Assignment 1

Due: Tuesday, January 27, 2015 (hand in before class)
0) (2 pts.) Housekeeping tasks:

1. Visit the course website at http://www.cs.purdue.edu/homes/seh/381webSp15/. Follow the links and read the information provided. Set appropriate bookmarks needed during the semester.
2. Sign up to Piazza at piazza.com/purdue/spring2015/cs381. Material will be posted on Piazza. Piazza also serves as the discussion forum of topics and questions of interest to the entire class.
3. Register your i-Clicker on Blackboard. Use the same registered clicker during the semester.
1) (8 pts.) Partition the following functions representing running times into equivalence classes so that $f(n)$ and $g(n)$ are in the same class if and only if $f(n)=\Theta(g(n))$. Rank the classes from smallest to largest (in terms of growth rate with respect to n). Logarithms are base 2 unless stated otherwise. You only need to give the final ordering from small to large with clearly indicating functions in the same equivalence class.

$3 n \log \log n$	$10 n^{3}+14 n^{2} \log ^{6} n$	$10 n \sqrt{\log n}$	$4 \log ^{3} n$	$(\sqrt{2})^{\log n}$	$\sqrt{n}+(\log n)^{3}$
$8 \sqrt{n}+6 \log ^{6} n$	$\left(\frac{n}{\log n}\right)^{3}$	$81 \log n^{3}$	$3 n \log n$	$\sqrt{\log n^{3}}$	$3 n+5 \sqrt{n}$

2) (8 pts.) Review proofs by inductions. In your proofs, be precise and show all needed steps.
1. Use induction to show that $n!>2^{n}$ for $n>3$.
2. Use induction to show that $\sum_{i=1}^{n}(2 i-1)=n^{2}, n \geq 1$.
3) (22 pts.) Given is an array A containing n distinct integers in arbitrary order. Describe and analyze an efficient algorithm for each of the following problems. Clearly state the achieved running time in big-O and Θ-notation. Do not give code, but explain your solution in a clear and precise manner. In addition to the running time, argue the correctness of your algorithm.
1. Determine the maximum difference between any two elements in A . For example, for $\mathrm{A}=[2,10,12,4,-9$, $0,-5,8,1,-7]$ the answer is 21 (difference between -9 and 12).
2. Determine the number of elements between two given values x and y with $x<y$ (i.e., the number of elements z such that $x<z<y$).
3. Determine the 5 -th largest element in array A.
4. Given is also an integer $r, r>0$. Determine two elements $A[k]$ and $A[p], k<p$, such that $p-k \leq r$ and $|A[p]-A[k]|$ is a maximum. For example, for $r=2$ and $\mathrm{A}=[-8,3,2,-5,6,10,14]$ the answer is $A[k]=-5$ and $A[p]=10$ achieving a difference of 15 .
4) (10 pts.) How many times is function F called in each code segment given below when $n=2^{r}$? Clearly explain your answer and express bounds in terms of n in big-O and Θ-notation. Review the pseudocde convention in Section 2.1 (if needed).

Code Segment 1

for $i=1$ to n do
$j=1$
while $j \leq n$ do
$\mathrm{j}=2^{*} \mathrm{j}$
for $k=1$ to j do
$\mathrm{F}(\mathrm{i}, \mathrm{j}, \mathrm{k})$

Code Segment 2

while $n>1$ do

$$
\begin{aligned}
& \text { for } i=1 \text { to } \mathrm{n} \text { do } \\
& \quad \mathrm{F}(\mathrm{i}, \mathrm{n}) \\
& n=n / 4
\end{aligned}
$$

