Query Indexing and Velocity Constrained Indexing: Scalable

Techniques for Continuous Queries on Moving Objects *

S. Prabhakar Y. Xia D. Kalashnikov W. G. Aref S. Hambrusch

Department of Computer Sciences
Purdue University
West Lafayette, Indiana 47907
U.S.A.

E-mail: {sunil,xia,dvk,aref,seh}@cs.purdue.edu

Keywords: Moving Objects, Spatio-Temporal Indexing, Continuous Queries, Query Indexing.

Abstract

Moving object environments are characterized by large numbers of moving objects and nu-
merous concurrent continuous queries over these objects. Efficient evaluation of these queries
in response to the movement of the objects is critical for supporting acceptable response times.
In such environments the traditional approach of building an index on the objects (data) suf-
fers from the need for frequent updates and thereby results in poor performance. In fact, a
brute force, no-index strategy yields better performance in many cases. Neither the traditional
approach, nor the brute force strategy achieve reasonable query processing times. This paper
develops novel techniques for the efficient and scalable evaluation of multiple continuous queries
on moving objects. Our solution leverages two complimentary techniques: Query Indezing and
Velocity Constrained Indexing (VCI). Query Indexing relies on i) incremental evaluation; ii)
reversing the role of queries and data; and iii) exploiting the relative locations of objects and
queries. VCI takes advantage of the maximum possible speed of objects in order to delay the
expensive operation of updating an index to reflect the movement of objects. In contrast to an
earlier technique [27] that requires exact knowledge about the movement of the objects, VCI
does not rely on such information. While Query Indexes outperforms VCI, it does not efficiently
handle the arrival of new queries. Velocity constrained indexing (VCI), on the other hand, is
unaffected by changes in queries. A combination of Query Indexing and Velocity-Constrained
Indexing enables the scalable execution of insertion and deletion of queries in addition to pro-
cessing ongoing queries. We also develop several optimizations and present a detailed experi-
mental evaluation of our techniques. The experimental results show that the proposed schemes
outperform the traditional approaches by almost two orders of magnitude.

*Work Supported by NSF CAREER Grant 1IS-9985019, NSF Grant 9988339-CCR, a Gift from Microsoft, and
the Purdue Research Foundation

1 Introduction

The combination of personal locator technologies [18, 32], global positioning systems [22, 31], and
wireless [10] and cellular telephone technologies enables new location-aware services, including loca-
tion and mobile commerce (L- and M-commerce). Current location-aware services allow proximity-
based queries including map viewing and navigation, driving directions, searches for hotels and
restaurants, and weather and traffic information. They include GPS based systems like Vindigo
and SnapTrack and cell-phone based systems like TruePosition and Cell-Loc.

These technologies are the foundation for pervasive location-aware environments and services.
Such services have the potential to improve the quality of life by adding location-awareness to
virtually all objects of interest such as humans, cars, laptops, eyeglasses, canes, desktops, pets,
wild animals, bicycles, and buildings. Applications can range from proximity-based queries on
non-mobile objects, locating lost or stolen objects, tracing small children, helping the visually
challenged to navigate, locate, and identify objects around them, and to automatically annotating
objects online in a video or a camera shot. Examples of such services are emerging for locating
persons [18] and managing emergency vehicles [20].

Our work assumes that objects report their current location to stationary servers. By com-
municating with these servers, objects can share data with each other and discover information
(including location) about specified and surrounding objects. Throughout the paper, the term
“object” refers to an object that (a) knows its own location and (b) can determine the locations of
other objects in the environment through the servers.

This paper develops novel techniques for the efficient and scalable evaluation of multiple con-
tinuous queries on moving objects. Our solution leverages two complimentary techniques: Query
Indexing and Velocity Constrained Indexing. Query Indexing gives almost two orders of magnitude
improvement over traditional techniques. It relies on i) incremental evaluation; ii) reversing the
role of queries and data; and iii) exploiting the relative locations of objects and queries. Velocity
constrained indexing (VCI) enables efficient handling of changes to queries. VCI allows an index
to be useful even when it does not accurately reflect the locations of objects that are indexed. It
relies upon the notion of maximum speeds of objects. Our model of object movement makes no
assumptions for query-indexing. For the case of VCI, we assume only that each object has a maxi-
mum velocity that it will not exceed. If necessary this value can be changed over time. We do not
assume that objects need to report and maintain a fixed speed and direction for any period of time
as in [27]. The velocity constrained index remains effective for large periods of time without the
need for any updates, independent of the actual movement of objects. Naturally, its effectiveness
drops over time and an infrequent update is necessary to counter this degradation. A combined
approach of these two techniques enables the scalable execution of insertion and deletion of queries
in addition to processing ongoing queries. We also develop several optimizations and present a
detailed experimental evaluation of our techniques. The experimental results demonstrate the su-
perior performance of our indexing methods as well as their robustness to variations in the model

parameters.

Our work distinguishes itself from related work in that it addresses the issues of scalable exe-
cution of concurrent continuous queries (as the numbers of mobile objects and queries grow). The
paper argues that the traditional query processing approaches where objects are indexed and queries
are posed to these indexes may not be the relevant paradigm in moving object environments. Due
to the large numbers of objects that move, the maintenance of indexes tends to be very expensive.
In fact, as our experiments demonstrate, these high costs make the indexes more inefficient than
simple scans over the entire data, even for 2-dimensional data.

The rest of this paper proceeds as follows. Related work is discussed in Section 2. Section 3
describes the traditional solution and our assumptions about the environment. Section 4 presents
the approach of “Queries as Data” and related optimizations. The alternative scheme of Velocity
Constrained Indexing is discussed in Section 5. Experimental evaluation of the proposed schemes

is presented in Section 6, and Section 7 concludes the paper.

2 Related Work

The growing importance of moving object environments is reflected in the recent body of work
addressing issues such as indexing, uncertainty management, broadcasting, and models for spatio-
temporal data. To the best of our knowledge no existing work addresses the timely execution of
multiple concurrent queries on a collection of moving objects as proposed in the following sections.
We do not make any assumption about the future positions of objects. It is also not necessary for
objects to move according to well behaved patterns as in [27]. In particular, the only constraint
imposed on objects in our model is that for Velocity Constrained Indexing (discussed in Section 5)
each object has a maximum speed at which it can travel (in any direction).

Indexing techniques for moving objects are being proposed in the literature, e.g., [8, 19] index
the histories, or trajectories, of the positions of moving objects, while [27] indexes the current and
anticipated future positions of the moving objects. In [17], trajectories are mapped to points in
a higher-dimensional space which are then indexed. In [27], objects are indexed in their native
environment with the index structure being parameterized with velocity vectors so that the index
can be viewed at future times. This is achieved by assuming that an object will remain at the same
speed and in the same direction until an update is received from the object.

Uncertainty in the positions of the objects is dealt with by controlling the update frequency [23,
35], where objects report their positions and velocity vectors when their actual positions deviate
from what they have previously reported by some threshold. Tayeb et. al. [30] use quadtrees [28]
to index the trajectories of one-dimensional moving points. Kollios [17] et. al. map moving objects
and their velocities into points and store the points in a kD-tree. Pfoser et. al. [25, 24] index the
past trajectories of moving objects that are presented as connected line segments. The problem
of answering a range query for a collection of moving objects is addressed in [3] through the use
of indexing schemes using external range trees. [34, 36] consider the management of collections
of moving points in the plane by describing the current and expected positions of each point in

the future. They address how often to update the locations of the points to balance the costs

of updates against imprecision in the point positions. Broadcast of data becomes an important
technique for scalable communication in the mobile environment. Efficient broadcast techniques
are proposed in [1, 2, 14, 15, 16, 13, 38]. Spatio-temporal database models to support moving

objects, spatio-temporal types and supporting operations have been developed in [11, 12].

