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Abstract

In this paper, we propose a model for parallel computation, the C3-model. The C3-
model evaluates, for a given parallel algorithm and target architecture, the complexity of
computation, the pattern of communication, and the potential congestion arising during
communication. A metric for estimating the effect of link and processor congestion on the
performance of a communication operation is developed. This metric allows the evaluation
of arbitrary communication operations without the user having to specify fine scheduling
details. We describe how the C3-model can serve as a platform for the development of coarse-
grained algorithms sensitive to the parameters of a parallel machine. The initial validation of
the C3-model is discussed for the Intel Touchstone Delta. We compare predicted and actual
performance of different solutions for communication operations and of various divide-and-
conquer approaches for contour ranking on images.
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1 Introduction

The development of a parallel model that bridges software and hardware has been recognized as
crucial to the success of massively parallel computation. Such a model should be simple, should
accurately reflect the constraints of a parallel machine, and should have broad applicability with
respect to existing machines. In addition, such a model should provide a platform for algorithm
development and allow accurate prediction of the preformance of an algorithm. Recently, a
number of models with this goal have been proposed [3, 6, 10, 13, 17, 23, 24, 25]. In most
of these models, including the BSP model [24], the postal model [3], and the LogP model [6],
processors are assumed to communicate using a point-to-point message router. Composing more
involved communication operations by using the message router places a significant burden on
application programmers. Furthermore, the above models do not attempt to capture the effect
of link or processor congestion on communication.

In this paper, we propose a parallel computation model, the C*-model, for developing and
analyzing algorithms on coarse-grained machines. This model captures the complexity of com-
putation, the pattern of communication, and the potential congestion arising during commu-
nication. We propose a metric for estimating the effect of link and processor congestion on
the performance of communication operations. Parameters of our metric include the number of
processors, the number of processor pairs communicating, the latency and the bisection width of
the communication network, the message set-up cost, and the packet length. Our metric allows
the evaluation of arbitrary communication operations, and it can be applied without having to
specify fine scheduling details. We investigate how well the C3-model serves as a platform for
the development of coarse-grained algorithms and as a tool for estimating the performance of
an algorithm. We report our initial validation results of the C*-model on the Intel Touchstone
Delta. We compare predicted and actual performance for common communication operations,
including one-to-all, all-to-one, and all-to-all routing, and for contour ranking algorithms based
on different divide-and-conquer solutions.

In our model, we assume that computation is synchronized by a barrier-style synchronization
mechanism similar to the one described in [24]. More precisely, an algorithm can be partitioned

into a sequence of supersteps, with each superstep corresponding to local computation followed



by sending and receiving messages. Synchronization occurs between supersteps. We express
the performance of a superstep, and thus of an algorithm, in terms of computation units and
communication unils. Counting in units allows us to penalize certain undesirable aspects in
local computation and in communication. The number of computation units charged depends
on the amount of local computation done. The number of communication units charged depends
on the amount of data sent by a processor, the amount of data received by a processor, the
latency encountered by the messages, and the congestion arising due to the volume of inter-
processor communication. Qur method for evaluating communication units estimates the effect
of these factors on the performance of a communication operation. The routing schemas and
routing protocols available on a machine also influence the performance and this is reflected in
the total number of communication units charged.

Section 2 describes the C3-model and the metric devised to determine communication and
computation units. In Section 3, we use the model and the metric to determine the commu-
nication units for common communication operations when each operations is implemented
processors by issuing direct sends and receives. In Section 4, we consider the same communi-
cation operations and evaluate and analyze different implementations for each operation. We
describe how machine parameters and message sizes influence the performance. In Section 5,

we use divide-and-conquer based algorithms for an image-processing problem to validate the

C3-model.

2 The C3*-Model

In this section we describe the metric used by the C3-model to compute the communication
and computation units of a superstep. The parameters of the machine entering the metric are
the following;:

e p, the number of processors

e h, the latency of the communication network

e b, the bisection width of the communication network

o s, the set-up cost for a message

[, the length of a packet.
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Figure 1: Latency and bisection width of machines

We define the latency as the average distance between two processors. The average distance
is (Xo<i,j<p1 d; ;)/p*, where d; ; is the minimum distance between two processors. A message
is made up of fixed-length packets and a packet is the logical unit for communication between
two processors. The quantity /[ denotes the number of bytes in a packet. The bisection width
is defined as the minimum number of links that have to be removed in order to disconnect
the machine into two halves with identical numbers of processors. Figure 1 gives latency and
bisection width for various p-processor architectures.

We assume that algorithms on coarse-grained machines are not constrained by the amount
of local memory. In current coarse-grained machines, the computing power of a processor
is equivalent to that of a state-of-the-art workstation. Hence, for a reasonable problem size,
memory is not likely to dictate or heavily influence algorithm design. When describing our
metric, we assume that both the processor bandwidth and the network bandwidth are equal to
[. How to handle and account for different bandwidth values is described later.

A common feature of parallel algorithms and algorithm design approaches (e.g., divide-and-
conquer) is that, at some point or other, the p processors are logically partitioned into ¢ sets
S1,...5¢, with 5; containing p; processors. Communication occurs only between processors in
the same set. A programmer familiar with the architecture and the algorithm can often perform
a mapping such that communication within processor set S; does not compete for resources

with communication done in the other processor sets. This is possible, for example, when every



processor set .S; corresponds to a scaled down version of size p; of the p-processor machine. An
algorithm then operates on independent submachines. The importance of being able to operate
on independent submachines has been recognized. It has been incorporated into the Message
Passing Interface (MPI) [8] and has been extended to arbitrary process groups [1]. When it is
known that a superstep operates on independent submachines, we charge communication units

based on the parameters of the associated submachines.

2.1 Computation Units

The charging of computation units in a superstep is done as follows. Assume that in one
superstep processor F; accesses 1; bytes. At this point we do not distinguish between access
to the processor’s registers and access to its local memory. However, such distinctions can be
incorporated. The superstep is charged maxo<i<p—1 [tTﬂ computation units. The reason for
normalizing computation units by [ is that too little computation between two communication
steps should have a negative impact on the performance. If {; < I, we charge one computation

unit and thus also penalize for not accessing enough bytes to fill a packet.
2.2 Communication Units

The communication units charged to one superstep reflect the time spent in sending messages,
the time spent in receiving messages, the time messages are enroute under ideal conditions,
the amount of congestion that could occur, and an estimate on the resulting delay. In order
to demonstrate broad applicability of our model, we describe the evaluation of communication
units for different routing schemas and different send and receive primitives. The two routing
schemas we consider are store-and-forward and wormhole routing. Both are common and they
are conceptually quite different. We refer to [14] for details. Most existing machines support
both blocking and nonblocking protocols for send and receive primitives. These protocols differ
in implementation based on the synchronization methods used. For the sake of completeness,
we describe these protocols. A blocking send is a send operation initiated by a source processor
which does not terminate until the message is received by the destination processor. During
this time the source processor cannot perform other computations or communications. In a

nonblocking send the source processor, after filling its send buffer, has to wait only until the
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Figure 2: Send and receive times when P; sends L; ; bytes to P;

message has been read out of the send buffer. Nonblocking sends thus allow overlapping of
communication and computation and pipelining of multiple send operations. Analogously,
receive operations issued by the processors can also be blocking or nonblocking. For additional

details on routing protocols we refer to [7, 14, 17].

