
Purdue University Hambrusch
CS 381 Spring 2015

Assignment 3

Due: Tuesday, February 17, 2015 (hand in before class)

1) (20 pts.) Review the divide and conquer algorithms discussed in class (see slides posted on 1/29/15). For

problems 1-3 consider the O(n) time divide-and-conquer algorithm finding the maximum sum subarray. For

problem 4 consider the O(n log n) time divide-and-conquer algorithm counting inversions.

1. Give an example of an array A16 of size 16 for which the entries returned from the two calls to the subarrays

of size 8, A8,L and A8,R, use the maximum sum entries anchored at the right end of A8,L and the left end

of A8,R to compute the maximum subarray in A16. For your example, give the values of the four entries

returned by the call on A16. Explain your answers.

2. Give an example of an array A16 of size 16 for which the entries returned from the two calls to the subarrays

of size 8, A8,L and A8,R, use the sum entry (sum of all entries) of subarray A8,L for the answers returned

by the call on A16. For your example, explain your answers.

3. Consider the maximum product subarray problem. The given array can contain positive and negative entries

and the problem is to determine the two indices such that the product of the entries in the induced subarray

is a maximum. Modify the O(n) time divide-and-conquer algorithm finding the maximum sum subarray to

solve the maximum product subarray problem. Clearly state and explain the entries a recursive call returns

and how they are used.

4. Consider the permutation 1 2 4 6 14 3 9 12 7 8 11 10 5 13 16 15 stored in array A16. Let A8,L and A8,R be

its left and right subarray. State the entries returned by the recursive call on A8,L and A8,R and describe

how they are used to determine the number of inversions for A16.

2) (15 pts.) Tired of Mergesort and Heapsort as popular O(n log n) time sorting algorithms, Donald decides it is

time for a new fast sorting algorithm. He comes up with the following recursive algorithm which he calls D-Sort.

He believes it is fast and correct, but can’t convince anyone. You are asked to help. D-sort works as follows when

sorting array A of size n:

if n = 2 then

sort the two elements by making one comparison

else

m = d2n/3e
D-Sort(A, 0, m-1)

D-Sort(A, n-m, n-1)

D-Sort(A, 0, m-1)

end if

1. Does D-sort sort an array of size n correctly? If it does not, give a counterexample. If it does, argue its

correctness as to why D-sort correctly sorts any input sequence.



2. State the recurrence relations capturing the running time and give the associated performance in terms of

n. Either use the Master Theorem (if it can be used) or “guess” the time bound using the recursion tree

and make a proof by induction.

3) (15 pts.) You are supposed to sort n elements in a computational environment that does not allow you to

make comparisons. Instead, you are supposed to use a magical sorting box which takes
√
n elements as input and

outputs them in sorted order.

Design and describe an efficient sorting algorithm using the sorting box. Express the performance of your

algorithm in terms of the number of sorting box calls. Your algorithm can move and copy data and maintain

indices, but it cannot compare two elements. The only way to make comparisons is through the use of the sorting

box. Explain your algorithm, argue its correctness, and analyze the number of sorting box uses in terms of n.