3 Moving Object Environment

3.1 Pervasive Location-Aware Computing Environments

Figure 1 sketches a possible hierarchical architecture of a location-aware computing environment.
Location detection devices (e.g., GPS devices) provide the objects with their geographical locations.
Objects connect directly to regional servers. Regional servers can communicate with each other, as
well as with the repository servers. Data regarding past locations of objects can be archived at the
repository servers. We assume that (i) the regional servers and objects have low bandwidth and a
high cost per connection, and (ii) repository servers are interconnected by high bandwidth links.
This architecture is similar to that of current cellular phone architectures [29, 33]. For information
sent to the objects, we consider point-to-point communication as well as broadcasting. Broadcasting
allows a server to send data to a large number of “listening” objects [1, 2, 13, 14, 15, 38]. Key
factors in the design of the system are scalability with respect to large numbers of objects and the

efficient execution of queries.

ANARN AN

2 2

Repository ()
_
Server

Repository
Server

! ! Mobile Link

| N (possbly bidirectiondl) ! %)
§ y h \\ \\\ - /r
Ouae |0 X ,
Object "v | @ paa X
i '\ Down-link Q
\
Xy O
Figure 1: Illustrating a location-aware environment

GPS devices for applications such as navigation have been available for some time now. In

4

traditional applications, GPS devices tend to be passive i.e., they do not exchange any informa-
tion with other devices or systems. More recently, GPS devices are becoming active entities that
transmit and receive information that is used to affect processing. Examples of these new applica-
tions include vehicle tracking [20], identification of closest emergency vehicles in Chicago [20], and
Personal Locator Services [18]. Each of these examples represents commercial developments that
handle small scale applications. Another example of the importance of location information is the
emerging Enhanced 911 (E911) [37] standard. The standard seeks to provide wireless users the
same level of emergency 911 support as wireline callers. It relies on wireless service providers cal-
culating the approximate location of the cellular phone user. The availability of location-awareness
would further enhance the ability of emergency services to respond to a call e.g., using medical
history of the caller. Applications such as these, improvements in GPS technology, and reducing
cost, augur the advent of pervasive location-aware environments. The PLACE (Pervasive Location-
Aware Computing Environments) project at Purdue University is addressing the underlying issues
of query processing and data management for the moving object environments. We are currently
developing a prototype environment using mobile devices such as HP Jornadas and Compaq IPAQs.
Connectivity is achieved through wireless links as well as mobile telephone services. Experiments
to determine the characteristics of the mobile environment are being conducted. Shortly we will
start collecting actual object (primarily humans) movement data to provide valuable input for

experimentation in moving object environments.

3.2 Continuous Query Processing

Location-aware environments are characterized by large numbers of moving (and stationary) ob-
jects. These environments will be expected to provide several types of location centric services to
users. Examples of these services include: navigational services that aid the user in understanding
her environment as she travels; subscription services wherein a user identifies objects or regions
of interest and is continuously updated with information about them; and group management
services that enable the coordination and tracking of collections of objects or users. To support
these services it is necessary to execute efficiently several types of queries, including range queries,
nearest-neighbor queries, density queries, etc. An important requirement in location-aware envi-
ronments is the continuous evaluation of queries. Given these large numbers, and the need for a
timely response for continuous queries, efficient and scalable query execution is paramount.

In this paper we focus on range queries. The solutions need to be scalable in terms of the
number of total objects, degree of movement of objects, and the number of concurrent queries.
Range queries arise naturally and frequently in spatial applications such as a query that needs to
keep track of the number of people that have entered a building. Range queries can also be useful
as pre-processing tools for reducing the amount of data that other queries, such as nearest-neighbor

or density, need to process.

3.3 Model

In our model, objects are represented as points, and queries are expressed as rectangular spatial
regions. Therefore, given a collection of moving objects and a set of queries, the problem is to
identify which objects lie within (i.e., are relevant to) which queries. We assume that objects
report their new locations to the server periodically or when they have moved by a significant
distance. Updates from different objects arrive continuously and asynchronously at the server.
The location of each object is saved in a file on the server. Since all schemes incur the cost of
updating this file and the updating is done in between the evaluation intervals, we do not consider
the cost of updating this file as objects move. Objects are required to report only their location, not
the velocity. There is no constraint on the movement of objects except that the maximum possible
speed of each object is known and not exceeded (this is required only for Velocity Constrained
Indexing). We expect that the at any given time only a small fraction of the objects will move.
Ideally, each query should be re-evaluated as soon as an object moves. However, this is imprac-
tical and may not even be necessary from the user’s point of view. We therefore assume that the
continuous evaluation of queries takes place in a periodic fashion whereby we determine the set of
objects that are relevant to each continuous query at fixed time intervals. This interval, or time
step, is expected to be quite small (e.g. in [17] it is taken to be 1 minute) — our experiments are

conducted with a time interval of 50 seconds.

3.4 Limitations of Traditional Indexing

In this section we discuss the traditional approaches to answering queries for moving objects and
their limitations. Our approaches are presented in Sections 4 and 5.

A naive method to determine the answer to each query is to use a brute force algorithm that
compares each query with each object. This approach does not make use of the spatial location of
the objects or the queries. This is not likely to be a scalable solution given the large numbers of
moving objects and queries.

Since we are testing for spatial relationships, a natural alternative is to build a spatial index
on the objects. To determine which objects intersect each query, we execute the queries on this
index. All objects that intersect with a query are relevant to the query. The use of the spatial index
should avoid many unnecessary comparisons of queries against objects and thereby we expect this
approach to outperform the brute force approach. This is in agreement with conventional wisdom
on indexing. In order to evaluate the answers correctly, it is necessary to keep the index updated
with the latest positions of objects as they move. This represents a significant problem. Notice that
for the purpose of evaluating continuous queries, we are not interested in preserving the historical
data but rather only in maintaining the current snapshot. The historical record of movement is
maintained elsewhere such as at a repository server (see Figure 1).

In Section 6 we evaluate three alternatives for keeping the index updated. As we will see in
Section 6 each of these gives very poor performance. The poor performance of the traditional

approach of building an index on the data (i.e. the objects) can be traced to the following two

problems: i) whenever any object moves, it becomes necessary to re-execute all queries; and ii)
the cost of keeping the index updated is very high. In the next two sections we develop two novel

indexing schemes that overcome these limitations.

4 Query Indexing: Queries as Data

The traditional approach of using an index on object locations to efficiently process queries for
moving objects suffers from the need for constant updates to the index and re-evaluation of all
queries whenever any object moves. We propose an alternative that addresses these problems

based upon two key ideas:

e treating queries as data and the data as queries, and

e incremental evaluation of continuous queries.

We also develop the notion of safe regions that exploit the relative location of objects and queries
to further improve performance.

In treating the queries as data, we build a spatial index such as an R-tree on the queries instead
of the customary index that is built on the objects (i.e. data). We call this the Query-Index or
()-indez. To evaluate the intersection of objects and queries, we treat each object as a “query”
on the Q-index (i.e., we treat the moving objects as queries in the traditional sense). Exchanging
queries for data results in a situation where we execute a larger number of queries (one for each
object) on a smaller index (the Q-index), as compared to an index on the objects. This is not
necessarily advantageous by itself, however, since not all objects change their location at each time
step, we can avoid a large number of “queries” on the Q-index by incrementally maintaining the
result of the intersection of objects and queries.