Sending a single message from P; to P;

We start the description of how communication units are determined by giving a cost estimation

for sending a single message between two processors. Assume processor P; sends a message

consisting of L; ; bytes (i.e., [L?ﬂ packets) to processor P;. We charge processor P; a send
time s; ; and processor P; a receive time r; ;. Send time s; ; is an estimate on the time needed
to send the message when it encounters no congestion. Receive time r; ; represents the time
processor P; is occupied with receiving the message. Send and receive times for different routing
protocols and routing methods are stated in Figure 2.

The send time includes the time elapsing between issuing the send until processor F; can
resume computation and communication. In addition, it includes the time taken by the message
to reach destination P;. In the case of nonblocking sends, processor P; could be doing another
task at this time. However, a message in transit takes resources away from the machine and

the C3-model charges this to processor P;. For nonblocking sends and receives with store-and-

forward we thus have s;; = s + [LlTﬂ *x h and r;; = [L”]

7 For the case of blocking sends,

processor P; is charged s 4 h to initiate communication with processor P;. After that, both



processors are engaged in the sending of the message. Both send and receive time accumulate
another s + A when P; sends a confirmation back to P;. Processors P; and P; are charged the
number of units corresponding to the time it takes for the message to reach P;, resulting in the

quantities shown in Figure 2.

Sending multiple messages from F;

For every processor sending and receiving multiple messages in a superstep, we determine total
send and receive times. The total send (resp. total receive) time measures the time a processor
is engaged in sending (resp. receiving) messages when messages are not delayed by congestion.
We assume that a processor cannot send and receive simultaneously.

Assume that in a superstep processor F; sends L;; bytes to processor P;, L;; > 0, 0 <
i,7 < p— 1. Let ns(¢) denote the number of processors to which P; sends a message; i.e.,
ns(i) = |{j|Li; > 0}|. Let s;; be as defined above (i.e., it is the cost of sending the message
from P; to P; without congestion). The total send time, 5;, experienced by processor P; is
an upper bound on the cost for processor P; to send all n,(7) messages in a congestion-free
environment. Let 7;; be the receive time, as defined above, and let R; be the total receive time
experienced by processor P;. Further, let n,(¢) denote the number of processors from which
P; receives a message; i.e., n, (i) = [{j|L;; > 0}|. Clearly, Y ocic,—1 ns(i) = PZo<icp1 nr(?).
Total send and total receive times depend on the routing schema and the routing protocol used.
Figure 3 gives the total send and receive times experienced under different routing protocols.

Consider the case of store-and-forward routing with nonblocking sends and nonblocking

receives. Let P; be the first processor to whom FP; issues a send. After s + [L‘l"ﬂ steps,

processor P; is no longer engaged in the send process for P; and can proceed with the next

send. This allows pipelining the ns(¢) sends. Let L = maxo<;j<p-1 Lij. The total send

ivjma.r
time experienced by processor P; thus contains the ny(7) start-up costs, the sum of all the
packets sent, and h x [L”%} The final quantity accounts for the latency encountered by the
last message to reach its destination. The total receive time is the sum of all the individual

receive times. For wormhole routing with nonblocking sends and nonblocking receives, we again

pipeline the n (%) sends. The latency of the last message shows up as an additive quantity of h.
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Figure 3: Total send and receive times for processor P; under different routing protocols.
*SF = Store-and-Forward, WH = wormbhole routing, nbs = nonblocking sends, nbr = nonblock-
ing receives, bs blocking sends, br = blocking receives

The quantity §; + R; represents a bound on the time processor P; spends in one superstep
on sending and receiving messages. Charging one superstep maxo<;<p—1{9; + R;} communi-
cation units reflects the overall send and receive time experienced by the machine during the
communication operation, not including the delay the messages encounter because of link and
processor congestion. We point out that when stating communication units we have not scaled
the set-up cost s, but simply included the total number of set-up costs experienced. When giv-
ing communication units for operations on specific machines, as done in Section 4, we convert

set-up costs to communication units.

Measuring congestion

We next describe the metric used to estimate the potential congestion arising at the processors
or communication links. Congestion plays a crucial role in the time required to complete

all routings. At the same time, congestion is difficult to evaluate. Congestion is a global
phenomena and where it occurs depends on specifics of the architecture and the routing paths
taken. A formal model to deal with congestion in a shared memory machine has recently been

proposed in [9]. Congestion depends on the amount of data sent between processor pairs and is



independent of whether we use store-and-forward or wormhole routing. During a routing step,
store-and-forward stores K packets in a single processor, while wormhole stores 1 packet (or
part of a packet) at K (or more) processors. In our estimation of congestion, we measure Cj,
the congestion over links, and C,, the congestion at the processors. We measure processor and
link congestion under the assumption that all messages are routed simultaneously. Clearly, this
may not be done under a given protocol. However, delaying the sending of a message by using
blocking sends is, in some sense, a possible way of dealing with the congestion. In both cases,
the messages experience a delay.

Our metric uses two quantities related to the communication being performed in a superstep.
Let cong be the total number of processor pairs communicating and let L, be the average
number of packets routed between processors. Congestion over links is closely related to the
bisection width of the machine. In a machine with a bisection width of b, it takes at least [%}
steps to send K packets from processors in one half of the machine to the processors in the

other half. We set
cong

bw'

C[ILG*[

Our estimation of the link congestion C; is both optimistic and pessimistic. It is optimistic in
measuring congestion only over a single link cut (namely, the cut that separates the machine
into halves). Clearly, link congestion occuring within each half can have an impact on the
overall link congestion. It is pessimistic in assuming that all cong communicating processor
pairs have the source processor on one half and the destination processor is the other half.

In order to estimate the congestion at the processors, assume that all cong processor pairs
are routed simultaneously. Processor congestion is then estimated as

cong
p

Cp=Lyx| | x h.

cong
P

The quantity [=2*2] represents the average number of messages at a processor at the beginning
of the communication operation. We use L, in estimating the slow-down a message experiences.
We argue that a message of size L, traversing a distance of h links and thus competing for the

resources with other messages at each of the h — 1 intermediate processors is slowed down by a

factor of [%} at each processor. We do not take into account that congestion at the processors



is likely to decrease during the routing. Capturing this behavior in a simple way is difficult and
in many realistic routings (e.g., a transpose and bit reversal) the decrease in the congestion is
slow.

