
CS 422 Park

Routing

Problem: Given more than one path from source to des-

tination, which one to take?

Features:

• Architecture

• Algorithms

• Implementation

• Performance



CS 422 Park

Architecture

Hierarchical routing:

−→ Internet: intra-domain vs. inter-domain routing

−→ separate decision making

Stub

Tier 2

Tier 1

Tier 3

Tier 2

Domain FDomain E

Domain D

Domain B

Domain C

Domain A

Stub



CS 422 Park

Ex.: Purdue to east coast (BU)

[109] infobahn:Routing % traceroute csa.bu.edu

traceroute to csa.bu.edu (128.197.12.3), 30 hops max, 40 byte packets

1 cisco5 (128.10.27.250) 3.707 ms 0.616 ms 0.590 ms

2 172.19.60.1 (172.19.60.1) 0.406 ms 0.431 ms 0.520 ms

3 tel-210-m10-01-campus.tcom.purdue.edu (192.5.40.54) 0.491 ms 0.600 ms 0.510 ms

4 gigapop.tcom.purdue.edu (192.5.40.134) 9.658 ms 1.966 ms 1.725 ms

5 192.12.206.249 (192.12.206.249) 1.715 ms 3.381 ms 1.749 ms

6 chinng-iplsng.abilene.ucaid.edu (198.32.8.76) 5.669 ms 8.319 ms 5.601 ms

7 nycmng-chinng.abilene.ucaid.edu (198.32.8.83) 25.626 ms 25.664 ms 25.621 ms

8 noxgs1-PO-6-0-NoX-NOX.nox.org (192.5.89.9) 30.634 ms 30.768 ms 30.722 ms

9 192.5.89.202 (192.5.89.202) 31.128 ms 31.045 ms 31.082 ms

10 cumm111-cgw-extgw.bu.edu (128.197.254.121) 31.287 ms 31.152 ms 31.146 ms

11 cumm111-dgw-cumm111.bu.edu (128.197.254.162) 31.224 ms 31.192 ms 31.308 ms

12 csa.bu.edu (128.197.12.3) 31.529 ms 31.243 ms 31.367 ms

Ex.: Purdue to west coast (Cisco)
[112] infobahn:Routing % traceroute www.cisco.com

traceroute to www.cisco.com (198.133.219.25), 30 hops max, 40 byte packets

1 cisco5 (128.10.27.250) 0.865 ms 0.598 ms 1.282 ms

2 172.19.60.1 (172.19.60.1) 0.518 ms 0.379 ms 0.405 ms

3 tel-210-m10-01-campus.tcom.purdue.edu (192.5.40.54) 0.687 ms 0.551 ms 0.551 ms

4 switch-data.tcom.purdue.edu (192.5.40.34) 3.496 ms 3.523 ms 2.750 ms

5 so-2-3-0-0.gar2.Chicago1.Level3.net (67.72.124.9) 8.114 ms 20.181 ms 8.512 ms

6 so-3-3-0.bbr1.Chicago1.Level3.net (4.68.96.41) 11.543 ms 9.079 ms 8.239 ms

7 ae-0-0.bbr1.SanJose1.Level3.net (64.159.1.129) 62.319 ms as-1-0.bbr2.SanJose1.Level3.net

8 ge-11-0.ipcolo1.SanJose1.Level3.net (4.68.123.41) 68.180 ms ge-7-1.ipcolo1.SanJose1.Level

9 p1-0.cisco.bbnplanet.net (4.0.26.14) 75.006 ms 72.557 ms 70.377 ms

10 sjce-dmzbb-gw1.cisco.com (128.107.239.53) 66.075 ms 69.223 ms 68.350 ms

11 sjck-dmzdc-gw1.cisco.com (128.107.224.69) 65.650 ms 74.358 ms 69.952 ms

12 ^C



CS 422 Park

Three levels: LAN, intra-domain, and inter-domain



CS 422 Park



CS 422 Park



CS 422 Park

Inter-domain topology:

−→ each dot (or node) is a domain (e.g., Purdue)

−→ called autonomous system (AS): 16-bit ID



CS 422 Park

Inter-domain connectivity of Purdue:

• Level3 (AS 3356)→ INDIANAGIGAPOP (AS 19782)

→ Purdue (AS 17)

• Internet2/Abilene (AS 11537)→ INDIANAGIGAPOP

(AS 19782) → Purdue (AS 17)

−→ changes over time (e.g., economic reasons)

The Indy GigaPoP has its own AS number (19782).