Incremental evaluation is achieved as follows: upon creation of the Q-index, all objects are
processed on the Q-index to determine the initial result. Following this we incrementally adjust this
result by considering the movement of objects. At each evaluation time step, we process only those
objects that have moved since the last time step, and adjust their relevance to queries accordingly.
If most objects do not move during each time step, this can greatly reduce the number of times
the Q-index is accessed. For objects that move, the Q-index improves the search performance as
compared to a comparison against all queries.

Under the traditional indexing approach, at each time step, we would first need to update the
index on the objects (using one of the alternatives discussed above) and then evaluate each query
on the modified index. This is independent of the movement of objects. With the “Queries as
Data” or the Q-index approach, only the objects that have moved since the previous time step are
evaluated against the Q-index. Building an index on the queries avoids the high cost of keeping an
object index updated; incremental evaluation exploits the smaller numbers of objects that move in
a single time step to avoid repeating unnecessary comparisons. Upon the arrival of a new query, it is
necessary to compare the query with all the objects in order to initiate the incremental processing.

Deletion of queries is easily handled by ignoring those queries.

Further improvements in performance can be achieved by taking into account the relative loca-

tions of objects and queries. Next we present optimizations based upon this approach.

4.1 Safe Regions: Exploiting Query and Object Locations

Consider an object that is far away from any query. This object has to move by a large distance
before its relevance to any query changes. Let SafeDist be the shortest distance between object O
and a query boundary. Clearly, O has to move a distance of at least SafeDist before its relevance
with respect to any query changes. Thus we need not check the Q-index with O’s new location
as long as it has not moved by SafeDist. Similarly, we can define two other measures of “safe”

movement for each object:

e SafeSphere — a safe sphere (circle for two dimensions) around the current location. The radius

of this sphere is equal to the SafeDist discussed above.

o SafeRect — a safe maximal rectangle around the current location. Maximality can be defined

in terms of rectangle area, perimeter, etc.

SafeSphere
/
________ Moving
| 3 Q2 b Object
"""""""" [N
' [
[| X |
Q7 | . |
i | Sa_‘e_o_s‘_ ____________ 1. .. Q3
.............. -
|
]
“
Q6 ’ |
SafeRect |
- -
- : — o5
Y/ Q4 =
,,,,,,,,,,,,,,, .1 safeRect

Figure 2: Examples of Safe Regions

Figure 2 shows examples of each type of Safe Region. Note that it is not important whether an
object lies within or outside a query that contributes to its safe region. Points X and Y are examples
of each type of point: X is not contained within any query, whereas Y is contained in query Q1. The
two circles centered at X and Y are the SafeSphere regions for X and Y respectively, and the radii
of the two circles are their corresponding SafeDist values. Two examples of SafeRect are shown for
X. The SafeRect for Y is within Q4. Note that for X, other possibilities for SafeRect are possible.
With each approach, only objects that move out of their safe region need to be evaluated against
the Q-index. These measures identify ranges of movement for which an object’s matching does not
change and thus it need not be checked against the Q-index. This significantly reduces the number

of accesses to Q-index. Note that for the SafeDist technique, we need to keep track of the total

distance traveled since SafeDist was computed. Once an object has traveled more than SafeDist,
it needs to be evaluated against the Q-index until SafeDist is recomputed. On the other hand, for
the SafeSphere and SafeRect measures, an object could exit the safe region, and then re-enter it at
a later time. While the object is inside the safe region it need not be evaluated against Q-index.
While it is outside the safe region, it must be evaluated at each time step.

The safe region optimizations significantly reduce the need to test data points for relevance to
queries if they are far from any query boundaries and move slowly. Recall that each object reports
its location periodically or when it has moved by a significant distance since its last update. This
decision can be based upon safe region information sent to each object. Thus the object need not
report its position when it is within the safe region, thereby reducing communication and the need
for processing at the server. The effectiveness of these techniques in reducing the number of objects
that need to report their movement is studied in Section 6. Even though we do not perform any
re-computation of the safe regions in our experiments, we find that the safe region optimizations
are very effective. It should be noted that multiple safe regions can be combined to produce even
larger safe regions. By definition, there are no query boundaries in a safe region. Hence there can

be no query boundary in the union of the two safe regions.

Computing the Safe Regions. The Q-index can be used to efficiently compute each of the
safe regions. SafeDist is closely related to a nearest-neighbor query since it is the distance to
the nearest query boundary. A branch-and-bound algorithm similar to that proposed for nearest
neighbor queries in [26] is used. The [26] algorithm prunes the search based upon the distances to
queries and bounding boxes that have already been visited. Our SafeDist algorithm is different in
that the distance between an object and a query is always the shortest distance from the object to
a boundary of the query. Whereas in [26] this distance is zero if the object is contained within the
query!. To amortize the cost of SafeDist computation, we combine it with the evaluation of the
object on the Q-index, i.e., we execute a combined range and a modified nearest-neighbor query.
The modification is that the distance between an object and a query is taken to be the shortest
distance to any boundary even if the object is contained in the query (normally this distance
is taken to be zero for nearest-neighbor queries). The combined search executes both queries in
parallel thereby avoiding repeated retrieval of the same nodes. SafeSphere is simply a circle centered
at the current location of the object with a radius equal to SafeDist.

Given an object and a set of query rectangles, there exist various methods for determining safe
rectangles. The related problem of finding a largest empty rectangle has been studied extensively
and solutions vary from O(n) to O(nlog®n) time, (where n is the number of query rectangles)
depending on restrictions on the regions [4, 5, 6, 21]. For our application, finding the “best”, or
maximal rectangle is not important for correctness (any empty rectangle is useful), we use a simple
O(n?) time implementation for computing a safe rectangle. The implementation allows adaptations
leading to approximations for the largest empty rectangle. The algorithm for finding the SafeRect
for object O is as follows:

'Please note that in [26] the role of objects and queries is not reversed as it is here.

1. If object O is contained in a query, choose one such query rectangle and determine the relevant
intersecting or contained query rectangles. If object O is not contained in a query rectangle,

we consider all query rectangles as relevant. Let £ be the set of relevant query rectangles.

2. Take object O as the origin and determine which relevant rectangles lie in which of the four
induced quadrants. For each quadrant, sort the corner vertices of query rectangles that fall

into this quadrant. For each quadrant determine the dominating points.

3. The dominating points create a staircase for each quadrant. Use the staircases to find the
empty rectangle with the maximum area (using the property that a largest empty rectangle

touches at least one corner of the four staircases).

We investigated several variations of this algorithm for safe rectangle generation. Variations
include determining a largest rectangle using only a subset of the query rectangles to determine
relevant rectangles and limiting the number of combinations of corner points considered in the
staircases. In order to determine a good subset of query rectangles we use the available SafeDist-
value in a dynamic way. The experimental work for safe rectangle computations are based on
generating safe rectangles which consider only query rectangles in a region that is ten times the
size of SafeDist.

