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Motivation



Traffic Measurement
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Traffic Burstiness

100ms 1s 10s 100s

Network Traffic

! Bursty across multiple time scales: 100ms ~ 100s
! Fractal or self-similar: the whole resembles its parts



In Contrast�
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Self-Similar Burstiness

! Burstiness preserved across multiple time scales

! Deterministic self-similarity

�Cantor Traffic�

2nd order structure



Sustained Contention
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! For example, if i.i.d. then
! By LLN, concentrates around mean

! Sample variance

Correlation at a Distance �
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100ms 1s 10s 100s

Presence of Strong Correlation
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! Slower rate of dampening for network traffic

10 << β
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Empirical Evidence

! LAN traffic: Bellcore (�89-92)
! Ethernet
! Leland et al., SIGCOMM �93

! WAN traffic: LBL + others
! TCP
! Paxson & Floyd, SIGCOMM �94 

! Many more
! Internet Traffic Archive (ita.ee.lbl.gov)
! NLANR (pma.nlanr.net/PMA)
! etc.



Key Points

! Internet traffic is bursty over large time scales

! Has potential to affect performance

! Ubiquitous empirical phenomenon

! Causes, impact, and control 



Traffic Modeling



Workload Granularity

! Aggregate traffic

! Connection, flow, or session arrival

! Flow duration or lifetime

! Packet arrival within single connection



Workload Granularity

superposition of sessions

aggregate traffic

TCP TCP UDP

HTTP
IP, MAC fragmentation

→ multi-level

)()( tX n



Workload Property: Session Arrival

! Connection arrivals
! Poisson
! TCP measurements up to mid-�90s
! Paxson & Floyd, SIGCOMM �94

! Refinement
! Weibull
! Pre- vs. post-WWW TCP interarrivals
! A. Feldmann, PW 2000

,]Pr[
caxexZ −=> 10 << c



Workload Property: Lifetime

! Connection duration
! Heavy-tailed

→ large x; regularly varying r.v.
→ infinite variance;  if             , unbounded mean

! LAN & WAN measurements up to mid-�90s
! Paxson & Floyd �94; Willinger et al. �95

! Not restricted to network traffic

,]Pr[ α−≈> xxZ 20 <<α

10 <<α



Workload Property: Lifetime

! UNIX file size distribution
! File systems research �80s, Park et al., ICNP 96
! G. Irlam �93

xxZ log]Pr[log α−=> 90% are less than 20KB



Workload Property: Lifetime

! UNIX file size distribution
! File systems research �80s, Park et al., ICNP 96
! G. Irlam �93

xxZ log]Pr[log α−=> 10% take up 90% disk space

�mice and elephants�



Workload Property: Lifetime

! Relevance of UNIX file system
! Independent non-networking evidence from �80s

→ different research community, objectives

! Intimate relationship with traffic burstiness
! Bellcore measurements: �89 -�92

→ pre-Web, pre-MPEG video streaming

! WWW: Crovella & Bestavros, SIGMETRICS �96
→ C. Cunha; early Web circa �95



Workload Property: Lifetime

! Telephony: call holding time
! Heavy-tailed; Duffy et al., JSAC �94
! Lognormal; V. Bolotin, JSAC �94
! Call center design; Annals OR, �02

→ Past: has not mattered too much due to TDM
� Erlang�s loss formulae: avrg. service time

→ Present: different situation for VoIP
� how much impact?

