
Maintaining Spatial Data Sets in Distributed-Memory Machines
�

Susanne E. Hambrusch
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907
seh@cs.purdue.edu

Ashfaq A. Khokhar
Department of Electrical Engineering

University of Delaware
Newark, DE 19716

ashfaq@eecis.udel.edu

Abstract

We propose a distributed data structure for maintaining
spatial data sets on message-passing, distributed memory
machines. The data structure is based on orthogonal bisec-
tion trees and it captures relevant characteristics of parallel
machines. The operations we consider include insertion,
deletion, and range queries. We introduce parameters to
control how much imbalance is tolerated at processors and
how close to an optimal load to balance. When balancing,
we first determine and broadcast point counts of a data-
dependent partition of the data. Based on this partition,
we propose load balancing methods with different commu-
nication and computation requirements. We present initial
experimental results for the Cray T3D.

1. Introduction

In a distributed computing environment, uniform work-
load across processors is essential for fast execution times.
In most applications, workload on a processor is directly re-
lated to the amount of data assigned to the processor. If data
is organized in a data structure, the distribution of the data
structure among the processors needs to be decided. Two
issues influencing data distribution are how to efficiently
determine where a data element is located and, as the data
set changes, how to maintain a balanced load among pro-
cessors. For simple structures, such as arrays, data location
and load balancing have have been studied, analyzed, and
incorporated into compiler tools [1, 2, 6, 9, 11, 12]. The dis-
tributionof recursive structures such as linked lists and trees
have also been investigated recently [4, 5, 13, 15]. Most
of the techniques developed for dynamic redistribution of
arrays, linked lists, or trees assume that data elements repre-

�

Research supported in part by DARPA under contract DABT63-92-C-
0022ONR. The views and conclusions in this paper are those of the authors
and should not be interpreted as representing official policies of the U.S.
government.

sented by these data structures have no spatial relationship
among each other. In applications such as medical imaging,
geographical information systems, simulation of physical
systems, weather prediction, and time varying images, data
elements are spatially related to each other. Reassignment
of data during balancing is dependent on its location. If
spatial characteristics of a data set are lost, processing can
become inefficient.

In this paper we address dynamic load balancing of dis-
tributed data structures for spatial data sets on message-
passing, distributed memory machines. We propose a dis-
tributed data structure based on orthogonal bisection trees
(OBT), also known as 2-d K-D trees [3, 14], which broadens
the definition of OBTs to capture relevant characteristics of
parallel machines. The operations we consider include in-
sertion, deletion, and range-queries. To facilitate efficient
location of data, we allow each processor to store a copy
of the OBT. Load balancing thus requires that data remain
organized as an OBT. We propose a method for monitoring
load distributions during the processing of operations. We
introduce parameters which (i) control how much imbalance
is tolerated at the processors during processing and before
balancing, and (ii) determine how close the generated load
will be to an optimal load. These parameters give a tradeoff
between the number of times the OBT is balanced and the
amount of imbalance experienced during processing.

We develop space- and communication-efficient methods
for balancing and analyze their performance. When an OBT
is to be balanced, processors need to know more than the
structure of the OBT and the total number of points assigned
to each processor. Ideally, processors should know where
the changes in the data set occurred. Space constraints do
not allow a processor to know the location of all points
or all changes in locations. We propose a solution which
partitions the data set into finer regions as done by the OBT.
This partitioning is data-dependent and it adjusts, in the
number of cuts as well as the position of the cuts, to changes
in the data set. The number of data points in the finer
regions are made available to the processors. We present

1

balancing approaches using these counts and we compare
their space, time, and communication requirements. We
assume that the data set corresponds to a set of points. Let

�
be the total number of points distributed among � processors,����� � . We assume that the amount of space available at
each processor is ���	��

��������
 , where ����� ��� ��� and ������

is a small polynomial in � .

2. Balanced Orthogonal Bisection Trees

An Orthogonal Bisection Tree (OBT) of size � is a binary
tree containing � leaves. For ��� 1, the OBT consists of a
single node. For ��� 2, the root has two children, with the
left (resp. right) child being the root of an OBT of size ��� � 2�
(resp. ��� � 2�). Every node of the OBT has associated with
it a point set. The original point set of size

�
is associated

with the root. Let be a node in the OBT and let "! and
 $# be its left and right child, respectively. The point set
associated with node is partitioned into two sets through
an orthogonal bisection and these sets are associated with %!
and &# , respectively. When making bisections, we alternate
vertical and horizontal cuts.