5 Velocity Constrained Indexing

In this section we present a second technique that avoids the two problems of traditional object
indexing (viz. the high cost of keeping an object index updated as objects move and the need to
reevaluate all queries whenever an object moves). The key idea is to avoid the need for continuous
updates to an index on moving objects by relying on the notion of a maximum speed for each
object. Under this model an object will never move faster than its maximum speed. We term this

approach Velocity Constrained Indexing or VCIL.

k

‘ Vmax, 9

‘ Data file ‘

Figure 3: Example of Velocity Constrained Index (VCI)

A VCI is a regular R-tree based index on moving objects with an additional field in each node:

Umaz- Lhis field stores the maximum allowed speed over all objects covered by that node in the

10

index. The vp,4, entry for an internal node is simply the maximum of the v,,,, entries of its
children. The vp,q; entry for a leaf node is the maximum allowed speed among its children. Figure
3 shows an example of a VCI. The vy, entry in each node is maintained in a manner similar to the
MBRs of each entry in the node, except that there is only one vy,4, entry per node as compared to
an MBR per entry of the node. When a node is split, the v,,4, for each of the new nodes is copied
from the original node.

Consider a VCI that is constructed at time ty. At this time it accurately reflects the locations
of all objects. At a later time ¢, the same index does not accurately capture the correct locations
of points since they may have moved arbitrarily. Normally the index needs to be updated to be
useful. However, the v,,,, fields enable us to use this old index without updating it. We can safely
assert that no point will have moved by a distance larger than R = vy, (t — o). If we expand each
MBR by this amount in all directions, the expanded MBRs will correctly enclose all underlying
objects. Therefore, in order to process a query at time ¢, we can use the VCI created at time
without being updated, by simply comparing the query with expanded version of the MBRs saved
in VCI. At the leaf level, each point object is replaced by a square region of side 2R for comparison
with the query rectangle?.

An example of the use of the VCI is shown in Figure 4(a) which shows how each of the MBRs
in the same index node are expanded and compared with the query. The expanded MBR captures
the worst-case possibility that an object that was at the boundary of the MBR at tg has moved out
of the MBR region by the largest possible distance. Since we are storing a single v,,4; value for all
entries in the node, we expand each MBR by the same distance, R = Upqz(t — to). If the expanded
MBR intersects with the query the corresponding child is searched. Thus to process a node we
need to expand all the MBRs stored in the node (except those that intersect without expansion,
e.g. MBRj3 in Figure 4). Alternatively, we could perform a single expansion of the query by R and
compare it with the unexpanded MBRs. An MBR will intersect with the expanded query if and
only if the same MBR after expansion intersects with the original query. Figure 4 (b) shows the
earlier example with query expansion. Expanding the query once per node saves some unnecessary
computation.

The set of objects found to be in the range of the query based upon an old VCI is a superset,
S’ of the exact set of objects that currently are in the query’s range. Clearly, there can be no false
dismissals in this approach. In order to eliminate the false positives, it is necessary to determine
the current positions of all objects in S’. This can be achieved through a post-processing step. The
current location of the object is retrieved from disk and compared with the query to determine the
current matching. Note that it is not always necessary to determine the current location of each
object that falls within the expanded query. From the position recorded in the leaf entry for an
object, it can move by at most R. Thus its current location may be anywhere within a circle of
radius R centered at the position recorded in the leaf. If this circle is entirely contained within the

unexpanded query, there is no need to post-process this object for that query. Object X in Figure

2Note that it should actually be replaced by a circle, but the rectangle is easier to handle.