→ Unclear.  Voice: low bit rate real-time CBR



Workload Property: Lifetime

! Key difference with files
! Long telephone call:

! Large file:

64Kb/s

10Mb/s

BW

BW

time

time

64Kb/s

10Mb/s

time

time

e.g., TCP
�stretching-in-time vs. stretching-in-space�, Park et al. �96

time



Workload Property: Lifetime

! UNIX process lifetime
! Harchol-Balter & Downey, SIGMETRICS �96
! Process migration: dynamic load balancing

! VBR Video



Workload Property: Lifetime

! UNIX process lifetime
! Harchol-Balter & Downey, SIGMETRICS �96
! Process migration: dynamic load balancing

! VBR Video

! Beran et al., IEEE Trans. Commun., �95 + others



Workload Property: Aggregate Traffic

! On/off model
! Superposition of independent on/off sources
! Willinger et al., SIGCOMM �95

→ fractional Gaussian noise

light-tailed
heavy-tailed

off-periods: i.i.d.
on-periods: i.i.d.

no. active sessions



Some Definitions

! H-ss
→ Y(t) is H-ss if for all

! H-sssi
→ H-ss and stationary increments

! Fractional Brownian Motion
→ H-sssi and Gaussian

! Fractional Gaussian Noise
→ Increment process of FBM
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Some Definitions

! X(t) is exactly second-order self-similar if

! Asymptotically second-order self-similar if

! Fact:                      for all m ≥ 1
→ invariant w.r.t. second-order structure

,2/))1(2)1(()( 2222 HHH kkkk −+−+=σγ 12/1 << H
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→ autocovariance

→ autocovariance of aggregated process



Workload Property: Aggregate Traffic

!

! Poisson session arrivals
! Heavy-tailed connection duration
! Likhanov et al. �95; Parulekar & Makowski �96

→ asymptotically second-order self-similar

∞//GM

time

duration profile 3

⇔ ∞//GM with G heavy-tailed

1



Workload Property: Aggregate Traffic

! and on/off model:

! Heavy-tailedness parameter α determines 
Hurst parameter H

! Physical model of network traffic

! Versus black-box time series model

∞//GM
2/)3( α−=H



Impact of Protocol Stack

! Transport protocols

Protocol Stack

File Systemheavy-tailed

TCP

TCP

TCP

TCP

TCP

UDP
UDP



Impact of Protocol Stack

! TCP preserves heavy-tailedness
→ stretching-in-time vs. stretching-in-space
→ conservation law

! Trade-off: long-range correlation vs. short-
range burst

10Mb/s

100Mb/s

time

time



Impact of Protocol Stack

! Traffic property incorporating feedback control:

! Slope is less than                      ,  why?2/)3( α−=H



Impact of Protocol Stack

! Introduction of non-uniformity

! Introduction of holes

→ lengthening and fragmentation

time

time

time



Impact of Protocol Stack

! Silence periods can be lengthy
! TCP�s exponential back-off
! Like on/off model with heavy-tailed off periods?

! And chaotic dynamics?  Veres et al., �00



! Impact is limited:

→ can inject correlation; but magnitude secondary

Impact of Protocol Stack

on: Expo / off: Paretoon: Pareto / off: Paretoon: Pareto / off: Expo;



Influence of Topology

! Heavy-tailed Internet connectivity
! AS graph: Faloutsos et al., SIGCOMM �99
! Web graph: Barabasi�s group at Notre Dame Univ.

→ contrast with random graphs: exponential tail

δ−≈> xxu ])Pr[deg(



Influence of Topology

! Heavy-tailed Internet connectivity
! AS graph: Faloutsos et al., SIGCOMM �99
! Web graph: Barabasi�s group at Notre Dame Univ.

δ−≈> xxu ])Pr[deg(

Medium ISP (R. Govindan, USC/ISI)1997 AS graph
star-like topology

random-like

degree = 601



Influence of Topology

! Connection with network traffic
! Load of link e: no. of paths traversing through e
! is heavy-tailed

→ high variability in degree of traffic multiplexing

])(Pr[# xe >
ranked edge load (log-log) ranked node load (log-log)



Influence of Topology

! Coefficient of variation
! A form of multiplexing gain
! Dampening reduces impact of time correlation
! W. Cleveland et al., 2000

! Non-uniform bandwidth distribution
! R. Riedi et al., 2001
! Backbone traffic: spikey �alpha� + Gaussian
! Multifractal?