Let '�(, ')! , and '�# be the sizes of the point sets associated
with nodes , *! and &# , respectively, '�!"�+'�#,�-'�(. Let �.(
be the number of leaves in the tree rooted at and let �/�
� ��� ��� . In a completely balanced OBT the number of points
associated with a leaf is either � or ��0 1. In a distributed-
memory environment, the point set associated with leaf 1 is
assigned to processor 243 . 253 is thus assigned points within
a rectangular region 6�3 (which can be unbounded). See
Figure 1 for an example. Enforcing the condition that a
processor is either assigned � or �,0 1 points in a completely
balanced OBT would lead to frequent load balancing steps
in a distributed-memory machine. Hence, one can expect
overall poor performance for completely balanced OBTs.

We propose the use of balanced OBTs in which the con-
ditions on the sizes of the associated point sets are relaxed.
Let 7 be a given constant, 0 897:8 1. In a balanced OBT
we have for every node

�	�;0 1
<� � (
2
�"� 1 0=7>
?8@'�!)8 �A� � (

2
�"� 1 �B7>
 and (1)

�	�;0 1
<� �.(
2
�"� 1 0=7>
C8@' # 8 �A� �.(

2
�"� 1 �B7>
ED (2)

We thus allow the size of the point set associated with a node
to deviate from the size allowed in a completely balanced
OBT by a constant fraction. For example, for 7�� 1

2 , the
number of points assigned to a processor in a balanced OBT
lies between 1

2 �F�G0 1
 and 3
2 � .

Relaxing the conditionson the size of a point set assigned
to a processor does not solve the problem of repeated bal-
ancings. For example, if a processor is assigned ��� 1 �H7>
>� 1
points before balancing and ��� 1 �I7>
 points after balancing,

0 1
4 5

2 3
6 7

8 9
12 13

10 11 14

15

17

18

21 22

19 20
23

24

26 27
30 31

28 29

32 33
16

25

34

(a) bisection cuts for
� � 175 and �J� 35

P0 P1

P33 P34

175

9085

P6 P7

P15 P16 P24 P25

454540 45

20 20 20 25 25202520

10
10

10
15

10
10

10
15

10
10

10
10

10
10

10 15

10 10

5 5 5 5 5 5 5 5 5

5 5

5 5 5 5 5 5

5 5

5 5 5 5 5 5 5

5 5

5 5 5 5 5 5 5

(b)) corresponding OBT with �J� 5

Figure 1. Example of an OBT

the insertion of a single point can cause the OBT to be un-
balanced again. To solve this problem, we use another set
of parameters. This set includes K 1 and K 2 with 7�8LK 1 8 1
and 7M8NK 2. Parameters K 1 and K 2 control the imbalance
tolerated at the processors during the processing phase. As
long as the number of points assigned to a processor lies be-
tween �	�O0 1
P� 1 0HK 1
 and ��� 1 ��K 2
 , the processor continues
processing. For example, for 7J� 1

2 , K 1 � 3
4 , and K 2 � 2,

we allow the number of points to lie between QSR>T 1 U
4 and 3 �

during the processing of queries. The relative effect of 7 and
K 1 & K 2 on the value of � is graphically depicted in Figure 2.
Let VW3 be the number of points in region 6X3 at some point

k

k + kδ

k - kδk - kε1

k + kε2

Balanced Range

Completly Balanced (k = N/p)

Processing Range

out of balanceout of balance

Figure 2. Load balancing parameters

during the processing phase. If V 3 is in the “out-of-balance”
range (i.e., V 3 � �F�O0 1
P� 1 0 K 1
 or V 3 � � � 1 �HK 2
), processor
2 3 initiates a check to determine whether the current OBT
is indeed unbalanced.

3. Processing and balancing overview

At the beginning of a processing phase the OBT is bal-
anced and the number of points assigned to each processor
lies in the balanced range. Every processor holds a copy of
the OBT and knows

�
, the current total number of points.

In the processing phase, the point distribution changes dy-
namically. We select as representative operations on spatial
data the operations insert, delete, and range-count. When
processor 2 3 issues the insertion of point �������"
 , it uses its
local OBT to determine the processor assigned the region
containing �������"
 and then initiates the insertion at the ap-
propriate processor. A deletion is handled in a similar way.
A range-count operation consists of two points ��� 1 ��� 1
 and
��� 2 ��� 2
 , which are the lower left and upper right corner of a
rectangle � . When 243 issues a range-count, it needs to know
the current number of points in rectangle � . If � does not
lie within 6�3 , 253 determines the processors whose assigned
region overlaps with � . Then, 2 3 issues a send to each one
of these processors for their current point count in � . The
implementation of all 3 operations is straightforward and it
is not the contribution of this work.