11

1
: MBR,
) e—R— MBR, R
Expanded - : . Expanded
MBRs T N Query
ﬂi Query
~~~~~~~~~~~~ Jroooeeeee
2 s
! ]
R} MBR, Ri MBR,
: : MBR, MBR,
[ ‘—R— L R—
o «—R " R‘»z
............. Lo ®
- 01
Query 1

(a) (b)

Figure 4: Query Processing with Velocity Constrained Index (VCI)

4(b) is an example of such a point.

It should be noted that although the expansion of MBRs in VCI and the time-evolving MBRs
proposed in [27] are similar techniques, the two are quite different in terms of indexing of moving
objects. A key difference between the two is the model of object movement. Saltenis et al. [27]
assume that objects report their movement in terms of velocities (i.e. an object will move with fized
speed in a fized direction for a period of time). In our model the only assumption is that an object
cannot travel faster than a certain known velocity. In fact for our model the actual movement of
objects is unimportant (as long as the maximum velocity is not exceeded). The time varying MBRs
[27] exactly enclose the points as they move, whereas VCI pessimistically enlarges the MBRs to
guarantee enclosure of the underlying points. Thus VCI requires no updates to the index as objects
move, but post-processing is necessary to take into account actual object movement. The actual
movement of objects has no impact on VCI or the cost of post-processing. Of course, as time passes

the amount of expansion increases and more post-processing is required.

Clustered VCI. To avoid performing an I/O operation for each object that matches each ex-
panded query, it is important to handle the post-processing carefully. We can begin by first first
pre-processing all the queries on the index to identify the set of objects that need to be retrieved
for any query. These objects are then retrieved only once and checked against all queries. This
eliminates the need to retrieve the same object more than once. We could still retrieve the same
page containing several objects multiple times. To avoid multiple retrievals of a page, the objects
to be retrieved can first be sorted on page number. Alternatively, we can build a clustered index.
Clustering may reduce the total number of pages to be retrieved. We use the clustering option: i.e.
the order of objects in the file storing their locations is organized according to the order of entries
in the leaves of the VCI. Clustering can be achieved efficiently following creation of the index. A
depth first traversal of the index is made and each object is copied from the original location file

to a new file in the sequential order and the index pointer is appropriately adjusted to point to the

12



newly created file. By default the index is not clustered. As is seen in Section 6, clustering the

index improves the performance by roughly a factor of 3.

Refresh and Rebuild. The amount of expansion needed during query evaluation depends upon
two factors: the maximum speed v,,4; Of the node, and the time that has elapsed since the index
was created, (t—tp). Thus over time the MBRs get larger, encompassing more and more dead space,
and may not be minimal. Consequently, as the index gets older its quality gets poorer. Therefore,
periodically, it is necessary to rebuild the index. This essentially resets the creation time, and also
the new index is better organized to reflect the changed positions of the objects. Rebuilding is an
expensive operation and cannot be performed too often. A cheaper alternative to rebuilding the
index is to refresh it. Refreshing simply updates the locations of objects to the current values and
adjusts the MBRs so that they are minimal. Following refresh the index can be treated as though
it has been rebuilt.

Refreshing can be achieved efficiently by performing a depth first traversal of the index. For
each entry in a leaf node the latest location of the object is retrieved (sequential I/O if the index is
clustered). The new location is recorded in the leaf page entry. When all the entries in a leaf node
are updated, we compute the MBR for the node and record it in the parent node. For directory
nodes when all MBRs of its children have been adjusted, we compute the overall MBR. for the node
and record it in the parent. This is very efficient with the depth first traversal. Although refresh
is more efficient than a rebuild, it suffers from not altering the structure of the index — it retains
the earlier structure. If points have moved significantly, they may better fit under other nodes in
the index. Thus there is a trade-off between the speed of refresh and the quality of the index. An
effective solution is to apply several refreshes followed by a less frequent rebuild. Experimentally,

we found that refreshing works very well.

6 Experimental Evaluation

In this section we present the performance of the new indexing techniques and compare them to ex-
isting techniques. The experiments reported are for two-dimensional data, however, the techniques
are not limited to two dimensions. The various indexing techniques were implemented as R*-trees
[9] and tested on synthetic data. The dataset used consists of 100,000 objects composed of a col-
lection of 5 normal distributions each with 20,000 objects. The centers for the normal distribution
are uniformly distributed, and the standard deviation is 0.05 (the points are all in the unit square).
The queries are also assumed to follow the same distribution but with a standard deviation of 0.1
or 1.0. The total number of queries is varied between 1 and 10,000 in our experimentation. Each
query is a square of side 0.01. Other experiments with different query sizes were also conducted
but since the results are found to be insensitive to the query size, they are not presented. More
important than query size is the total number of objects that are covered by the queries and the
number of queries.

The maximum velocities of objects follow a Zipf distribution with an overall maximum value of

13



Vimaz- For most experiments V., was set to 0.00007 — if we assume that the data space represents
a square of size 1000 miles (as in [17]), this corresponds to an overall maximum velocity of 250 miles
an hour. In each experiment, we fix the fraction of objects, m, that move at each time step. This
parameter was varied between 10 and 100,000. The time step is taken to be 50 seconds. At each
time step, we randomly select m objects and for each object, we move it with a velocity between
0 and the maximum velocity of the object in a random direction. The page size was set to 2048
bytes for each experiment. As is customary, we use the number of I/O requests as a metric for
performance. The top two levels of each index were assumed to be in memory and are not counted

towards the I/O cost. The various parameters used are summarized in Table 1.

H Parameter ‘ Meaning ‘ Values H
N Number of Objects 100,000
m Number of objects that move at each time step | 100 — 100,000
q Number of queries 110,000
Vinaz Overall maximum speed for any object 125mph, 250mph, 500mph

Table 1: Parameters used in the experiments

6.1 Traditional Schemes

We begin with an evaluation of Brute Force and traditional indexing. Updating the index to reflect

the movement of objects can be achieved using several techniques:

1. Insert/Delete: each object that moves is first deleted and then re-inserted into the index with

its new location.
2. Reconstruct: the entire index structure can be recomputed at each time step.

3. Modify: the positions of the objects that move during each time step are updated in the

index.

The modify approach is similar to the technique for handling movement of points proposed by
Saltenis et. al. [27] wherein the bounding boxes of the nodes are expanded to accommodate the
past, current, and possibly future positions of objects. The modify approach differs from these
because it does not save past or future positions in the index which is acceptable since the purpose
of this index is primarily to answer continuous queries based upon the current locations of the
objects. The approach of [27] assumes that objects move in a straight line with a fixed speed
most of the time. Whenever the object’s speed or velocity changes an update is sent. The index
is built using this speed information. Their experimental results are based upon objects moving
between cities which are assumed to be connected by straight roads and the objects moves with
a very regular behavior — for the first sixth of a route they accelerate at a constant rate to one
of three maximum velocities which they maintain until the last sixth of the route at which point

they decelerate. Our model for object movement is more general and does not require that object

14



maintain a given velocity for any point in time. Under this model, the approach of [27] is not
applicable.

Table 2 shows the relative performance of these schemes in terms of number of I/O operations
performed. The performance of these approaches does not vary over time, hence we simply report
a single value for each combination of m and q. We assume that the top two levels of the index are
memory resident. For these experiments that roughly corresponds to about 21 pages in memory.
The I/O numbers for Brute Force are evaluated assuming efficient use of 21 buffers: 20 buffers are

assumed to hold blocks of queries.

H m ‘ q ‘ Recompute ‘ Insert/Delete ‘ Modify ‘ Brute Force H
1,000 | 1,000 211,817 5,865 3,806 1,010
1,000 | 10,000 | 228,308 22,356 20,298 5,100
10,000 | 1,000 211,817 43,413 22,581 1,010
10,000 | 10,000 | 228,308 59,904 39,072 5,100

Table 2: Performance of traditional techniques.

From the table it is clear that the Brute Force approach gives the best performance in all cases.
This is largely due to the fact that this approach does not need to maintain any structures as
objects move. We assume that there are enough buffers to hold only the first two levels of the other