−→ part of I-Light (Indiana state-wide project)

−→ located at IUPUI, connects Purdue & IU



CS 422 Park

Level3 backbone network: www.level3.com

−→ 10 Gbps (or slower) backbone (same as Purdue)

−→ same as Purdue CS!

−→ next step: 100 Gbps backbone (a few years away)

−→ in the meantime: LAG (link aggregation group)



CS 422 Park

Abilene/Internet2 backbone: www.internet2.edu



CS 422 Park

Granularity of routing network:

• Router

• Domain: autonomous system

→ 16 bit identifier ASN

→ assigned by IANA along with IP prefix block (CIDR)

Network topology (i.e., map/connectivity):

• Router graph

→ node: router

→ edge: physical link between two routers

• AS graph

→ node: AS

→ edge: physical link between 2 or more border routers

→ sometimes at exchange point or network



CS 422 Park

Router type:

• access router

• border router

• backbone router

AS type:

• stub AS

→ no forwarding

→ may be multi-homed (more than one provider)

• transit AS

→ tier-1: global reachability & no provider above

→ tier-2 or tier-3: providers above



CS 422 Park

AS graph:

Peering

Transit AS

Transit AS

Transit AS

Transit AS

Stub AS

Stub AS
ProviderCustomer

Inter-AS relationship: bilateral

• customer-provider: customer subscribes BW from provider

→ most common

→ customer can reach provider’s reachable IP space

• peering:

→ only the peer’s IP address and below

→ the peer’s provider’s address space: invisible



CS 422 Park

Common peering:

• among tier-1 providers

→ ensures global reachability

→ socio-economic self-organization

→ less regulated than telephony

• among tier-2 providers

→ regional providers

→ economic factors

• among stubs

→ economic factors

→ e.g., content provider & access (“eyeball”) provider

→ e.g., Time Warner & AOL



CS 422 Park

Route or path: criteria of goodness

• Hop count

• Delay

• Bandwidth

• Loss rate

Composition of goodness metric:

−→ quality of end-to-end path

• Additive: hop count, delay

• Min: bandwidth

• Multiplicative: loss rate



CS 422 Park

Goodness of routing:

−→ assume N users or sessions

−→ suppose path metric is delay

• System optimal routing

→ choose paths to minimize 1
N

∑N
i=1 Di

• User optimal routing

→ each user i chooses path to minimize Di

→ selfish actions



CS 422 Park

Pros/cons:

• System optimal routing:

– Good: minimizes delay for the system as a whole

– Bad: complex and difficult to scale up

• User optimal routing:

– Good: simple

– Bad: may not make efficient use of resources

→ utilization

Some pitfalls of user optimal routing:

−→ stemming from selfishness

• Fluttering or ping pong effect

• Braess paradox

→ adding more resources makes things worse



CS 422 Park

Algorithms

Find short, in particular, shortest paths from source to

destination.

Key observation on shortest paths:

• Assume p is a shortest path from S to D

→ S
pÃ D

• Pick any intermediate node X on the path

• Consider the two segments p1 and p2

→ S
p1Ã X

p2Ã D

• The path p1 from S to X is a shortest path, and so

is the path p2 from X to D



CS 422 Park

Illustration:

p
1

S D

shortest path

shortest path shortest path

S D
X

p

p
2

−→ reverse implication need not hold

−→ suggests algorithm for finding shortest path



CS 422 Park

Procedure: Grow a routing tree T rooted at source S

−→ initially T only contains S

1. Find a node X with shortest path from S

→ there may be more than one such node

→ add X (and path S
pÃ X) to routing tree T

2. Find node Y /∈ T with shortest path from S

→ update existing paths if going through Y is shorter

→ i.e., min{d(S, Z), d(S, Y ) + `(Y, Z)}

→ need only check for Z /∈ T

3. Repeat step two until no more nodes left to add

Observations:

−→ once node is added, it’s final (no backtracking)

−→ builds minimum spanning tree routed at S

−→ Dijkstra’s algorithm



CS 422 Park

Remarks:

• Running time: O(n2) time complexity

→ n: number of nodes

• If heap is used: O(|E| log |V |)
→ good for sparse graphs: |E| ¿ n2

→ e.g., if linear: O(n log n)

• Can also be run “backwards”

→ start from destination D and go to all sources

→ a variant used in inter-domain routing

→ forward version: used in intra-domain routing

• Source S requires global link distance knowledge

→ centralized algorithm (center: source S)

→ every router runs Dijkstra with itself as source



CS 422 Park

• Internet protocol implementation

→ OSPF (Open Shortest Path First)

→ link state algorithm

→ broadcast protocol

• Minimum spanning tree routed at S:

→ multicasting: multicast tree

→ standardized but not implemented on Internet



CS 422 Park

Distributed/decentralized shortest path algorithm:

−→ Bellman-Ford algorithm

−→ based on shortest path decomposition property

Key procedure:

• Each node X maintains current shortest distance to

all other nodes

→ a distance vector

• Each node advertises to neighbors its current best dis-

tance estimates

→ i.e., neighbors exchange distance vectors

• Node X , upon receiving an update from neighbor Y ,

performs update: for all Z

d(X,Z)← min{ d(X, Z), d(Y, Z) + `(X, Y ) }

. . . same criterion as Dijkstra’s algorithm



CS 422 Park

Remarks:

• Running time: O(n3)

• Each source or router only talks to neighbors

→ local interaction

→ no need to send update if no change

→ if change, entire distance vector must be sent

• Knows shortest distance, but not path

→ just the next hop is known

• Elegant but additional issues compared to Dijkstra’s

algorithm

→ e.g., stability

• Internet protocol implementation

→ RIP (Routing Information Protocol)



CS 422 Park

QoS routing:

Given two or more performance metrics—e.g., delay and

bandwidth—find path with delay less than target delay D

(e.g., 100 ms) and bandwidth greater than target band-

width B (e.g., 1.5 Mbps)

−→ from shortest path to best QoS path

−→ multi-dimensional QoS metric

−→ other: jitter, hop count, etc.

How to find best QoS path that satisfies all requirements?

Brute-force

• Enumerate all possible paths

• Rank them



CS 422 Park

How many paths are there:

• If there are n nodes, there can be up to

n(n− 1)

2

undirected links

• Hence, from source S there can be up to

(n− 1) (n− 2) · · · 3 2 1 = (n− 1)!

paths

• By Stirling’s formula

n! ≈
√

2πn
(n

e

)n

→ superexponential

→ too many for brute-force



CS 422 Park

Is there a more clever or better algorithm?

−→ as of Nov. 12, 2007: unknown

−→ specifically: QoS routing is NP-complete

−→ strong evidence there may not exist good algorithm

In networking: several problems turn out to be NP-complete

−→ e.g., scheduling, control, . . .

−→ “P = NP” problem

−→ one of the hardest problems in science ever

Doesn’t matter too much for QoS routing

−→ little demand for very good algorithm

−→ roughly ok is fine

−→ intra-domain: short paths

−→ inter-domain: other factors (“policy”)



CS 422 Park

Policy routing:

−→ policy is not precisely defined

−→ almost anything goes

Routing criteria include

• Performance

→ e.g., short paths

• Trust

→ what in the world is “trust”?

• Economics

→ pricing

→ flexibility through multiple providers

• Politics, social issues, etc.

−→ no good understanding of “policy” to date

−→ anecdotal