During the processing phase each processor maintains
the number of points currently assigned to its region. We
refer to this number as the region count. If a region count
falls in the “out-of-balance” range with respect to

�
and

� determined at the beginning of processing, processing is
suspended and balancing starts. The first step of the bal-
ancing phase is to update values needed for balancing. This
corresponds to making the region counts of all processor
available to every processor. Let

�
	
and � 	 be the new

total number of points and the new load in a completely
balanced OBT, respectively. Load balancing proceeds if at
least one processor is not balanced with respect to

��	
and

� 	 . Hence, no load balancing is required if, for example, the
global trend of change in the workload was experienced by
all processors.

The objective of the balancing phase is to generate a
new, balanced OBT. Generating a balanced OBT involves
determining new cuts. New cuts induce new regions. New
regions imply that points have to reassigned. Observe that
the shape of the OBT tree is determined by � and does not
change. Balancing starts at the root of the OBT and, if a
node of the OBT does not satisfy conditions (1) and (2) for��	

and � 	 , a new cut is determined. In order to determine a
new cut, processors need more information than the current
number of points in each region. Our approach is to divide
the point space into smaller regions and make the number

of points in each smaller region available to the processors.
The goal is to generate a partition into small regions so that
the partition is data-dependent and the partition is not fixed
from one balancing instance to another and can thus adjust
to changes in the data set.

In the followingwe give an overview of how to determine
such a partition. Resulting balancing approaches differ in
the amount of information required by each processor and
the amount of communication needed. The orthogonal bi-
sections used for building the OBT give a crude reflection
of the distribution of data. A first partition is obtained by
extending all bisection cuts across the entire data space. The
dashed lines shown in Figure 3 show the partition obtained
from these cuts for a particular OBT. We refer to the cuts
inducing the partition as the projected cuts. All our bal-
ancing approaches include the cuts of the OBT in the pool
of projected cuts. Additional cuts are added when a finer
partition is needed. We assume that balancing uses ��� �

projected cuts.

17

a horizontal slaba vertical slab

26

a square

6

Figure 3. Projected cuts

The horizontal and vertical projected cuts induce ����� 2

rectangles. To avoid confusion with the rectangular re-
gions assigned to processors, we refer to these rectangles as
squares. We refer to the number of points in a square as
the square count. Observe that it is possible for a region
to be intersected by ������
 projected cuts and thus to contain
����� 2
 squares. When balancing using square counts, every
processor knows all square counts and thus requires ��� � 2

space. Square count methods determine first whether an
existing projected cut can be used as a new cut for the node.
If it can, no further communication is needed for balancing
the node.

Slab count methods find the same set of new cuts, but use
less space. However, book-keeping can be more expensive.
Consider region 6 3 assigned to processor 2 3 . The horizontal
projected cuts intersecting 6 3 induce horizontal slabs of the
width of 6 3 . The vertical projected cuts intersecting 6 3
induce vertical slabs of the height of 6 3 . The number of
points in a particular slab is a slab count. The number of

slabs within 6�3 can be ��� �

 . However, the total number
of slabs is ����� 3 � 2
 . We describe slab balancing methods
requiring ����� 3 � 2
 and ��� � log �

 space, respectively.

Figure 4 summarizes the costs arising in the different
implementations of the above approaches. If no existing
projected cut can be used to balance a node, the projected
cuts and the available counts guide the identification of a
region in which possible cuts lie.

4. Balancing a node of the OBT

In order to balance node , a new cut needs to be deter-
mined. We to first determine whether a projected cut can be
used. If no projected cut can satisfy the balancing condition
for , slab and square methods identify a narrow region in
which a new cut must lie. We assume the point set assigned
to node is bisected using a vertical cut at ��(. W.l.o.g.
assume that points assigned to the right child of need to be
reassigned to left child of ; i.e., the new cut lies to the right
of � (. Let � ! (resp. ���) be the minimum (resp. maximum)
number of points to be reassigned. Balancing node means
determining a position � # so that the number of points ����� �<

with � (8 ��8 � # lies between � ! and ��� . Let 6 be the
region between the vertical cuts � (and � # .