→ topology can influence observed traffic



Key Points

! Poisson arrivals, heavy-tailed duration

! Refined workload models 

! Structural cause of self-similar burstiness: 
heavy-tailed file sizes

! Protocol stack and other effects are secondary



Performance Evaluation



Performance Evaluation: Queueing

! Fundamental result:
→ subexponential queue length distribution

! FGN: Weibull
! I. Norros, Queueing Systems, �94

! M/G/∞: polynomial
! Likhanov et al., INFOCOM �95



Performance Evaluation: Queueing

! Limited effectiveness of buffering:

! Increase buffer capacity
! QoS trade-off: excessive delay penalty

→ large bandwidth/small buffer policy



Why Heavy-Tailed Queue Tail? 

! Consider single on/off process:

. . .
time

.   .   .

renewal instances:  independence

1 2 3 4
1 2 3 4 n.   .   .

X1 X2 X3 X4 Xn.   .   . :      i.i.d. heavy-tailed
Y1 Y2 Y3 Y4 .   .   . :      i.i.d. short-tailed



Why Heavy-Tailed Queue Tail? 

! Want to know:
! In equilibrium
! For large buffer level b

! Idea:

?]Pr[ bQ >

. . .
time

�short� on periods

1 2 3 4 n.   .   .

first �long� on period

→ i.e., �long� such that bXn >



Why Heavy-Tailed Queue Tail? 

! More precisely:
→ µ :  service rate

! Since: during �long� on-period
→ queue build-up is at least   (1-µ) b�

→ i.e., event             occurs

! In the following ignore b, b� distinction

bQt >

')1( 1 bbXn =−> −µ

Xn



Why Heavy-Tailed Queue Tail? 

! Ignore queue dynamics before long on-period

! Hence, lower bound on ]Pr[ bQ >

. . .
time

�short� on periods

1 2 3 4 n.   .   .

first �long� on period

:tQ don�t care care



Why Heavy-Tailed Queue Tail? 

! Need to estimate total time T = S + L

! If ergodic, estimate
][][
][)1(]Pr[
LESE
LEbQ

+
−≥> µ

. . .
time

�short� on periods

1 2 3 4 n.   .   .

first �long� on period

T

S L



Why Heavy-Tailed Queue Tail? 

! Assume exponential off period, Pareto on-period
! Exponential
! Pareto: shape parameter α, location parameter k

! Assume stability

! For large t and b:
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Why Heavy-Tailed Queue Tail? 

! To estimate expected L, note
! L is conditioned on n such that L > b

!

! Easy to check

]|[][ bXXELE nn >=

bdx
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Why Heavy-Tailed Queue Tail? 

! Almost done.

! Note: since 

! Combining everything

→ heavy-tailed on time leads to heavy-tailed queue tail

α−=> )/(]Pr[ kbbXn
α)/( kbn ≈∴

)(]Pr[ 1 α−Ω=> bbQ



Remarks 

! Demonstrates connection between heavy-tailed 
workload and heavy-tailed queue length

! Similar ideas apply to M/G/∞ and more general on/off 
input models

! Sketch of key ideas; not a proof

! Applies to upper bound: �short� & �long� picture

]},,Pr[max{]Pr[ 11 bXXbXX nn >=>++ KL

→ key property of heavy-tailed, i.e., regularly varying r.v.



Impact of SRD vs. LRD Traffic

! Relative importance of short-range dependent 
vs. long-range dependent model

! Debate: LRD needed for traffic modeling and 
performance evaluation?
! SRD models can effectively capture input traffic
! Well-understood performance evaluation

! Finite time scale and resource dimensioning



Impact of SRD vs. LRD Traffic

! SRD vs. LRD packet loss:

! Depends on details of resource configuration
! SRD vs. LRD debate: no uniform answer

