<u>IEEE 802.11 MAC</u>

- \longrightarrow CSMA/CA with exponential backoff
- \longrightarrow almost like CSMA/CD
- \longrightarrow drop CD
- \longrightarrow CSMA with explicit ACK frame
- \longrightarrow added optional feature: CA (collision avoidance)

Two modes for MAC operation:

- Distributed coordination function (DCF)
 - \rightarrow multiple access
- Point coordination function (PCF)
 - \rightarrow polling-based priority
- ... neither PCF nor CA used in practice

CSMA: (i) explicit ACK and (ii) exponential backoff

Sender:

- MAC (firmware in NIC) receives frame from upper layer (i.e., device driver)
- Goto Backoff procedure
- Transmit frame
- Wait for ACK
- If timeout, goto **Backoff** procedure

Receiver:

- Check if received frame is ok
- Wait for SIFS
- Transmit ACK

- If due to timeout, double contention window (CW)
- Else wait until channel is idle plus an additional DIFS
- Choose random waiting time between [1, CW]
 - \rightarrow CW is in units of slot time
- \bullet Decrement CW when channel is idle
- Return when CW = 0

Timeline without collision:

- SIFS (short interframe space): 10 $\mu \rm s$
- Slot Time: 20 μs
- DIFS (distributed interframe space): 50 $\mu \mathrm{s}$
 - \rightarrow DIFS = SIFS + 2 × slot time
- BO: variable back-off (within one CW)
 - \rightarrow CWmin: 31; CWmax: 1023

Time snapshot with Mira-come-lately:

Time snapshot with collision (Sue & Mira):

MAC throughput and collision (ns simulation):

MAC throughput:

\rightarrow experiment: iPAQ running Linux

Additional issues with CSMA in wireless media:

Hidden station problem:

Hidden Station Problem

- (1) A transmits to B
- (2) C does not sense A; transmits to B
- (3) interference occurs at B: i.e., collision

Exposed station problem:

Exposed Station Problem

- (1) B transmits to A
- (2) C wants to transmits to D but senses B
 - $\rightarrow C$ refrains from transmitting to D
 - \rightarrow omni-directional antenna

- \longrightarrow RTS/CTS reservation handshake
- Before data transmit, perform RTS/CTS handshake
- RTS: request to send
- CTS: clear to send

Hidden station problem: RTS/CTS handshake "clears" hidden area

RTS/CTS Handshake

RTS/CTS perform only if data > RTS threshold \longrightarrow why not for small data?

... feature available but not actively used

Additional optimization: virtual carrier sense

- transmit connection duration information
- stations maintain NAV (network allocation vector) \rightarrow decremented by clock
- if NAV > 0, then do not access even if physical CS says channel is idle

PCF (point coordination function):

 \longrightarrow support for real-time traffic

- Periodically inject contention free period (CFP) \rightarrow after BEACON
- Under the control of point coordinator: AP \rightarrow polling

PIFS (priority IFS):

 \longrightarrow SIFS < Slot Time < PIFS < DIFS

Properties of PCF:

- BEACON period is not precise
 - \rightarrow has priority (PIFS < DIFS) but cannot preempt DCF
- During CFP services stations on polling list
 - \rightarrow delivery of frames
 - \rightarrow polling: reception of frames
 - \rightarrow must maintain polling list: group membership
- Uses NAV to maintain CFP
- BEACON: separate control frame used to coordinate BSS
 - \rightarrow time stamp, SSID, etc.

IEEE 802.11 wireless LAN standard:

- ratified in 1997: 1/2 Mbps using either DSSS or FHSS
 - $\rightarrow 11$ bit chip sequence
- uses IEEE 802 address format along with LLC
 - \rightarrow 4 address fields for forwarding/management
- \bullet uses 2.4–2.4835 GHz ISM band in radio spectrum
 - \rightarrow ISM (industrial, scientific and medical): unlicensed
- IEEE 802.11b ratified: 5.5/11 Mbps using DSSS only
 - \rightarrow less coding overhead: good for low BER
 - \rightarrow BER (bit error rate) and FER (frame error rate)
- \bullet others: e.g., IEEE 802.11a and 802.11g at 54 Mbps
 - \rightarrow 5.725–5.85 vs. 2.4–2.4835 GHz band
 - \rightarrow both use OFDM

Bluetooth, 802.16, etc.; uncertain future ...

WLAN: ad hoc vs. infrastructure mode

 \longrightarrow a.k.a. why ad hoc, in general, is a bad idea

 \rightarrow why...

Two key reasons:

- nothing to do with wireless
 - \rightarrow i.e., common to wireline networks
 - \rightarrow "double duty"
- specifically to do with wireless LANs

Consider "corridor" configuration: linear chain

 \rightarrow connectivity-wise: equivalent

Assume:

- \bullet there are n nodes
- \bullet link bandwidth: B Mbps
- every node picks a random destination to talk \rightarrow data rate of each node: 1 Mbps
- consider middle link e = (n/2, n/2 + 1)
 - \rightarrow how much traffic must go through e?
 - \rightarrow inherent load or stress on link e

Fixing direction (left or right, i.e., half-duplex):

 \longrightarrow average load on e: L(e) = n/4

 \longrightarrow note: still linear in n (i.e., L(e) = O(n))

To satisfy traffic demand:

$$\longrightarrow$$
 bandwidth on $e: B = n/4$ Mbps

 \longrightarrow else: cannot send or must buffer

Main observation: under ad hoc mode in both wireline & wireless networks, individual link bandwidth must increase with system size n

- \longrightarrow due to forwarding duty!
- \longrightarrow not scalable w.r.t. system size

Remarks:

- link e = (n/2, n/2 + 1) is typical
 - \rightarrow majority of links are near the middle
- how does link bandwidth requirement X increase in 2-D grid/lattice configuration?

- \longrightarrow when side is *n* long: total n^2 nodes
- \longrightarrow hence with \sqrt{n} side: total *n* nodes
- \longrightarrow note: link *e* was a cut dividing into 2 halves
- \longrightarrow average load on each link in 2-D cut?

Average link load: $L(e) = \sqrt{n}/4$

- \longrightarrow under assumption of perfect load balancing
- \longrightarrow note: \sqrt{n} number of links in the cut

Thus in grid topologies, bandwidth requirement increases as: $O(\sqrt{n})$

- \longrightarrow still not scalable
- \longrightarrow in wireline networks: use switches/routers
- \longrightarrow else must upgrade link bandwidth constantly

ad hoc WLANs: additional impact of collision/interference

- \longrightarrow throughput goes down even more
- \longrightarrow Gupta and Kumar '99