Assignment 6

Due: Thursday, April 9, 2015 (hand in before class)

1) (15 pts) Show that each problem listed has an $\Omega(n \log n)$ lower bound.
(i) Given are n elements $a_{1}, a_{2}, \ldots, a_{n}$ and a value $\epsilon \geq 0$. Determine whether there exist two elements a_{i} and a_{j} such that $a_{i}-a_{j}=\epsilon$.
(ii) Given are n blocks of length $b_{1}, b_{2}, \ldots, b_{n}$ and n rods of length $r_{1}, r_{2}, \ldots, r_{n}$. You want to assign to every rod r_{i} to a unique block of length $b_{f(i)}$ such that $\sum_{i=1}^{n}\left|b_{f(i)}-r_{i}\right|$ is a minimum over all possible assignments. The algorithm returns the pairs $(i, f(i)), 1 \leq i \leq n$.
2) (20 pts.) Let $G=(V, E)$ be a connected, undirected n-vertex, m-edge weighted graph. Assume edge weights are distinct.
(i) Prove or disprove the following statement: Let C be any cycle in G and let e be the edge of minimum weight on cycle C. Then, edge e is an edge in the minimum-cost spanning tree of G.
(ii) Assume k edges $e_{1}, e_{2}, \ldots, e_{k}$ are identified as major edges and every minimum cost spanning tree must include the k major edges, $k \leq \log n$. You can assume the k edges form a forest. Describe a minimumcost spanning tree algorithm that includes the k major edges and selects additional edges of minimum cost. Give the overall time bound when the graph is represented by adjacency lists and the k major edges are given in a linked list.
(iii) For a given path P between two vertices u and v let max_weight(P) be the largest edge weight on path P. For every pair of vertices u and v, let min_cap (u, v) be the minimum of all max_weight $\left(P_{i}\right)$ entries taken over all paths P_{i} from u to v in graph G; i.e., $\min _c a p ~(u, v)=\min _{P_{i}}\left\{\right.$ max_weight $\left.\left(P_{i}\right)\right\}$.

Let T be the minimum cost spanning tree of G. Prove that for every pair of vertices u and v, the maximum weight on the path from u to v in T is equal to $\min _c a p ~(u, v)$.
3) (15 pts .)
(i) Give an example of a string T of length n and a pattern P of length m which forces the brute-force pattern matching algorithm to have a running time of $\Omega(n m)$. Explain why.
(ii) How many prefixes of $P=A A A B B A A A$ are also a suffix of P ? Show all of them.
(iii) Determine the failure function for the pattern $C G T A C G T T C G T A C$. Explain how the entries are generated.