In summary, the total number of communication units charged in a superstep is

Osrzr_lgapgl{si + R} +Cr+ C).

In order to estimate actual execution time of an algorithm, relative weights need to be attached
to computation and communication units. These weights should be based on the ratio between
the processor clock speed and the network clock speed as well as the ratio of the bandwidth of
the network and the bandwidth of the processors [18]. In the high-level approach taken by our
model, clock speeds and bandwidth parameters do not influence the design of an algorithm and
they are thus not included. Put in a different way, we give units for the case when the network
clock speed is equal to processor clock speed and network bandwidth is equal to processor
bandwidth. When evaluating an algorithm the ratio of computation units and communica-
tion units over all supersteps gives information as to whether an algorithm is computation or

communication intensive.

3 Charging Examples

Our metric allows evaluation of arbitrary communication patterns. While arbitrary patterns
occur in applications, regular patterns are more common on coarse-grained machines. In this
section we give the number of communication units charged for regular patterns when each
communication operation is implemented using the naive approach of each source processor
sending messages directly to the destination processors. The communication operations we
consider include one-to-one, one-to-all, all-to-one, and all-to-all routing. The communication
units are given for wormhole routing with nonblocking sends and nonblocking receives. To

simplify the presentation, we assume that every message is of length L.
One-to-one Routing

In one-to-one routing, also known as permutation routing, every processor sends L bytes to

a unique destination (i.e., unique among all p processors). Our charging method does not

10
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Figure 4: Communication units charged for wormhole routing with nonblocking sends and
nonblocking receives

distinguish between one-to-one routings that are easy or difficult with respect to the arising
congestion. Clearly, for any particular architecture, such differences do exist. In one-to-one
routing we have ns(i) = 1, n.(i) = 1, 0 < ¢ < p— 1, and cong = p. Figure 4 gives total send
and total receive times, link and processor congestion for one-to-one and other communication
operations.

For one-to-one routing, link and processor congestion dominate the communication units.
Whether one can expect more congestion over the links or at the processors, depends on the
bisection width of the machine. Assume that one-to-one routing is done on a p-processor square
mesh with b = \/p and h = %\/ﬁ Then, processor and link congestion appear almost balanced

and we charge
2 L 5
StV T+ 2y
communication units. On a p-processor hypercube we have b = p/2 and h = lo—‘é—p and the

processor congestion dominates. In total, we charge

log p L log p
BP 4[] x (44 2L

s+

communication units. On a tree machine with ~ = logp and b = 1 link congestion dominates
and we charge

L
s+logp+ [71 x (24 p+ logp)

11



communication units.

One-to-all Routing

In one-to-all routing, a source processor P;, sends p — 1 distinct messages, each to a different
destination. One-to-all is also refered to as scatter or personalized broadcast [8, 15]. We have
ns(t) =p—1,n.(¢) =1 for ¢ # ¢, and cong = p — 1. The total send time experienced by the

source processor P; dominates the number of communication units.

All-to-one Routing

All-to-one routing, also known as the gather operation, is the inverse of one-to-all: every pro-
cessor now sends a message to a common processor, say processor P;. We have ny(i) = 1 for
i #£1,0<i<p-1,n(t) =p—1, and cong = p — 1. The total receive time at processor P,

dominates the number of communication units.

All-to-all Routing

In all-to-all routing, also known as total exchange, every processor sends a message to every
other processor. We have ns(¢) =p—1,n,.(¢) =p—1,0<¢<p—1, and cong = p(p—1). From
the number of communication units charged shown in Figure 4 it follows that the bisection

width of the underlying architecture greatly influences the performance.

4 Validation through Communication Operations

In the previous section we gave the communication units for communication operations when
each operation is implemented through source processors issuing direct sends. Such implemen-
tations are likely to be used by programmers not familiar with parallel processing. Nor surpris-
ingly, they do not always result in good performance. In this section we use the C*>-model as a
platform to develop and analyze different implementations of communication operations. For
each implementation we determine computation and communication units and compare total
units to the actual performance of the algorithms on the Intel Touchstone Delta. We show that
the C3-model and its metric give an accurate prediction of the relative performance between dif-

ferent implementations of the same operation. Qur results also indicate that the performance of

12



an implementation is influenced by the relationship among parameters of the parallel machine,
as well as by the relationship of the parameters to the amount of data involved. This agrees
with other research done on the implementation of communication operations [1, 2, 4, 19].

The Intel Touchstone Delta is a coarse-grained multi-processor system with 512 nodes or-
ganized as a 16 X 32 2-dimensional mesh. Fach node is directly connected to its 4 nearest
neighbors. The communication network uses wormhole routing. Packet size is 512 bytes, with
482 bytes reserved for data and 30 bytes for the message header. The operating system supports
both blocking and non-blocking communication primitives. We give communication units and
performance for wormhole routing with nonblocking sends and nonblocking receives.

In order to classify different approaches used in our implementations, we introduce the
notion of a k-level algorithm. Intuitively, in a k-level algorithm, the machine is partitioned into
k levels of submachines, with the submachines within each level operating independently from
each other. An algorithm is a I-level algorithm if, in the description given in terms of supersteps,
no superstep operates on different submachines. In a k-level algorithm, & > 1, at least one
superstep assumes a partition into submachines, not necessarily of identical size, and subsequent
supersteps specify a (k — 1)-level algorithm for each submachine. In our implementations,
processors belonging to the same submachine form a scaled down version of the bigger machine.
For a mesh, a scaled down version will be either a smaller mesh with the same aspect ratio or a
linear array. This is a stronger requirement than the use of process groups as proposed by the
MPI Message Passing Standard [8]. When determining communication units, we assume that
communication within a submachine occurs without interference from other submachines.

When describing our algorithms, we assume that the size of the message routed between
any two processors is L. The objective of our algorithms is to have the processors send out
their packets as fast as possible and to minimize the time between processors sending out their
last packet and receiving the last packet destined for them. In many situations this time is
minimized by combining original messages of size L into larger messages and by performing
independent routings in submachines. We refer to L as the actual message size. This is in
contrast to the effective message size, which is the size of the message routed between two

processors in a particular superstep. For all algorithms, the effective message size is never

13



smaller than the actual message size.

4.1 One-to-all Routing

In this section, we use the k-level concept to develop a number of different implementations
for one-to-all routing. We evaluate each implementation using the metric of the C*-model
and compare the predicted performance with the performance of the algorithms on the Intel

Touchstone Delta.

