saltz, “ Compiler and Run-time
Support for Structured and Block Structured Applications,
Proc. of Supercomputing ‘93, pp. 578-587, 1993.

[2] D.Bader,J.JaJa, “Practical Parallel Algorithmsfor Dynamic
Data Redistribution, Median Finding, and Selection,” Techn.
Report, CS-TR-3494, University of Maryland, 1995.

[3] J. Bentley, “Multidimensional Binary Search Trees used for
Associative Searching,” CACM, Vol. 8, pp. 509-517, 1975.

[4] S.Chakrabarti, E. Deprit, E. Im, J. Jones, A. Krishnamurti, C.
Wen, and K. Yelick, “ Multipol: A Distributed Data Structure
Library,” Techn. Report, CSD-95-879, UC Berkeley, 1995.

[5] C. Chang, A. Sussman, J. Saltz, “Object-Oriented Runtime
Support for Complex Distributed Data Structures,” Techn.
Report, UMIACS-TR-95-35, University of Maryland, 1995.

[6] R. Das, M. Uysal, J. Sdltz, Y.S. Hwang, “Communication
Optimizations for Irregular Scientific Computations on Dis-
tributed Memory Architectures,” JPDC, pp. 462-479, 1994.

[7] S.E. Hambrusch, F. Hameed, A. A. Khokhar, “Communi-
cation Operations on Coarse-Grained Mesh Architectures,”
Parallel Computing, Vol. 21, pp. 731-751, 1995.

[8] S.E.Hambrusch,A.Khokhar,“Maintaining Spatial Data Sets
in Distributed-Memory Machines’, Techn. Report, 1997.

[9] S.R. Kohn, S.B. Baden, “A Robust Parallel Programming
Model for Dynamic Non-uniform Scientific Computations,”
Proc. of the High Perf. Comp. Conf., pp. 509-517, 1994.

[10] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to
Parallel Computing, Benjamin/Cummings, 1994.

[11] C.-W. Ou, S. Ranka, “Parallel Remapping Algorithms for
Adaptive Problems,” Proc. of the Symp. on the Frontiers of
Massively Parallel Computation, pp. 367-374, 1995.

[12] R. Parsons, D. Quinlan, “Run-time Recognition of Task Par-
allelism within the P++ Parallel Array Class Library,” Proc.
of 1993 Scalable Parallel Libraries Conf., 1993.

[13] A. Rogers, M.C. Carlile, J. Reppy, L.J. Hendren, “ Support-

ing Dynamic Data Structures on Distributed-Memory Ma-
chines’, TOPLAS, 17(2), pp. 233-263, 1995.

[14] H. Samet, Applications of Spatial Data Structures, Computer
Graphics, and Image Processing, Addison Wesley, 1990.

[15] K. Yelick et al., “Portable Parallel Irregular Applications,”
Workshop on Parallel Symbolic Languagesand Systems, L ec-
ture Notes in Computer Science, 1995.