indexes when computing brute force. The Recompute approach is clearly the poorest since it is too
expensive to build the index at each time step. The Insert/Delete scheme incurs roughly double
the I/O cost that Modify incurs to update the index while their query cost is the same.

We point out that while the Brute Force approach has the lowest I/O cost, it may not be the
best choice. The reason is that unlike the other schemes which employ an index on the objects to
significantly reduce the number of comparisons needed, Brute Force must compare each object with
each query. Thus it is typically going to incur almost three orders of magnitude more comparisons
than the others! An earlier experiment to measure the total time required for Modify and Brute
Force showed that their performance is very comparable despite the low I/O cost of Brute Force

[7]. Except for this special case, the I/O cost is a good measure of performance.

6.2 Safe Region Optimizations

We now study the relative performance of the safe region optimizations. For each scheme we plot
the Reduction Rate: the fraction of moved objects that are within their safe region. These objects
do not need to report their location. We study the effectiveness of each measure as time passes.
Figures 5 through 8 show the results for various combinations of m and q. For example, Figure
6 shows the reduction rates for 10% objects moving at each time step, and 1000 queries. Each
of the safe regions is computed at time 0. As long as the object is within its safe region it does
not report its new location. As expected, the fraction of objects that remain within their safe
regions drops as time passes (shown along the z-axis). For example after 100 time steps 95% of

the objects are still within their SafeRect and need not report their positions, whereas 83% of the

15



objects are within their SafeDist. Thus SafeRect is more effective in reducing the need for objects
reporting their locations. An important point to note is that even though we do not re-compute
the safe regions in our experiments, we find that the safe region optimizations remain very effective
for large durations. This is important since the cost of computing these measures is high. The
cost of computing SafeDist and SafeSphere is on the order of 13 I/O operations per object for the
case of 10,000 queries. The cost of computing SafeRect is significantly higher — around 52 1/Os
per object. These high costs do not adversely affect the gains from these optimizations since the
re-computations can be done infrequently.

# of objs: 100K, moving: 1K, query: 1K
T T T T T

1 T
G- BB BeggeBeg gy B g g B g g B g
0.8
o 0.6 SafeDist -— 4
S SafeSphere -+--
c SafeRect -B--
k=]
B
S
o
Q
o 04
0.2
0 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Time

Figure 5: Safe Region Optimizations with 1% moving and 1% queries

# of objs: 100K, moving: 10K query: 1K
T T T T

0.8

0.6 -

SafeDist -—
SafeSphere -+--
SafeRect -8--

Reduction Rate

0.4

0.2

0 I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Time

Figure 6: Safe Region Optimizations with 10% moving and 1% queries

A common trend across all graphs is that the SafeRect measure is most effective. SafeSphere
is never worse in performance than SafeDist. This is not surprising since SafeSphere augments
SafeDist with the center information to provide a safe region as opposed to an absolute measure of

movement. Thus under SafeSphere an object can re-enter the safe region whereas an object that

16



# of objs: 100K, moving: 1K, query: 10K
T T T T T

T
SafeDist <—
SafeSphere —+-
SafeRect -8--

08F oo g

0.6

Reduction Rate

04

0.2

0 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
Time

Figure 7: Safe Region Optimizations with 1% moving and 10% queries

# of objs: 100K, moving: 10K, query: 10K
T T T T T

T
SafeDist <—
SafeSphere —+-
SafeRect -8--

08

TrEeg
B
=R
=

0.6

Reduction Rate

04

0.2

0 100 200 300 400 500 600 700 800 900 1000
Figure 8: Safe Region Optimizations with 10% moving and 10% queries

has moved by SafeDist must always be tested against Q-index until SafeDist is re-computed. To
see why SafeRect outperforms SafeSphere, consider that the SafeSphere pessimistically limits the
region of safety in all directions by the shortest distance from the object to a query boundary.
On the other hand, SafeRect selects four distances, one in each direction, to the nearest query

3. This is especially the

boundary. Thus it is more likely to extend further than the SafeSphere
case when the number of queries gets very large, as is seen from Figures 7 and 8 where SafeRect
performs significantly better than the other two optimizations as we go from 1000 to 10000 queries.
The optimizations remain effective even when the number of moving objects is increased ten-fold
to 10,000, as is seen from the similarity between Figure 5 and Figure 6 (also between Figure 7 and

Figure 8).

31t should be noted that SafeRect can be more constraining than SafeSphere in one or more directions.

17



6.3 Incremental Evaluation and the Q-index Approach

We now compare the performance of the Q-index approach with the traditional approaches. Let
us first assume that there is enough memory available to keep Q-index entirely memory resident.
Under this assumption at each time step, we simply need to read in the positions of only those
objects that have moved since the previous evaluation. A separate file containing only these points
can be easily generated on the server during the period between evaluations. Thus the I/O cost of
the Q-index approach is simply given by the number of pages that make up this file. The safe region
optimizations further reduce the need for I/O by effectively reducing the number of objects that
report their updates. Figures 9 through 11 show the performance of the various schemes. We do

not present the traditional schemes due to the performance being almost two orders of magnitude

worse (c.f. Table 2).

120

100

80

1/0 cost

40 |

20

Figure 9: Performance of the Q-index techniques with 10% moving and 1% queries

24 |
2+
20

18

1/0 Cost

12
10
8k

6|

Figure 10: Performance of the Q-index techniques with 1% moving and 1% queries

0
0

# of objs: 100K, moving: 10K, query: 1K
T T T T T

60

SafeDist =—
SafeSphere -+--

SafeRect -8--

Q-index -x

g —
B S et St + 4+t

e BB

JY: T
B L Rlc = A A 8
[ S

100 200 300 400 500 600 700 800 900 1000
Time

# of objs: 100K, moving: 1K, query: 1K
T T T

16

14

T T T
Maxdist <—

MaxSphere —+-

MaxRect -8--
Q-index x|

T R T R C s o PN DR DR TN R R R R

0

I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000
Time

18



112

# of objs: 100K, moving: 1K query: 10K
T T T T T

T
SafeDist <—

SafeSphere —+-
SafeRect -8--
Q-index -

110

108 m.o.g .8 O b

106 1

1/0 cost

104 B

102

100

0 100 200 300 400 500 600 700 800 900 1000
Time
Figure 11: Performance of the Q-index techniques with 1% moving and 10% queries with memory-

resident Q-index

In Figure 9 the results with 1000 queries and 10,000 objects moving at each time step are
shown. The Q-index approach requires 110 pages of I/O at each time step to retrieve the new
locations of the moved objects and process them against the memory-resident Q-index. It should
be pointed out that this is actually sequential I/O. This is a significant reduction from the I/O cost
of the traditional approaches as shown in Table 2 representing more than an order of magnitude
improvement. The optimizations further reduce the I/O cost by almost another order of magnitude.
Of course, this reduction reduces over time but not significantly even for as many as 1000 time
steps.

For smaller numbers of moving objects, the Q-index needs to perform proportionately smaller
numbers of I/O operations. This can be seen from Figure 10 where only 20 I/Os are needed at
each time step for Q-index. As the number of objects that move at each time step in increased, the
Q-index approach needs to perform increased I/O until eventually a sequential scan of the entire
data file is required when virtually every object moves in each time step. Thus the approach scales
well with the movement of objects, gracefully degrading to a sequential scan.

The above experiments were conducted with 1000 concurrent queries. If the number of queries
is smaller, Q-index will fit in memory and the I/O costs will be largely unchanged. However, for
larger numbers of queries it is possible that the entire index does not fit in main memory, possibly
resulting in page I/O for each object that is queried. If the number of objects that need to be
queried against the Q-index is large, this may significantly increase the amount of I/O. Figure
12 shows the performance of 10,000 queries with 10,000 objects moving at each time step under
the assumption that only top two levels of Q-index are in memory. In comparison to Figure 11,
which represents the assumption that the index is memory-resident, index I/O exacts a high price.
It should be pointed out, however, that even with this very large increase in I/O, the Q-index
approach is still superior to the traditional approaches. For example, the I/O cost of Modify with
the two settings of m=1,000, and ¢=10,000 is 20,298, and that of Brute Force is 5,100.

19



2000

# of objs: 100K, moving: 1K, query: 10K
T T T T T

R - O S et x
1800 q

1600 1

1400 - ¢

1200 SafeDist =—
% SafeSphere -+--
8 SafeRect -8--
O 1000 |- Qindex -x 4
e} Incremental Brute Force -~
800 4
600 - 4
B, b BB gl BB B
400 @@ rB,»'E g8 N -8 P ]

200 Bl

| | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
Time

Figure 12: Performance of Q-index techniques with 1% moving and 10% queries

If we consider only I/O for Brute Force, an incremental version can outperform the Q-index
based approach if the Q-index does not fit in memory. Consider the above case with 10,000 queries