Description of Algorithms

There exist two conceptually quite different 1-level algorithms for one-to-all routing. In the
first one, Algorithm 1-lev-dir, source processor P; issues p — 1 direct sends (and every other
processor issues a receive). Using Figure 4, 1-lev-dir is charged

o [71% (4 121 4 1)

communication units. We point out that throughout this section, we make a number of simpli-
fications when giving communication units. We write p when the correct quantity is p — 1 and
we may omit additive terms of h. Another 1-level approach is to have processor P; form one
long message of size L(p — 1) which is broadcast to every processor. After receiving this mes-
sage, every processor extracts the message destined for it. Qur broadcasting implementation,
Algorithm 1-lev-br, uses a binomial heap as a broadcasting tree. One expects the broadcasting
approach to be efficient only when L is small and/or when the parallel machine has a control
network supporting fast broadcasts. Figure 5 gives an outline of the different algorithms for
one-to-all operation.

We next describe a generic 2-level approach. Logically partition the p-processor machine

1

into p® submachines, each containing p' = processors for —— < a < 1. Designate one processor
’ logp —

in each submachine as a leader. Source processor F; then forms p® long messages, each having

1-2 jctual

an effective message size of Lp'~®. The i-th long message formed consists of the p
messages destined for the processors in the 2-th submachine, 0 <7 < p* — 1. Next, processor P;

issues p* sends (or p* —1 sends if P is a leader) to route the long messages to the leaders. Once

14



Algorithm 1-lev-dir (p) Algorithm logp-lev-sq(p)
The source processor issues p-1 sends, onetoeach | 1. The machineis partitioned into 2 submachines,
distinct destination. aternating partitions along the columns and rows.

2. The source processor concatenates p/2 messages
into one long message and sends the long message
to the leader processor in the other submachine.

Algorithm 1-lev-br (p)

1. The source processor concatenates the p-1 mes-
sagesinto one long message which is broadcast.
Algorithm 1-lev-our-br uses a broadcast based on | 3. Each submachine applies Algorithm
the binomial heap pattern. logp-lev-sq(p/2).

2. Each processor extractsits message from the long

message received. Algorithm logp-lev-rec(p,y)

1. Themachineis partitioned into 2 submachines, one
containing yp processors including the source pro-

Algorithm 2-ev-rec(p) cessor, and the other containing (1-y)p processors.

1. The source processor prepares (pl’z-l) long mes-

sages, each containing p”2 messages, and sends one
long message to each processor in its column.

2. The source processor concatenates (1-y)p messages
into onelong message and sendsit to the leader pro-
cessor in the other submachine.

2. /A processor that received along message, applies 3. The submachine with yp processor applies Algo-

Algorithm 1-lev-dir (pV2) within its row. rithm logp-lev-rec(yp, y), and the submachine with
(2-y)p processors applies Algorithm logp-lev-
Algorithm 3-lev-sq(p) rec((1-y)p, ).
1. The machineis partitioned into pY/2 square subma-
chines.

2. The source processor prepares p“z-l long mes-

sages, each containing p”2 messages and sends one
long message to each |eader processor in the sub-
machine.

3. Each submachine applies Algorithm 2-lev-rec(pY/9).

Figure 5: Outline of one-to-all algorithms.

a leader has received its long message, it divides the message into p!~® of size L and initiates
a 1-level one-to-all algorithm within its submachine.

On the Intel Delta we have implemented a 2-level algorithm with @ = 1/2 in which each
submachine is a row containing ,/p processors. We refer to it as Algorithm 2-lev-rec. The
leaders are the processors in the column containing processor P;. We use Algorithm I1-lev-dir
as the 1-level algorithm within each row. In Algorithm 2-lev-rec, the first superstep operates on
a single column of the mesh. The second superstep uses Algorithm I-lev-dir within each row.

The number of communication units charged in both supersteps is

s TV % (V54 TP+ ) 4 s/ [ 7] (VB + [0 4 1),
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where ' and h' are the bisection width and the latency in a ,/p-processor linear array, respec-
tively.

A 3-level algorithm is obtained by applying a 2-level approach to submachines. We consid-
ered the following 3-level algorithm, Algorithm 3-lev-sq, on the Intel Delta. The p-processor
machine is logically partitioned into /p submachines, each being an array of size pt/4 % pt/4,
Once a leader receives its long message from F;, it initiates a 2-level algorithm for one-to-all
routing (using Algorithm 2-lev-rec) within its submachine.

The value of k = log p leads to a class of interesting algorithms. A p-processor machine is
now divided into two submachines and the source processor P; issues one send to the leader in
the other submachine. If the submachines are of equal size, the effective message size is Lp/2.
After this send, a (k — 1)-level algorithm is invoked. If the (k — 1)-level algorithm proceeds
in the same fashion, we refer to the algorithm as a Binomial Heap algorithm (since the sends
issued induce a tree having the shape of a binomial heap). When the machine is divided into
submachines of equal size, we perform log p superstep, with each superstep experiencing only a
single message set-up cost. Further, the total number of set-up costs experienced is minimized.
Algorithm logp-lev-sq divides the mesh into half by alternating vertical and horizontal cuts;
i.e., the algorithm operates on a square mesh of size p/4 after two supersteps. Let C BH(p) be
the number of communication units charged to Algorithm logp-lev-sq on a p-processor machine.

Then,

T4 227 x (b4 2) + CBH(p/4).

CBH(p)=2s + h) + ([

For the mesh, the average distance in the p/4-processor machine reduces from h to h/2. Hence,

the recurrence is bounded by

L
CBH(p) < slogp+ cx [Tp} *h,

for a constant ¢ < 1.5.

Algorithm logp-lev-rec(y) divides the mesh into two submachines using v, 0.5 < v < 1,
as the partitioning factor. The partition is made so that the submachine containing source
processor P; consists of yp processors and the other submachine consists of the remaining

(1 — v)p processors. Evaluating Algorithm logp-lev-rec(v) in the C3-model results in a larger
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Algorithm | Comm. Units | Comp. Units | Comm Units (with s=8)
1-lev-dir | 2565+ 0.55L L 2048 + 0.55L
1-lev-br 8s 4 27L L 64+ 27L
2-lev-rec | 32s+1.23L L 256 + 1.23L
3-lev-sq 24s 4+ 0.93L L 192 4+ 0.93L
logp-lev-sq | 8s+ 5.29L L 64 + 5.29L

Figure 6: Approximate number of units charged for one-to-all algorithms assuming a 256-
processor Intel Delta with A = 10, ! = 512, and b = 16.

number of communication units compared to logp-lev-sq. However, Algorithm logp-lev-rec(7y)
with v = 0.75 performs well on the Intel Delta. We discuss the reasons and why our model fails

to evaluates this when comparing actual and predicted performance.

