Implementation

Major Internet routing protocols:

- RIP (v1 and v2): intra-domain, Bellman-Ford
 - \rightarrow also called "distance vector"
 - \rightarrow metric: hop count
 - \rightarrow UDP
 - → nearest neighbor advertisement
 - → popular in small intra-domain networks
- OSPF (v1 and v2): intra-domain, Dijkstra
 - \rightarrow also called "link state"
 - \rightarrow metric: average delay
 - \rightarrow directly over IP: protocol number 89
 - \rightarrow broadcasting via flooding
 - \rightarrow popular in larger intra-domain networks

- IS-IS: intra-domain, Dijkstra
 - \rightarrow "link state"
 - → directly over link layer (e.g., Ethernet)
 - \rightarrow more recently: also available over IP
 - $\rightarrow {\rm flooding}$
 - \rightarrow popular in larger intra-domain networks

BGP (Border Gateway Protocol):

 \longrightarrow inter-domain routing

Autonomous System B Peering Border Routers

- —— "peering" between two domains
- → includes customer-provider relationship
- → Internet exchanges: multiple domains

• CIDR addressing

- \rightarrow i.e., a.b.c.d/x
- \rightarrow Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
- → check at www.iana.org (e.g., ARIN for US)
- Metric: policy
 - \rightarrow e.g., shortest-path, trust, pricing
 - → meaning of "shortest": delay, router hop, AS hop
 - → mechanism: path vector routing
 - \rightarrow BPG update message

BGP route update:

→ BGP update message propagation

BGP update message:

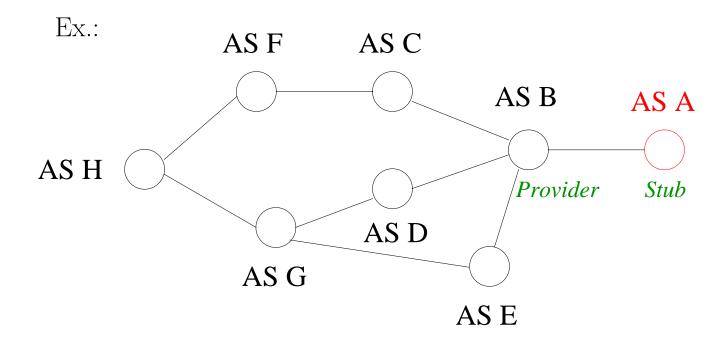
$$ASNA_k \rightarrow \cdots \rightarrow ASNA_2 \rightarrow ASNA_1$$
; a.b.c.d/x

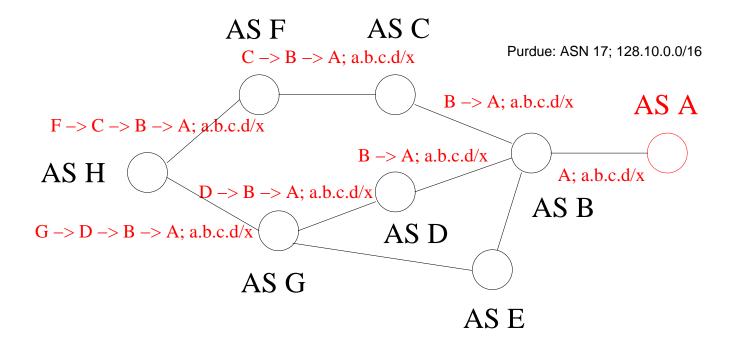
Meaning: ASN A_1 (with CIDR address a.b.c.d/x) can be reached through indicated path

- → "path vector"
- \longrightarrow called AS-PATH

Some AS numbers:

- Purdue: 17
- BBN: 1
- UUNET: 701
- Level3: 3356
- Abilene (aka "Internet2"): 11537


Policy:


• if multiple AS-PATHs to target AS are known, choose one based on policy

- → e.g., shortest AS path length, cheapest, least worrisome
- advertise to neighbors target AS's reachability
 - \rightarrow also subject to policy
 - \rightarrow no obligation to advertise
 - \rightarrow specifics depend on bilateral contract (SLA)

SLA (service level agreement):

- \longrightarrow bandwidth (e.g., 1 Gbps, OC-3, DS3
- \longrightarrow delay (e.g., avrg. 25ms US), loss (e.g., 0.05%)
- → pricing (e.g., 1 Mbps: below \$100)
- \longrightarrow availability (e.g., 99.999%)
- \longrightarrow etc.

Performance

Route update frequency:

- → routing table stability vs. responsiveness
- → rule: not too frequently
- \longrightarrow 30 seconds
- → stability wins
- → hard lesson learned from the past (sub-second)
- \longrightarrow legacy: TTL

Other factors for route instability:

- → selfishness (e.g., fluttering)
- → BGP's vector path routing: inherently unstable
- → more common: slow convergence
- → target of denial-of-service (DoS) attack

Route amplification:

- \longrightarrow shortest AS path \neq shortest router path
- → e.g., may be several router hops longer
- → AS graph vs. router graph
- → inter- vs. intra-domain routing: separate subsystems
- → policy: company in Denmark

Route asymmetry:

- → routes are not symmetric
- \longrightarrow estimate: > 50%
- → mainly artifact of inter-domain policy routing
- → various performance implications
- → source traceback

Black holes:

---- persistent unreachable destination prefixes

→ BGP routing problems

→ further aggrevated by DNS

---- purely application layer: end system problem