and 1000 objects moving at each time step. This corresponds to 100 pages for queries and 10 pages
for objects that move at each time. If we assume that B + 1 buffers are available, then brute force
can evaluate all queries with [132]10 I/O operations. With as few as 21 buffers, this requires only
50 I/Os as compared to over 1800 for Q-index! However, as pointed out earlier, the Brute Force
approach pays a high computation price that offsets the reduced I/0O. To validate this claim, we
conducted an experiment where we measured the total time taken (in seconds) by Brute Force and
the other proposed approaches. The results are shown in Table 3 for two sets of values of m and
q. We see that although Brute Force would have only a fraction of the I/O operations required
by the others, it is actually slower overall. We again point out that this anomaly of I/O time not
translating to overall performing happens only for Brute Force due to its inordinately large numbers

of comparisons.

H m ‘ q ‘ Brute Force ‘ Q-index ‘ SafeSphere ‘ SafeRect H
1000 | 10,000 3.6s 1.7s 0.9s 0.5s
10,000 | 10,000 37s 3.1s 1.3s 1.1s

Table 3: Impact of CPU cost

Impact of Velocity From the above experiments we find that the incremental Q-index approach
and optimizations scale well with variations in the number of moving objects and queries. To study
the impact of the degree of movement of the objects, we conducted two experiments where we
altered the speed distributions. Figure 13 shows the performance with the maximum allowable
speed for any object, Vj,4z, reduced by a factor of two. The results with a V., corresponding

to 500 miles per hour is very similar except that the optimizations are a little less effective. The

20



relative performance of the newly proposed schemes is unaffected by these changes in the allowable
speeds of objects. We see only a slight change in the effectiveness of the optimizations. Once again,

we find that the new schemes are fairly robust to variations.

# of objs: 100K, moving: 10K, query: 1K
120 T T T T T

100 SafeDist =— o

SafeSphere -+--
SafeRect -8--
Q-index -

80 B

60 B

1/0 Cost

40 B

N = s e B L St S et
20 B

e T R B 2 BERtl = A C Sl L I L A B----@---- @ G-

| | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
Time

Figure 13: Q-index techniques with 10% moving and 1% queries and V4, =125mph

6.4 Velocity Constrained Indexing

Next we discuss the performance of the Velocity Constrained Indexing (VCI) technique. There
are two components of the cost for VCI: i) pre-processing to evaluate the expanded queries on
VCI; and ii) post-processing to eliminate false positives. Since the VCI approach is unaffected
by the actual number of objects that move at each time step (i.e., m), all objects were moved at
each time step. Figure 14(a) shows the performance of VCI for 100,000 objects moving at each
time instant, and 100 queries. The pre-processing cost increases with time since the queries get
larger due to greater expansion resulting in more parallel path searches on the VCI. Similarly,
post-processing cost increases with time since more and more false positives are likely to be found
with increased query expansions. The graph shows the post-processing cost and the total cost as
time since creation of VCI. The cost of a sequential scan of the entire object file is also shown.
The total cost approaches that of a sequential scan after about 150 time steps, at which point
the VCI is not effective — it would be more efficient to scan the file instead of using the index.
Figure 14(b) shows the improvement due to clustering. There is a very significant improvement in
post-processing cost resulting in about 400 fewer I/O operation at each time step. Thus clustering

extends the utility of the VCI from about 150 time steps to over 400 time steps.

Refresh and Rebuild. Figure 15 shows the impact of applying a refresh to the VCI. The refresh
helps reduce both the pre- and post-processing costs. The pre-processing cost is reduced since the
MBRs better fit the underlying data and the clock for query expansion is reset. This improves

the quality of the index resulting in faster query processing. The post-processing cost is reduced

21



# of objs: 100K, moving: 100K, 100 queries
1800 T T T T T

# of objs: 100K, moving: 100K, 100 queries
T T T T T

Sequential Scan —
Postprocessing
Total

1600 [ B
1400 |-

1200 [

1000

1800

Sequential Scan —
Clustered,Postprocessing ----
Cl

1600 - ustered, Total -

1400 |-
1200 [

1000

Page /0

800

600 [/ -
400

200 i

Page /0

800
600
400 -

2000

1 1 1 1 1
250 300 350 400 450
Time

(a)

L L L
100 150 200

500 0

L L
400 450 500

Figure 14: Performance of Velocity Constrained Indexing (a) No Clustering; (b) With Clustering

since there will be fewer false positives as a result of a “tighter” index. The overall cost is reduced

by almost 600 I/O operations immediately following the refresh. Over time it again degrades and
another refresh is applied, etc. The refresh period can be adjusted as necessary. In this experiment,
the refresh was performed to keep the total cost below that of a sequential scan. The application of
a rebuild has a very similar effect to that of a refresh. The difference would show up only for very
large time intervals when objects have moved so much that the old VCI organization is inefficient.

The effect of rebuilding would be very similar to that of running the test again from time step 0,

hence we do not consider it here.

# of objs: 100K, moving: 100K, 100 queries
T T T T

4500
4000 | Sequential Scan —
Refresh, Post ----
Refresh, Total -----
L Postprocessing
3500 Total -—-
3000
% 2500
<]
O
Q
- 2000
1500
1000 ;
e
500 i
T
o L . o
0 200 400

1
1200 1400

Figure 15: Impact of Refresh on Velocity Constrained Indexing

Sensitivity to parameters.

The VCI approach is not affected by the actual movement of objects

(other than through the maximum speeds). Thus the costs would not change even if all the objects
were moving at each time instant! On the other hand, the VCI approach is very sensitive to the

22



number of queries. The above graphs are for only 100 queries. If the number of queries is increased
to 1000, we find that the pre-processing cost increases proportionately, as does the post-processing
cost. Very soon after creation of the VCI its performance degrades to worse than a sequential scan
forcing frequent refreshing. This impacts the performance and renders the scheme unusable. Thus
V(I is a reasonable approach when the queries cover a small number of objects. With 10 queries,
we find that the graph scales down roughly linearly too e.g. for a single query the post-processing
and total costs are 6, and 17 I/Os respectively. To study the impact of denser distributions of
queries, we repeated the above tests for the VCI approach with a query set having one-tenth the
standard distribution of the other tests (viz. 0.1). The results are shown in Figure 16. The relative
performance of the graphs is very similar to that seen with a broader distribution, except that the
degradation towards a sequential scan occurs much faster. This is expected since the queries now

cover more objects on the average.

# of objs: 100K, moving: 100K, 100 queries
2500 T T T T T

Sequential Scan ——
Refresh, Postprocessing -----
Refresh, Total -----
Postprocessing 7
2000 Total -~ o B

1500 |- 1

1/0 Cost

1000 F - 1

500 H q

I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
Time

Figure 16: Performance of Velocity Constrained Indexing with query std = 0.1

The maximum speed of objects is clearly an important parameter for the VCI approach. To
study the impact of V4, on performance we conducted several experiments with different values
of Viuaz- The results resemble very closely those obtained earlier for VCI. The major impact of
changes in maximum speed is that the time scale get stretched (contracted) if V., is reduced
(increased). The stretching is linearly related to the changes in speed. Other than this difference,
the graphs are very similar. This is not surprising because the important factor in determining the
performance of VCI is the amount of expansion that a query experiences: R = Upqz(t — to). With

double the speed, we need half the time difference to achieve the same expansion.

Comparison to Q-index. Our experimental work indicates that the Q-index approach out-
performs the VCI approach. For even a hundred queries, VCI incurs between 280 and 880 I/0O
operations (Figure 14). For larger numbers of queries, it will certainly not incur any less since
each extra query will add to the query processing cost as well as potentially generate new objects

that need to be post-processed. In contrast, for 1000 queries, Q-index needs 110 I/Os without safe

23



region optimizations, and only about 20 I/Os with the SafeRect optimization. A positive aspect
of VCI is that it is insensitive to variations in the number of moving objects, m. Even if all the
objects move, the Q-index approach * will incur a sequential scan. Thus it is possible that for very
few queries and very large numbers of objects moving at each time instant, VCI could outperform
Q-index, however this is not very practical.

The key advantage (and also the motivation for developing) Velocity Constrained Indexing is
its ability to handle arbitrary changes to the set of continuous queries. The Q-index approach is
forced to make a sequential scan of the entire set of objects for each newly arriving query (although

queries that arrive within a single time step can be handled with a single scan).

6.5 Combined Indexing Scheme

The results show that query indexing and safe region optimizations significantly outperform the
traditional indexing approaches and also the VCI approach. These improvements in performance
are achieved by eliminating the need to evaluate all objects at each time step through incremental