Predicted Performance and Experimental Results

In Figure 6 we show the total number of communication and computation units charged to
the one-to-all algorithms in the C3-model for the Intel Touchstone Delta. The units are given
for nonblocking sends and nonblocking receives. Since we considered messages whose sizes are
powers of 2, the [.]’s have been dropped. The units are given for p = 256, h = 10 (the precise
value would be 10.67), ] = 512, and b = 16. When converting the set-up cost s to units, we
assume s = 1400 processor cycles. Assuming 40MHz processor clock speed and 12.5 MB/sec
network bandwidth, the number of units corresponding to one set-up cost is approximately 8.

Figure 7(a) shows the predicted performance of the algorithms in graphical form, varying the
message size from 16 to 16K bytes. From the communication units it appears that Algorithm
3-lev-sq is the best for message sizes of up to 6Kbytes, and that Algorithm 1-lev-dir is likely to
give reasonable performance for large messages sizes. Algorithm 1-lev-br is predicted to be a
poor choice.

The one-to-all algorithms described in Figure 5 have been implemented on the Intel Touch-
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Figure 7: (a) Predicted performance (in units) and (b) experimental results (in msec) of the
One-to-All Algorithms on a 256-Processor Intel Touchstone Delta using blocking sends and
nonblocking receives.
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One-to-All Message Size (in Bytes)
Algorithms

16384 | 8192 | 4096 | 2048 | 1024 512 256 128 64 32 16
1-lev-dir 420.82 | 226.21 | 130.80 | 7522 | 5280 | 37.61| 2950 | 2858 | 26.05| 2645| 26.04
1-lev-br 4377.44 |2193.51 |1096.23 | 549.12 | 275.79 | 138.88 | 70.67 | 36.73 | 19.90 | 1129 | 6.78
2-lev-rec 400.03 | 203.38 | 103.79 | 53.61 | 2890 | 16.25 9.79 6.91 5.06 4.45 877
3-lev-sq 402.60 | 20330 | 104.60 | 54.25| 2946 | 1687 | 1057 | 756 | 552| 499 | 417
logp-lev-sq 545.37 | 274.02 | 13830 | 70.63 | 36.62 | 19.62 | 11.21 6.79 4.48 3.43 2.80
logp-lev-rec(0.75) | 39344 | 198.13 | 10035 | 51.35 | 27.14| 1513 | 9.10| 580 | 435| 329| 3.02

Figure 8: Performance results for one-to-all routing on a 256-Processor Intel Touchstone Delta
using nonblocking sends and nonblocking receives (execution times are in msec).

stone Delta. We considered machine sizes from 16 to 256 processors and message sizes from
16 bytes to 16 Kbytes. The corresponding experimental results for p = 256 are shown in
Figure 7(b). For a more complete discussion on the performance of these algorithms on the
Intel Delta, we refer to [11]. Figure 7 shows that expressing each algorithm in terms of com-
munication and computation units gives an accurate prediction of their relative performance
on the Intel Delta. Algorithm I-lev-dir is indeed a reasonable choice for large message sizes
(at least 4 Kbytes). Independent of the message size, I-lev-dir always experiences a total of
p — 1 message set-up costs. In addition, since the packet length on the Intel Delta is 512 bytes,
sending message sizes < 512 costs approximately the same. The broadcasting algorithm gives
the worst performance. The poor performance is partly due to the large effective message size,
as well as due to the absence of a dedicated fast broadcasting network. Algorithms 2-lev-rec
and 3-lev-sq give approximately the same performance and are the best choice among the five
algorithms listed in Figure 7. Algorithm logp-lev-sq gives good performance only for small
message sizes (< 256 bytes). This also agrees with its predicted performance. Figure 8 gives
detailed performance results in tabulated form.

From Figure 8 is follows that Algorithm logp-lev-rec(0.75) performs quite well. Actually,
logp-lev-rec(0.75) gives optimal or near optimal results for all machine and message sizes on

Delta [11]. As already stated earlier, the metric of the C*-model evaluates logp-lev-rec(0.75) to
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be no better than Algorithm logp-lev-sq. If Algorithm logp-lev-rec(0.75) were implemented with
a barrier-style synchronization between supersteps, we would see no improvement. However,
logp-lev-rec(0.75) was implemented with no such synchronization. The value v = 0.75 captures
characteristics of the send and receive ratio of the Delta (the value of ¥ = 0.75 was obtained
through experiments). Before the leader in the other submachine received its long message,
the source processor already starts sending the next long message to the next leader. While
exploiting such features of a machine can bring good performance results, they are difficult to
incorporate into a computational model aimed at making parallel machines easier to use.

In summary, our validation work on the Intel Delta indicates that the message-combining
algorithms which keep a balance between the total number of sends and the effective message
size perform well for small message sizes. Which one of them gives the best performance
depends on the ratio between the send and receive time, the packet length, the ratio between

the processor and network bandwidth, and the message set-up cost.

4.2 All-to-one Routing

In all-to-one routing every processor sends a message to destination processor P;. Processor P;
is now the bottleneck. Conceptually, all-to-one is the inverse of one-to-all. Our one-to-all algo-
rithms, except the algorithm based on broadcasting, have corresponding all-to-one algorithms.
Algorithm I-lev-dir for all-to-one is one in which every processor issues a send to processor
P;. Algorithms 2-lev-rec and 3-lev-sq are the corresponding 2-level and 3-level algorithms, re-
spectively. Algorithm logp-lev-sq is the log p-level algorithm partitioning the mesh into two
submachines by alternating horizontal and vertical cuts. Algorithm logp-lev-rec(~) partitions
the mesh into two submachines based on the value of v, 0 < v < 1.

The number of communication units charged for each of the all-to-one algorithms is almost
identical to the ones charged for one-to-all and we omit details. The difference lies in the number
of message set-ups charged. For example, the communication units charged to Algorithm 1-lev-
dir for all-to-one include only a single message set-up, compared to p — 1 for one-to-all. For all
all-to-one algorithms, the receive times are the dominating terms in the communication units.

From a practical point of view, the best one-to-all algorithms do not necessarily correspond

to the best all-to-one algorithms. We refer to [11] for a complete discussion and only state
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our main observations. On a 256-processor Intel Delta, Algorithm I-lev-dir is no longer a
reasonable choice for large message sizes. For a 256-processor machine, all algorithms that
combine messages give a comparable performance for L < 512, while for L > 512 Algorithm
logp-lev-rec(0.60) gives the best performance. For messages of length < 512 bytes the all-to-one
algorithms are slightly faster than their one-to-all counterparts, while for messages of length
> 512 bytes the all-to-one algorithms are significantly slower. This can be explained by machine

characteristics which we do not attempt to capture in the C3-model.
4.3 All-to-all Routing

In this section, we first describe a number of different algorithms for all-to-all routing. We then
compare their predicted performance with the experimental results achieved on a 256-processor

Intel Delta.