LRD<Poisson<MMPP1<MMPP2

Poisson<LRD<MMPP1<MMPP2

Poisson<MMPP1<MMPP2<LRD



Impact of SRD vs. LRD Traffic

! Main differences:
! Physical vs. �black box� time series modeling

→ pros & cons
→ depends on objectives

! Physical models are useful for closed-loop traffic 
control evaluation

→ time series models: open-loop

! For queueing application: little essential difference



Self-Similar Burstiness and Jitter

! Focus has been on first-order performance 
measure

! Relevance of second-order measure
! Real-time multimedia data

→ small loss rate: insufficient

! Packet-level forward error correction
→ correlated losses: the enemy



Self-Similar Burstiness and Jitter

! Block loss
! Network traffic X(t): sequence of packets
! Block size N

! Block loss process B(n)
→ no. of losses in n�th block

dropped

N = 8

. . .. . .



Self-Similar Burstiness and Jitter

! Block loss distribution in steady state
→ B ≡ B(∞) :  r.v. with B ∈ {0, 1, �, N}

! Normalized block loss distribution
→ B / N :  r.v. with values in [0,1]

! Assuming FEC satisfying k-out-of-N property 
is used
→ the heavier the tail Pr[B > x], x > k, the less

effective FEC is



Self-Similar Burstiness and Jitter

! Block loss behavior

! Loss rate: LRD < Poisson < MMPP1 < MMPP2
! Block loss variance:  LRD dominant



Slow Convergence and Simulation

! Sampling from heavy-tailed distribution
→ slow convergence of sample mean to   

population mean

→ running mean of 20 sample paths



Slow Convergence and Simulation

! Sampling from heavy-tailed distribution
→ slow convergence of sample mean to  

population mean

→ average of 20 sample path running means



Slow Convergence and Simulation

! Approximating the population mean:
! Pareto: pdf

! Shape parameter α, location parameter k

! Population mean of Pareto r.v. Z

)1()( ααα +−= xkxf
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Slow Convergence and Simulation

! Want y such that

! Thus                            , and
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Slow Convergence and Simulation

! For truncated sampling:

! Sample mean within accuracy ε:

! Likely occurrence for

00 =⇒> ii ZyZ

ε−≥1
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Slow Convergence and Simulation

! For example:
! α = 1.2; H = (3 - α) / 2 = 0.9
! ε = 0.01
! sample size greater than 10 billion

! Practically:
! Brute-force is problematic
! Speed-up methods required
! Rare event simulation



Key Points

! Heavy-tailed workload and queue tail

! Impact of LRD on loss performance is mixed

! Impact of LRD on second-order performance 
measure (�jitter�) is more clear cut

! Convergence and simulation pose significant 
challenges



Traffic Control



Workload-Sensitive Traffic Control

! Self-similar burstiness

! Bad news: queueing
→ heavy-tailed queue tail

! Good news: predictability
→ facilitates traffic control



Workload-Sensitive Traffic Control

! Approach:
→ exploit predictability in the workload

! Simple: heavy-tailed life time distribution
→ optimistic congestion control

! More complex: large time scale traffic 
correlation

→ predictive control



Heavy-Tailed Life Time

! Heavy-tailedness implies predictability
! Assume Z is heavy-tailed (e.g., Pareto)
! Z represents life time or connection duration

! Easy to check:

→ as τ increases
→ conditioning on past helps

α

τ
τττ 
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� compare with exponential r.v. where he λ−



Heavy-Tailed Life Time

! Can make prediction error arbitrarily small by 
conditioning on longer past

! Expected conditional life time duration

! For example: if α = 1.2,                         ; 
if α = 1.1, expected future lifetime 11b

bbZZE
1

]|[
−

=>
α

α

bbZZE 6]|[ =>



Heavy-Tailed Life Time

! Applications:
! Dynamic load balancing; Harchol-Balter & 

Downey �96

! Routing stability; Shaikh et al. �99

! Task scheduling; Crovella et al., �99

! Optimistic congestion control; Park et al., �02



Large Time Scale Predictability

! Condition future on past traffic level

! Conditional expectation estimator

! Quantized estimator

Time

]|[ )()(
1 xXXE n
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Large Time Scale Predictability