When balancing node using square counts, the points
in a square can be assigned to a different processor. Such
reassignments are recorded, but no point sets are moved.
Our philosophy is to delay sending points as long as possible.
Points sets are sent only when no projected cut can be used
(and they are necessary to determine a new cut) or and
after the new OBT has been found. Square counts induce
a 2-dimensional array and it is thus natural for processors
to store square counts as such. When square counts are
stored in an array, say array ��� , we associate with each
square two entries: the processor whose region currently
contains the points in the square and the processor who is
currently assigned the points. Determining whether can
be balanced using a projected cut can be done in � �����

time, where � is the number of projected cuts between � (
and � # . If a projected cut can be used, no communication
is necessary to update counts and reassignments. If no
projected cut balances node , we invoke the cut finding
procedure described in Section ??.

Using matrix ��� to store square counts is simple, but
can lead to repeated computations in matrix ��� . The use of
binary trees avoids this. The amount of space and the initial
set-up cost are ����� 2
 . Projected cut � # is now determined by
making queries on vertical trees, starting with the vertical
tree associated with the vertical cut at ��(. Finding the
position of �.# costs ���	� log �

 time, compared to ���	���

time for the matrix. The array maintains the association
between squares and processors. In the tree implementation,
we no longer maintain this association in an explicitway, but

generate this information when needed. Region counts and
necessary associations between squares and processors can
be maintained in ��� min
��
� ��(log � � � log ���&
 time. Details
are described in [8].

Balancing methods based on slab counts use the same
pool of projected cuts and determine the same cuts. Slab
counts give a somewhat coarser partitioning of the point
space and require less space. In the initial all-to-all broadcast
sending out slab counts, a processor receives and stores
����� 3 � 2
 counts, as compared to ��� � 2
 counts for square
counts. When balancing node by using a projected cut
it may now be necessary to generate and broadcast counts.
To identify where the difficulties arise, assume first that
slab counts are stored in matrices. Let ��� (���) be a
matrix for the horizontal (vertical) slab counts. Determining
whether a projected cut can be used to balance node is
straightforward.

Regions lying between cuts � (and � # (i.e., within region
6) have a new region count of 0. If a region 6 3 is cut by �.# ,
its new region count can be determined from the available
vertical slabs counts. Consider now a region 6 3 immediately
to the left of �
(. 6 3 ’s region count increases. Neither
vertical or horizontal slab counts contain the information
needed to update 6 3 ’s region count. Let � 	3 and � 	 	3 be the
upper and lower � -position of region 6 3 , respectively. To
determine 6 3 ’s region count from horizontal slab counts,
consider all horizontal projected cuts between � 	3 and � 	 	3 .
Let � be one of them. For any region 6�� lying entirely in
6 , we add ��� ��� ���"
 to the region count of 6 3 . For any
region 6 � intersected by �.# , we need the number of points
in ��� ��� ���"
 which are to the left of �
. This information can
only be generated by processor 2 � , the processor currently
containing the points in 6 � . A processor whose region is
intersected by �
determines how each one of its horizontal
slabs partitions around ��# . These counts are broadcast to
the processors that need this value to update region counts.

The updating of the horizontal slab counts can be done
by using the point counts made available for the updating of
region counts. In order to update the vertical slabs, the points
in region 6 need to be organized into vertical slabs whose
positions correspond to the regions of the points immediately
to the left of cut � (. This means that all processors in region
6 (not just the ones immediately to the left of � #) need
to generate point counts. This additional communication
overhead can be avoided by collapsing the vertical slabs
between �.# and �.(into single vertical slab. When this is
done, no additional communication is required, but it does
not allow descendents of to use the projected cuts between
��(and �.# as new cuts.

When slab counts are stored in matrices, one iteration
uses �������.(>
 sequential time and performs one broadcast.
In [8] we describe two improved implementations. The first
one uses ��� � 3 � 2
 space and associates with every horizon-

square counts square counts slab counts slab counts slab counts
matrix trees matrix trees multi-res

initial all-to-all broadcast Θ ��� 2 � Θ ��� 2 � � ��� 3 � 2 � � ��� 3 � 2 � � ��� 3 � 2 �
initial set up cost Θ ��� 2 � Θ ��� 2 � � ��� 2 � � ��� 3 � 2 � � ��� 3 � 2 �
total space Θ ��� 2 � Θ ��� 2 � Θ ��� 2 � � ��� 3 � 2 � � ��� log � �
communication none none � ��� -to-�	� broadcast
computation � ��
	� � � � min �

 � �	� log ����� log ��� � � ��
	�	� � � ��� log � � � ��� log � �

Figure 4. Comparing different methods for balancing a node

tal projected cut (resp. vertical projected cut) a binary tree
with � � leaves. Using these trees, we can determine in
����� log �

 time whether a projected cut can be used to bal-
ance . Region and slab counts can be updated in ��� � log �

time. The second slab count implementation, the multi-
resolution method, reduces the space to ��� � log �

 and bal-
ances a node in � ��� log �

 sequential time. Every processor
uses now 2 log � arrays, each of size ��� �

 : log � arrays con-
tain sums of vertical slabs counts and the other log � arrays
contain sums of horizontal slab counts. The arrays can be
viewed as holding sums pertaining to different resolutions.