Description of Algorithms

The most straightforward 1-level approach for all-to-all routing is to have each processor send
its p — 1 messages, one by one, regardless of what other processors are doing. The machine
is thus flooded with messages and the arising congestion is left to be handled by the system.
This approach is used in Algorithm 7-lev-dir. An approach that attempts to control congestion
implements all-to-all through p — 1 one-to-one routings; i.e., the p(p — 1) routing requests are
partitioned into permutations. Common are the linear permutations and exclusive-or permu-
tations. When partitioning into linear permutations, processor j sends a message to processor
(j + ¢)mod (p — 1) in the ¢-th permutation, 1 < ¢ < p — 1. When partitioning into ezclusive-
or permutations, all-to-all is partitioned so that in the ¢-th permutation processor j sends
a message to ¢ @ 7. Implementations of these approaches on different machines have shown
exclusive-or permutations to be superior to linear permutations [19, 22]. Another interesting
approach for partitioning all-to-all routings into permutations has been introduced in [21]. We
call this approach partitioning into balanced permutations and refer to [11] for implementation
details. Balanced permutations are relevant to the mesh architecture since they minimize the
congestion over the links.

We view algorithms that partition into permutations as 1-level algorithms and refer to such
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Algorithm | Communication Units | Computation Units
1-lev-dir 2565 + 141 L
1-lev-perm 256s + 141 %

2-lev-sq 33s+ 23L 1.5
2-lev-c,r 325+ 23L L
logp-lev-bfly 4s + 28.5L 4L

Figure 9: Approximate number of units charged for all-to-all algorithms on a 256-processor
Intel Touchstone Delta with A = 10, [ = 512, and b = 16, assuming nonblocking sends and
receives.

algorithms as Algorithm 1-lev-perm. The metric of the C3-model charges the same number of
communication units for each of the three permutations. This is because our metric is unable
to distinguish between easy and hard permutations without explicitely giving a partitioning
into submachines. Further, our metric charges the same number of communication units for
algorithms which partition into p permutations and Algorithm 1-lev-dir, in which every pro-
cessor issues p — 1 sends independent of what the other processors are doing. The number of
supersteps and the amount of congestion in each superstep for both of these 1-level approaches
is different, but the total number of units charged is the same. Figure 9 gives the total number
of communication and computation units for the all-to-all algorithms.

Next consider the following two 2-level algorithms. The approach used in the first one,
Algorithm 2-lev-sq, is independent of the underlying architecture. The approach used in the
second one, Algorithm 2-lev-r,cis tailored towards the mesh architecture. An idea similar to the
one used in Algorithm 2-lev-sq is described in [4] and an implementation of Algorithm 2-lev-c,r
has also been reported in [22].

In Algorithm 2-lev-sq, a p-processor machine is logically partitioned into /p submachines,
S50, .5 5—1. Submachine $; performs an all-to-all routing within 5; sending long messages of
length \/p — IL. After this step, processor ¢ in submachine 5; contains the p messages destined
for the processors in submachine 5; (and which have their source processor in submachine 5;).
The algorithm then performs a one-to-one routing step in which processor ¢ of submachine 5
sends this long message (having length Lp) to processor j in submachine .5;. The third and final

step is an all-to-all routing within each submachine which routes the messages to their correct
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destinations. Algorithm 2-lev-c,r uses a similar principle, but avoids a one-to-one routing step
by using different submachines in the first and second step. In the first step the ,/p submachines
correspond to the ,/p columns of the mesh. We perform an all-to-all routing within each column
so that processor ¢ in column j receives the p messages destined for the processors in row ¢ (and
which have their source processor in column 7). An all-to-all routing within each row completes
the operation. As shown in Figure 9, the number of communication units charged to the two
2-level algorithms is identical. In Algorithm 2-lev-sq, 14L of the 23L units charged come from
the second step, the one-to-one routing. In Algorithm 2-lev-c,r the number of communication
units charged is split evenly between the two supersteps.

We have also considered a log p-level algorithm, Algorithm logp-lev-bfly, based on the but-
terfly communication pattern. In the first superstep of this algorithm every processor P; sends
the p/2 messages destined for the p/2 processors not in its half to processor Plitp/2)modp- After
the received messages are combined with the messages that remained in a processor, all-to-all

in performed on two p/2-processor submachines.

Comparing Predicted and Experimental Results

In this section we again compare the performance predicted by the C3-model to the performance
achieved on the Intel Delta. Recall that Figure 9 gives the communication and computation
units for the algorithms described in the previous section. The C3-model predicts the 1-level
algorithms to be superior for large message sizes and it predicts message combining algorithms
to perform better for small message sizes.

We have implemented the above mentioned algorithms on a 256-processor Intel Delta. Al-
gorithms I-lev-lin, 1-lev-Xor, and 1-lev-bal are the three 1-level algorithms partitioning all-to-all
communciation into permutations. The predicted performace and implementation results are
shown in Figure 10(a) and Figure 10(b), respectively.

Algorithm I-lev-Xor gives the best performance for large message sizes. Observe that the
advantages of Algorithm I-lev-bal with respect to the arising congestion are not evident from
the experimental results obtained from the Delta. As already stated, the metric proposed in

this paper does not distinguish between different 1-level algorithms and thus the predicted per-
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Figure 10: (a) Predicted performance (in units) and (b) experimental results of the all-to-all
algorithms on a 256-processor Intel Delta using nonblocking sends and nonblocking receives.
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formance for all 1-level algorithms follow the same curve. However, in actual implementations
different permutations induce different patterns of link and processor congestion and thus give

a different performance. Capturing this behavior in the model would be difficult.

All-to-All Message Size (in Bytes)

Algorithms

16384 | 8192 | 4096 | 2048 | 1024 512 256 128 64 32 16

1-lev-direct [6860.21 |3115.27 |1494.48 | 598.82 | 316.78 | 169.48 | 82.84 | 7321 70.28 68.11 69.75
1-lev-lin 5476.28 |2661.56 |1294.39 | 639.83 | 330.90 | 182.18 | 9448 | 71.12 | 67.66 | 63.03 | 66.55
1-lev-xor 4608.85 |2231.60 |1081.05 | 536.01 | 273.28 | 147.98 7820 | 63.75 | 59.51 59.21 61.40

1-lev-balance |4988.76 |2492.90 |1221.90 | 619.62 | 305.24 | 144.25 7743 | 7783 | 7283 | 6447 61.11
2-lev-sq 6561.45 (326092 {1633.19 | 809.42 | 401.09 | 201.35 | 99.75 | 60.03 | 3443 | 2418 18.69
2-lev-c,r 5632.29 2659.75 |1319.53 | 665.28 | 330.50 | 163.02 7858 | 3949 | 2346 | 1448 11.74

2-lev-c,r-int [|4613.42 |2232.63 |1086.08 | 543.55 | 284.23 | 168.85 | 113.30 | 91.23 | 8276 | 78.81 75.96

logp-lev-bfly -- - 2206.67 | 1112.07 | 569.08 | 298.10 | 163.34 | 97.10 | 74.03 | 43.09 | 31.84

Figure 11: Performance Results for all-to-all routings on a 256-processor Intel Touchstone Delta
using nonblocking sends and nonblocking receives (execution times are in msec).