! Example:
! LRD traffic

! Conditional 
probability

sec)2(
iL

sec)2(
1+iL

]|Pr[ sec)2(sec)2(
1 ii LL +

→ conditioning helps



Large Time Scale Predictability

! Example:
! SRD traffic

! Conditional 
probability

]|Pr[ sec)2(sec)2(
1 ii LL +

sec)2(
iL

sec)2(
1+iL

→ conditioning doesn�t help



Selective Slope Control

Congestion control:  TCP and rate-based

Idea:
→ modulate slope of linear

increase phase in AIMD

�aggressive�

�conservative�



Selective Slope Control

! Linear increase phase of AIMD:

! A is a control variable:

! Selective aggressiveness schedule
! Monotone

cwnd
cwndcwnd 1+←

cwnd
Acwndcwnd +←

])|[( )()(
1 cLLEAA n

i
n
i == +



Structure of TCP-MT: Modularity

! Multiple time scale TCP: TCP-MT

TCP feedback control

Large time scale
selective slope modulation



Available Bandwidth Estimation

! Passive probing:
! Use output behavior of TCP sender
! Coupled with background traffic

→ tracking ability

→ negative coupling → corr. coeff. as ftn. of RTT



Application

! Mitigate reactive cost of feedback control:
→ large delay-bandwidth product
! Broadband WANs
! Satellite networks

D
RTT

BW

Delay



Application

! Delayed feedback
! Outdated information & control action
! Stability condition limitation

→ delay or functional differential equation

∞<⋅< Dε0

small ε large ε

→ bounded oscillation → unbounded oscillation: instability



Application

! Large time scale predictability
! Time scale >> RTT
! Bridge timeliness barrier

Delay

Performance

LRD time scale » RTT



Performance Gain

! TCP-MT: Performance gain as function of RTT

TCP

MTTCPTCP

γ
γγ −−



Large Time Scale Predictability

! Multiple time scale redundancy control
→ packet-level FEC: real-time multimedia traffic

→ static FEC



AFEC: Adaptive FEC

! Dynamically adjust redundancy:
! As a function of network state
! To achieve target QoS

! Hit rate:
! Fraction of timely decoded frames
! Loss or delay



AFEC: Adaptive FEC

! Optimal feedback control problem:
! User-specified QoS
! Caveat: too much redundancy counter-productive

→ �shoot oneself in the foot�

stable

unstable



AFEC: Adaptive FEC

! Intrinsic problem of AFEC:
! Maximum hit rate operating point

→ unstable: exponential back-off

! Efficiency vs. QoS trade-off
→ reduce redundancy when network state good
→ pay QoS penalty when network state turns bad
→ sensitive to transients



Selective Level Control

! Level control:

high redundancy low redundancy



Structure of AFEC-MT: Modularity

! Multiple time scale AFEC: AFEC-MT

AFEC

Large time scale selective level control



Performance Evaluation: Hit Rate

hit trace:

static FEC

AFEC

AFEC-MT



Performance Evaluation: Hit Rate

! Long-term hit rate trace:

→ AFEC → AFEC-MT



Some References

! Tuan & Park, Performance Evaluation �99
→ rate-based congestion control

! Tuan & Park, INFOCOM �00
→ AFEC-MT

! Park & Tuan, ACM TOMACS �00
→ TCP-MT

! Östring et al., IEEE Trans. Commun. �01
→ router assisted rate-based



Key Points

! Workload can be exploited for traffic control

! Heavy-tailed life time: simple

! LRD traffic: more complex

! Significant performance gain possible

! Delay-bandwidth product problem mitigation



Open Problems

� even in the parking lot



Challenges and Open Problems

! Relevance of second-order performance 
measures

! Rare event simulation with heavy-tailed 
workload

! Workload-sensitive traffic control

! Finite resource dimensioning



Book Plug

! Wiley-Interscience 2000

! Collection of chapter 
contributions

! Landscape circa �00

! Additional references