Let � � and � ! be the upper and lower bound on the
points needed to make balanced. Projected cuts fail to
balance node if there exists a projected cut ��� inducing a
region 6 	 containing fewer than �/! points and projected cut
����� 1 induces a region 6 	 	 containing more than � � points.
Hence, there exists a cut at �
, ��� � ��# � ����� 1 inducing
a desired region 6 . The points having their � -coordinate
between � � and � ��� 1 reside in � � (processors. The points
in lying between � � and � ��� 1 are likely to represent only a
fraction of the assigned points. We designate one of the � (
processors as the leader and have processors send relevant
points to the leader. The leader processor determines the
position of �
, the new cut. The leader also determines
point counts reflecting how the new cut partitions the points
in a square or slab. This new cut and computed counts
are then broadcast to all processors that need to know the
position of the cut. We expect that the number of points sent
to the leader processor will, in general, be small. In [8] we
describe other solutions discuss additional communication
issues.

5. Overall balancing of the OBT

Balancing starts at the root. A node is balanced when
all nodes on the path from the root to have been con-
sidered. Given an unbalanced OBT, the number of nodes
that need to be balanced is not known ahead of time. We
sketch two approaches for balancing an OBT which differ
in communication and computation requirements. The first

approach is to have every processor balance all nodes. The
main motivation for this approach is simplicity. Balancing
can proceed level by level or by using another traversal.
Consider the square methods for balancing a node. If all
nodes can be balanced by using projected cuts, no commu-
nication is needed to generate the balanced OBT. When a
cut needs to be determined from points sets, communication
is as described in Section ??. Clearly, duplication of work
occurs during the balancing .

Our second approach eliminates much of the duplication.
We now have every processor 243 handle the nodes on the
path from the root to the leaf associated with 2 3 . Processor
2 3 thus only balances the nodes necessary to determine its
new region. Once all new regions are known, an all-to-
all broadcast takes place to make the new cuts available to
every processor. The communication arising when a node
is balanced changes slightly. For example, when a new cut
is found from point sets, the leader processor broadcasts the
new cut and generated point counts only to processors in the
subtree rooted at . The last step in balancing the OBT uses
the old and the new OBT to send the points to the processors
they are now assigned to.

6. Preliminary experimental results

The main objective of our experimental work is to gen-
erate evidence that balancing OBTs leads to overall better
performance and to demonstrate that our methods for balanc-
ing are effective. We also want to establish guidelines under
which conditions balancing an OBT improves the overall
performance. We expect that, similar to results obtained
for related work [7, 10], answers depend on parameters and
factors influencing scalability. We report on preliminary
performance results for OBTs with different loads for the
Cray T3E. We refer to [8] for additional experimental re-
sults. Our code is written in C and uses MPI. The OBT is
implemented using an array of size 2� . Within each pro-
cessor, the assigned point set is maintained sorted lists. We
chose this representation over data structures like range trees
for reasons of simplicity and flexibility. Using sorted lists

results in logarithmic time for deletion and linear time for
insertion. This allows us to experiment with different costs
per operation. The range-count operation involves query-
ing processors for information pertaining to the assigned
data set and thus allows us to accurately model a real-world
application in a simple way.

Figure 5 demonstrates the need for efficient balancing
methods. The three curves were obtained by starting off with
three different OBTs for the parameters 7�� 0 D 5, K 1 � 0 D 7,
K 2 � 2, and

� �B� 2. The “balanced” curve corresponds to
the performance when the initial OBT � 1 is balanced (i.e.,
1
2 8 '�3 8 3

2 � , with all values in this range being equally
likely). The “processing” curve starts off with an OBT � 2

with 3
10 8 '�3 8 2 � in which half the processors are in the

balanced range and the other half are in the processing range
only. The “out-of-range” curve starts off with an OBT � 3 in
which one third of the processors is no longer in the process-
ing range, one third is in the processing, but not balanced
range, and the final third is in the balanced range only. The
total number of queries executed is � 2 and a processor start-
ing off with ' 3 points executes ' 3 queries, with each one
of the three query types being equally likely. Processors
execute the queries without invoking load balancing. Points
for the queries are generated according to a uniform distri-
bution. Hence, one can expect that the distribution of the
points does not change significantly during the processing.