The experimental results show that Algorithm 2-lev-c,r performs best for small message
sizes (< 256 bytes). Since in Figure 10 it is not easy to distinguish between the performance
of the algorithms for small message sizes, we refer to Figure 11. Algorithm 2-lev-sq gave the
second best performance for small message sizes. The reason 2-lev-c,r outperformed 2-lev-sq,
lies in the fact that 2-lev-sq is a 3-step algorithm (which sends out data three times), while
2-lev-c,r is a 2-step algorithm. The advantage of the 3-step algorithm is that it uses square
meshes as submachines, whereas the 2-step one uses linear arrays. The approach in Algorithm
logp-lev-bfly has consistently been judged as being expensive for large message sizes [4, 22]. Our

metric and the observed performance on the Delta, confirms that as well.

5 Validation through Divide-and-Conquer Solutions

On coarse-grained machines, divide-and-conquer strategies are natural and often result in ef-

ficient solutions. Divide-and-conquer typically contains a merging process in which results
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computed by different processors are combined to obtain the final solution. Different merging
patterns have different communication and computation requirements. Depending on machine
and problem parameters, different patterns are likely to result in different performance.

In this section we use contour ranking, a low-level aimage-processing problem, to validate
the C3-model. Contour ranking can be viewed as performing list ranking in images. The
problem arises when edge contours generated by edge operators in a 2-dimensional image plane
are transformed into a linearized representation. Such representations are more compact for
processing performed in subsequent mid- and high-level vision tasks [5, 16, 20]. Generating the
linear representation is called contour ranking.

The algorithms we describe use divide-and-conquer and merge information about subimages
in order to compute the final values. The information needed about a subimage is proportional
to the number of edge points on the boundary of the subimage. The time needed to merge
subimages is linear in the number of edge points on the involved boundaries. A number of other
problems on images can be solved by algorithms following the same principle. These problems
include component labeling, straight line approximations, and region growing. For example,
each one of our contour ranking algorithms can be turned into a component labeling algorithm
by using a different merging procedure. The relative performance of the so obtained component

labeling algorithms will correspond to the relative performance of contour ranking algorithms.

5.1 Problem Definition and Basic Approach

We refer to a pixel on an edge contour as an edge point. For each edge point e, succ(e) points
to either one of e’s eight immediate successors on the edge contour or it is n#l. An edge point
e with succ(e) = nil is called a head. The succ-relation induces linked lists and thus each edge
contour corresponds to a linked list. In contour ranking we determine, for every edge point e,
the head of the list containing e and the distance from e to this head, called the rank of e. Once
the ranks are known, a final data movement step generates the linear representation. Clearly,
by following the succ-links, heads and ranks can be determined sequentially in linear time.
Let I be an image of size m X n. For simplicity, we assume that p is a perfect square and that

m and n are both multiples of /p. We assume that image I is partitioned into p rectangular
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subimages, each of size Zt X %. We number these subimages using a row-major numbering

VP

scheme. For clarity, we assume that processor P; ; is assigned subimage [; ;, 0 <4,5 < ,/p— 1.

For any subimage I’ of I, the information needed about image I’ in order to compute the
head and rank information of all edge points outside I’ is proportional the number of edge
points on the boundary of I’. Conversely, if the final head and rank are known for every edge
point on the boundary of I’, then the head and rank in image I can be computed for every edge
point within I’. In a forward phase, our algorithms merge information about the boundaries of
subimages in order to compute the boundary information of larger subimages. In a backward
phase, the final head and rank in image I of edge points on the boundary of subimages are used
to determine head and rank information for the remaining edge points within the subimages.

We refer to [12] for details on how the boundary is represented and for details of the merging.

In brief, each one of our algorithms consists of the following three steps.

1. Processor P; ; performs contour ranking on subimage /; ;. P; ; then constructs the bound-

ary list representing the information about subimage /; ; needed in future computations.

2. Determine, for each edge point on the boundary of subimage I; ;, its rank and head in

image I. In order to compute this information, boundaries of subimages are merged.

3. Determine the rank and head in [ for every edge point in subimage I; ;.

Steps 1 and 3 are identical for each contour ranking algorithm and can be viewed as prepro-
cessing and postprocessing, respectively. They require no communication between processors.

In the next section we describe different divide-and-conquer patterns for performing Step 2.
5.2 Divide-and-Conquer Patterns

In this section we describe four algorithms for performing Step 2; i.e., for determining, for each
edge point on the boundary of subimage [; ;, 0 < 4,5 < /p — 1, its head and rank in image
I. Assume processor P;; contains the boundary list of some rectangular subimage /] ; and
processor Py contains the boundary list of an adjacent subimage [; ;. Let I’ = I/ ;U I} ;. In
order to determine the boundary list of subimage I’, both P;; and Py; send their boundary

list to each other. After each processor has received the other processor’s list, it proceeds to
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determine the boundary list of subimage I’. Both processors continue to merge subimages
until each processor knows the boundary list of image I. At this point the forward phase of
the contour ranking algorithm is completed and the backward phase begins. The goal of the
backward phase is to determine, for every edge point on the boundary of subimage I ;, its
rank and head in image I. For the algorithms we analyze in this section, the backward phase
requires no communication between processors. Processor F;; uses information about larger
subimages to update the heads and ranks of smaller subimages, proceeding until the smaller

subimage equals /; ;.

Algorithm 1-lev-dir

1. Every processor sends its boundary list to every other processor.

2. Every processor F;; merges the p boundaries and determines, for each edge point on the
boundary of I; ;, its the rank and head information in image /.

Algorithm 2-lev-rc

1. Processor F; ; sends its boundary list to every other processor in row .

2. Processor P;; merges the received data, creating creating the boundary list of subimage I; ..
3. Processor P;; sends the boundary list of subimage I; » to every processor in column i.
4

. Processor P; ; determines the boundary list of image I. It then determines the rank and head
in I of every edge point on the boundary of I; ;.

Algorithm logp-lev-quad

1. Form p/4 groups, each containing 4 processors, so that processors Pa; 2; Pait1,2j, Pai 2j+1, and
Pait12541, 0 < 4,5 < /p/2 — 1 belong to the same group. Number the processors in a group
from 1 to 4. Every processor sends its boundary lists to every other processor in the same
group.