evaluation. Thus they perform well when there is little change in the queries being evaluated. The
deletion of queries can be easily handled simply by ignoring the deletion until the query can be
removed from the Q-index. The deleted query may be unnecessarily reducing the safe region for
some objects, but this does not lead to incorrect processing and the correct safe regions can be
recomputed in a lazy manner without a significant impact on the overall costs.

The arrival of new queries, however, is expensive under the query indexing approach as each
new query must initially be compared to every object. Therefore a sequential scan of the entire
object file is needed at each time step that a new query is received. Furthermore, a new query
potentially invalidates the safe regions rendering the optimizations ineffective until the safe regions
are recomputed. The VCI approach, on the other hand, is unaffected by the arrival of new queries.
Therefore to achieve scalability under the insertion and deletion of queries we propose a combined
scheme. Under this scheme, both a Q-Index and a Velocity Constrained Index are maintained.
Continuous queries are evaluated incrementally using the Q-index and the SafeRect optimization.
The Velocity Constrained Index is periodically refreshed, and less periodically rebuilt (e.g. when
the refresh is ineffective in reducing the cost). Upon the arrival of a new query, it is first evaluated
using the VCI to determine its initial result. The result in then updated in an incremental fashion
using the Q-index techniques along with the rest of the queries. As long as not too many new
queries arrive at a given time (e.g. less than 10 in each time step), this solution offers scalable

performance that is orders of magnitude better than the traditional approaches.

4 Assuming there is enough memory to hold the queries — which is also assumed by the VCI approach since it only
handles small numbers of queries.

24



7 Conclusion

Moving object environments are characterized by large numbers of moving objects and concurrent
active queries over these objects. Efficient continuous evaluation of these queries in response to
the movement of the objects is critical for supporting acceptable response times. We showed that
the traditional approach of building an index on the objects (data) can result in poor performance.
In fact, a brute force, no index strategy gives better performance in many cases. Neither the
traditional approach, nor the brute force strategy achieve reasonable performance.

We presented two novel indexing techniques for scalable execution: Query Indexing and Velocity
Constrained Indexing (VCI). Our experimental results demonstrated that query indexing achieves
very significant improvement over the traditional approaches (as much as two orders of magnitude)
but does not efficiently handle the arrival of new queries. Although the VCI approach gives good
performance only for small numbers of queries it is unaffected by changes in queries and actual
object movement. Thus we see that the two techniques complement each other enabling a combined
solution that efficiently handles not only ongoing queries but also dynamically inserted queries. The
experiments also demonstrated the robustness of the new techniques to variations in the parameters.
The combined schemes therefore achieve superior performance to existing solutions for the efficient

and scalable evaluation of continuous queries over moving objects.

References

[1] S. Acharya, M. J. Franklin, and S. Zdonik. Disseminating updates on broadcast disks. In
T. M. Vijayaraman et al., editors, Proceedings of the twenty-second international Conference
on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 354-365,
Los Altos, CA 94022, USA, 1996. Morgan Kaufmann Publishers.

[2] Swarup Acharya, Rafael Alonso, Michael J. Franklin, and Stanley B. Zdonik. Broadcast disks:
Data management for asymmetric communications environments. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data, pages 199-210, 22-25 May
1995.

[3] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In Proc. 2000 ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Dallas,
Texas, May 2000.

[4] A. Aggarwal and S. Suri. Fast algorithms for computing the largest empty rectangle. In
Proceedings of the 3rd Symposium on Computational Geometry, pages 278-290, 1987.

[5] A. Aggarwal and J. Wein. Computational geometry. Lecture Notes for MIT, 1988.

[6] N. Amenta. Bounded boxes, hausdorff distance, and a new proof of an interesting helly-type
theorem. In Proceedings of Symp. on Computational Geometry, pages 340-347, 1994.

[7] W.G. Aref, S.E. Hambrusch, and S. Prabhakar. Information management in a ubiquitous
global positioning environment. Technical Report 00-006, Department of Computer Sciences,
Purdue University, West Lafayette, Indiana, February 2000.

25



8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal
multiversion B-tree. The VLDB Journal, 5(4):264-275, December 1996.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust
access method for points and rectangles. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 322-331, May 23-25 1990.

US Wireless Corp. The market porential of the wireless location indistry.
http://www.uswcorp.com/USWCMainPages/laby.htm.

L. Forlizzi, R. H. Guting, E. Nardelli, and M. Scheider. A data model and data structures for
moving objects databases. In Proc. of ACM SIGMOD Conf., Dallas, Texas, May 2000.

R.H. Guting, M.H.Bohlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider, and M. Vazir-
giannis. A foundation for representing and querying moving objects. ACM Transactions on
Database Systems, 2000. To Appear.

S. E. Hambrusch, C.-M. Liu, W. Aref, and S. Prabhakar. Minimizing broadcast costs under
edge reductions in tree networks. In 7th International Symposium on Spatial and Temporal
Databases (SSTD 2001), July 2001.

Q. Hu, W.-C. Lee, and D. L. Lee. Power conservative multi-attribute queries on data broadcast.
In Proceedings of the International Conference on Data Engineering (ICDE), pages 157-166,
2000.

Q. Hu, W.-C. Lee, and D. L. Lee. A hybrid index technique for power efficient data broadcast.
Distributed and Parallel Databases, 9(2):151-177, 2001.

Tomasz Imielinski, S. Viswanathan, and B. R. Badrinath. Energy efficient indexing on air.
In Richard T. Snodgrass and Marianne Winslett, editors, Proceedings of the International
Conference on Management of Data, pages 25-36. ACM Press, May 1994.

G. Kollios, D. Gunopulos, and V.J. Tsotras. On indexing mobile objects. In Proc. 1999
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS),
Philadelphia, June 1999.

H. Koshima and J. Hoshen. Personal locator services emerge. IEEE Spectrum, 37(2):41-48,
February 2000.

Anil Kumar, Vassilis J. Tsotras, and Christos Faloutsos. Designing access methods for bitem-
poral databases. 10(1):1-20, 1998.

Trimble Navigation Ltd. Trimble customer solutions.
http://www.trimble.com/solution/index.htm, 1999.

M. McKenna, J. O’'Rourke, and S. Suri. Finding the largest rectangle in an orthogonal polygon.
In Proceedings of the 23rd Allerton Conference on Communication, Control, and Computing,
pages 486-495, 1985.

Rand McNally. Streetfinder GPS for palm IIlc connected organizer.
http://www.randmcnally.com/palmIIlc/index.ehtmlftreceiver.

26



[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-objects representations. In
Proceedings of the SSDBM Conf., pages 123-132, 1999.

D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel approaches in query processing for moving
objects. In Proceedings of the 26th International Conference on Very Large Databases (VLDB),
Cairo, Egypt, September 2000.

D. Pfoser, Y. Theodoridis, and C.S. Jensen. Indexing trajectories of moving point objects.
Technical Report Chorochronos Tech. Rep. CH-99-3, June 1999.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 71-79, San Jose, CA, 1995.

S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez. Indexing the position of continuously
moving objects. In Proceedings of ACM SIGMOD Conference, Dallas, Texas, May 2000.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
MA, 1990.

A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao. Modeling and querying mov-
ing objects. In Proceedings of the Fourteenth International Conference on Data Engineering
(ICDE’97), pages 422-432, 1997.

Jamel Tayeb, Ozgﬁr Ulusoy, and Ouri Wolfson. A quadtree-based dynamic attribute indexing
method. The Computer Journal, 41(3):185-200, 1998.

TruePosition. What is trueposition cellular location system?
http://www.trueposition.com/intro.htm.

Jay Werb and Colin Lanzl. Designing a positioning system for finding things and people
indoors. IEEE Spectrum, 35(9):71-78, September 1998.

Ouri Wolfson. Research issues on moving object databases (tutorial). In Proceedings of ACM
SIGMOD Conference, page 581, Dallas, Texas, May 2000.

Ouri Wolfson, Sam Chamberlain, Son Dao, L. Jiang, and G. Mendez. Cost and imprecision

in modeling the position of moving objects. In Proceedings of the Fourteenth International
Conference on Data Engineering (ICDE’98), Orlando, FL, February 1998.

Ouri Wolfson, Prasad A. Sistla, Sam Chamberlain, and Yelena Yesha. Updating and querying
databases that track mobile units. Distributed and Parallel Databases, 7(3):257-387, 1999.

Ouri Wolfson, Bo Xu, Sam Chamberlain, and L. Jiang. Moving objects databases: Issues and
solutions. In Proceedings of the SSDBM Conf., pages 111-122, 1998.

J. M. Zagami, S. A. Parl, J. J. Bussgang, and K. D. Melillo. Providing universal location
services using a wireless €911 location network. IEEE Communications Magazine, April 1998.

Stanley Zdonik, Michael Franklin, Rafael Alonso, and Swarup Acharya. Are “disks in the
air” just pie in the sky? In IEEE Workshop on Mobile Computing Systems and Applications,
December 1994.

27