 16 32 64 128
0

50

100

150

200

250

300

350

400

Machine Size

E
xe

cu
tio

n
T

im
e

(m
se

c)

_ _ balanced

_ . _ processing

___ out of range

Figure 5. Performance with different loads

For �H� 128, Figure 5 shows a 4- (resp. 5-) fold increase
in the total processing time for OBT � 2 (resp. � 3) compared
to OBT � 1. This is a typical behaviour we observed also
for other parameters and it clearly demonstrates the need
for balancing methods. OBTs � 2 and � 3 have a fairly large
fraction of processors in the processing and “out-of-balance”
range. Our expermiments have shown that the number of
processors in the different ranges plays a role as well, but
that by setting the parameters accordingly, the number of
processors in different ranges can be ignored.

For larger � , our balancing methods generate more pro-

jected cuts and thus the counts represent a better sample of
the current point set. We expect our balancing methods to
be efficient for large � and to be able to balance by using
projected cuts as new cuts. For small machine sizes (i.e.,
��8 32) we expect balancing to be expensive unless addi-
tional projected cuts are used to avoid determining new cuts
from point sets. Preliminary implementations of the square
count matrix method support these claims.

References

[1] G. Agrawal, A. Sussman, J. Saltz, “Compiler and Run-time
Support for Structured and Block Structured Applications,
Proc. of Supercomputing ‘93, pp. 578-587, 1993.

[2] D. Bader, J. Já Já, “Practical Parallel Algorithms for Dynamic
Data Redistribution, Median Finding, and Selection,” Techn.
Report, CS-TR-3494, University of Maryland, 1995.

[3] J. Bentley, “Multidimensional Binary Search Trees used for
Associative Searching,” CACM, Vol. 8, pp. 509-517, 1975.

[4] S. Chakrabarti, E. Deprit, E. Im, J. Jones, A. Krishnamurti, C.
Wen, and K. Yelick, “ Multipol: A Distributed Data Structure
Library,” Techn. Report, CSD-95-879, UC Berkeley, 1995.

[5] C. Chang, A. Sussman, J. Saltz, “Object-Oriented Runtime
Support for Complex Distributed Data Structures,” Techn.
Report, UMIACS-TR-95-35, University of Maryland, 1995.

[6] R. Das, M. Uysal, J. Saltz, Y.S. Hwang, “Communication
Optimizations for Irregular Scientific Computations on Dis-
tributed Memory Architectures,” JPDC, pp. 462-479, 1994.

[7] S.E. Hambrusch, F. Hameed, A. A. Khokhar, “Communi-
cation Operations on Coarse-Grained Mesh Architectures,”
Parallel Computing, Vol. 21, pp. 731-751, 1995.

[8] S.E. Hambrusch, A. Khokhar, “Maintaining Spatial Data Sets
in Distributed-Memory Machines”, Techn. Report, 1997.

[9] S.R. Kohn, S.B. Baden, “A Robust Parallel Programming
Model for Dynamic Non-uniform Scientific Computations,”
Proc. of the High Perf. Comp. Conf., pp. 509-517, 1994.

[10] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to
Parallel Computing, Benjamin/Cummings, 1994.

[11] C.-W. Ou, S. Ranka, “Parallel Remapping Algorithms for
Adaptive Problems,” Proc. of the Symp. on the Frontiers of
Massively Parallel Computation, pp. 367-374, 1995.

[12] R. Parsons, D. Quinlan, “Run-time Recognition of Task Par-
allelism within the P++ Parallel Array Class Library,” Proc.
of 1993 Scalable Parallel Libraries Conf., 1993.

[13] A. Rogers, M.C. Carlile, J. Reppy, L.J. Hendren, “Support-
ing Dynamic Data Structures on Distributed-Memory Ma-
chines”, TOPLAS, 17(2), pp. 233-263, 1995.

[14] H. Samet, Applications of Spatial Data Structures, Computer
Graphics, and Image Processing, Addison Wesley, 1990.

[15] K. Yelick et al., “Portable Parallel Irregular Applications,”
Workshop on Parallel Symbolic Languages and Systems,Lec-
ture Notes in Computer Science, 1995.