2. Let Iéi,zj = In; 25 U I5;41,25 U I35 2541 U I;41 2541. A processor in the same group with Py; »;
determines the boundary lists of subimage Iéi,Zj'
3. All the processors with number !, 1 < ! < 4, recursively merge their subimages. After the
recursion, every processor in the group with Py; »; knows the head and rank in image I for

each edge point on the boundary of subimage I, ;.

4. Processor P; ; determines the rank and head in I of every edge point on the boundary of I; ;.

Figure 12: Qutline of contour ranking algorithms.

The communication in the forward phase is an all-to-all broadcast performed on subma-

chines. The sizes and types of the submachines depend on the algorithm. We again characterize
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1st iteration 2nd iteration

Figure 13: All-to-all broadcast patterns for Algorithm logp-lev-quad

our algorithms by the number of submachine levels they employ. Figure 12 contains an outline
of three of the algorithms. In Algorithm 1-lev-dir every processor sends its boundary list to
every other processor. This is the only communication operation of the algorithm. After this
communication, every processor can determine the head and rank in image I for every edge
point on the boundary of its subimage. In Algorithm 2-lev-rc, the processors first perform an
all-to-all broadcast within every row, followed by an all-to-all broadcast within every column.
The third algorithm, Algorithm logp-lev-quad, merges subimages in a quad-tree like fashion;
i.e., at every iteration the boundary lists of four adjacent subimages are merged. Figure 13
shows the all-to-all patterns arising in the first two iterations of Algorithm logp-lev-quad on a
4 x 4 mesh. The processors communicating in the all-to-all broadcast in the second iteration
are linked with arrows of the same type. In each one of these three contour ranking algorithms,
every processor merges subimages at each iteration. At the same time, the number of processors
merging identical subimages, and thus performing identical computations, increases with every
iteration.

On a mesh architectures, Algorithm logp-lev-quad experiences the following communication
imbalance. The size of the boundary of the subimages, and thus the size of the lists sent be-
tween processors, increases in subsequent iterations. In initial phases, processors communicate

over short distances. As the algorithm proceeds, the communication distances and associated
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congestion increases. This is also evident from Figure 13. This imbalance is the motivation
for our fourth contour ranking algorithm, Algorithm logp-lev-bal. In Algorithm logp-lev-bal the
imbalance is reduced by performing a permutation that sends the boundary list from processor
P;; to processor Prcy(;) rev(j), Where rev(i) is the index obtained by applying the bit-reversal
to the binary expansion of i. The result of applying this permutation is that processors ini-
tially communicate over long distances. As the size of the subimages and thus the sizes of the

boundary lists increases, the distance between communicating processors and link congestion

decreases.
5.3 Predicted Performance and Experimental Results

We next use the C3-model to analyze the four contour ranking algorithm described in the
previous section. Clearly, the performance of each one of the algorithms depends on the size of
the boundary lists and is thus image-dependent. In order to analyze the algorithms, we need
to make assumptions about the input. We measure for every image the edge point density
which is defined as the fraction of all pixels that are edge points. We consider images with edge
point densities from 5 to 100%. We use synthetic images consisting of vertical or diagonal lines
through the entire image. The desired edge point density dictates the spacing of these lines.
Real images with the same edge point density will give the same prediced performance and very
similar experimental results.

We again use a 256-processor Intel Delta for our analysis. Figure 14 gives the communication
and computation units of the algorithms for an image consisting of diagonal lines with an edge
point density of 100%. The quantity B represents the size of the boundary list of subimage I; ;
assigned to processor P ;.

Figure 15(a) and (b) shows the predicted performance in terms of communication and
computation units in graphical form for four image sizes ranging from 256 x 256 to 2K X 2K.
Each image has an edge point density of 100%. The performance of the algorithms on a 256-
processor Intel Delta is shown in Figure 15(c) and (d). Overall, Algorithm logp-lev-quad gave
the best predicted and actual performance. We point out that each one of our algorithms
experiences roughly log p message set-up costs. In Algorithms 1-lev-dir and 2-lev-rc these set-

ups are experienced by the all-to-all broadcast (which is implemented using a binomial heap
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Algorithm Communication Units | Computation Units
1-lev-dir 8s + 38 + 3.33B 1.5B
2-lev-rc 8s+ 20+ 2.14B 0.84B
logp-lev-quad 8s+ 38+ 1.8B 0.1B
logp-lev-bal 10s + 58 + 0.89B 0.11B

Figure 14: Approximate number of units charged for contour ranking algorithms on a 256-
processor Intel Touchstone Delta with A = 10,1 = 512, and b = 16, assuming nonblocking sends
and receives and an edge density of 100%.

structure). In the quad-tree based algorithms, each of the log, p iterations experiences 2 set-
up costs. The execution times reported in Figure 15(c) and (d) were obtained by monitoring
one of the processors in the array. Since the edge density is uniform over the entire image,
each processor experiences same computation and communication load. Therefor, monitoring
a single processor not only gives a reasonable approximation of the overall performance, but
also allows us to measure separetly the time spent in communication and on local computation.
Comparison of the actual performance with the predicted performance for the algorithms reveals
a high-degree of correlation between the two.

We conclude this section with a brief discussion on how the algorithms behave under different
edge point densities. We considered edge point densities from 5 to 100%. The obtained results
give insight into the behavior of the algorithms when the sizes of the boundary lists change.
When increasing the edge point density in large images, we observed that the communication
time of Algorithm 1-lev-dir increases much sharper compared to the other algorithms. The
growth rate in the communication time for Algorithms logp-lev-quad and logp-lev-balis relatively
slow. Algorithm logp-lev-bal gave the best performance for large images with a high edge-point
density. This is attributed to the fact that for large, dense images the amount of data routed
during the merging steps is significant enough to cause congestion in the routing network.
Therefore, a data movement step before the actual merging in Algorithm logp-lev-bal pays off.
For images of size 2K x 2K, Algorithm logp-lev-bal outperforms logp-lev-quad for images with an
edge point density higher than 10%. Load balancing performs better by 10-15%. On the other

hand, for images of size 256 x 256, the load balancing does not even pay for images with an
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edge point density close to 100%, as is also evident from Figure 15(c) and (d). The analysis of

the actual performance on varying edge densities also conforms with the performance predicted

by the C3 model.

6 Conclusions

A computational model, the C3 model, has been proposed for developing and analyzing algo-
rithms on coarse-grained machines. The C® model allows evaluation of communication opera-
tions without a user having to specify fine scheduling details. Also, a metric has been defined
to estimate the arising link and processor congestion. Coarse-grained algorithms have been
developed for common communication operations and for a low-level vision problem solvable
through divide-and-conquer algorithms. The validation of the model has been discussed by
implementing the algorithms on the Intel Touchstone Delta and comparing the performance
results with the predicted performance. This initial validation is encouraging and it provides
insight into the interaction of various machine parameters and on their effect on the performance

of coarse-grained algorithms.
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