CS 422 Park

ROUTING

Problem: Given more than one path from source to des-
tination, which one to take?

<

Features:

e Architecture
e Algorithms
e Implementation

e Performance
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Architecture

Hierarchical routing:
— Internet: intra-domain vs. inter-domain routing

— separate decision making

Domain A Domain B




CS 422 Park

Ex.: Purdue to east coast (BU)

[109] infobahn:Routing % traceroute csa.bu.edu
traceroute to csa.bu.edu (128.197.12.3), 30 hops max, 40 byte packets

1 ciscob (128.10.27.250) 3.707 ms 0.616 ms 0.590 ms

172.19.60.1 (172.19.60.1) 0.406 ms 0.431 ms 0.520 ms
tel-210-m10-01-campus.tcom.purdue.edu (192.5.40.54) 0.491 ms 0.600 ms 0.510 ms
gigapop.tcom.purdue.edu (192.5.40.134) 9.658 ms 1.966 ms 1.725 ms
192.12.206.249 (192.12.206.249) 1.715 ms 3.381 ms 1.749 ms
chinng-iplsng.abilene.ucaid.edu (198.32.8.76) 5.669 ms 8.319 ms 5.601 ms
nycmng-chinng.abilene.ucaid.edu (198.32.8.83) 25.626 ms 25.664 ms 25.621 ms
noxgs1-P0-6-0-NoX-NOX.nox.org (192.5.89.9) 30.634 ms 30.768 ms 30.722 ms
192.5.89.202 (192.5.89.202) 31.128 ms 31.045 ms 31.082 ms
cummlll-cgw-extgw.bu.edu (128.197.254.121) 31.287 ms 31.152 ms 31.146 ms
cummlli-dgw-cummiil.bu.edu (128.197.254.162) 31.224 ms 31.192 ms 31.308 ms
csa.bu.edu (128.197.12.3) 31.529 ms 31.243 ms 31.367 ms
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Ex.: Purdue to west coast (Cisco)

[112] infobahn:Routing ¥ traceroute www.cisco.com
traceroute to www.cisco.com (198.133.219.25), 30 hops max, 40 byte packets

1 ciscob (128.10.27.250) 0.865 ms 0.598 ms 1.282 ms

172.19.60.1 (172.19.60.1) 0.518 ms 0.379 ms 0.405 ms
tel-210-m10-01-campus.tcom.purdue.edu (192.5.40.54) 0.687 ms 0.551 ms 0.551 ms
switch-data.tcom.purdue.edu (192.5.40.34) 3.496 ms 3.523 ms 2.750 ms
s0-2-3-0-0.gar2.Chicagol.Level3.net (67.72.124.9) 8.114 ms 20.181 ms 8.512 ms
s0-3-3-0.bbrl.Chicagol.Level3.net (4.68.96.41) 11.543 ms 9.079 ms 8.239 ms
ae-0-0.bbrl.SanJosel.Level3.net (64.159.1.129) 62.319 ms as-1-0.bbr2.SanJosel.Level3.net
ge-11-0.ipcolol.SanJosel.Level3.net (4.68.123.41) 68.180 ms ge-7-1.ipcolol.SanJosel.Level
pl-0.cisco.bbnplanet.net (4.0.26.14) 75.006 ms 72.557 ms 70.377 ms
sjce-dmzbb-gwl.cisco.com (128.107.239.53) 66.075 ms 69.223 ms 68.350 ms
sjck-dmzdc-gwl.cisco.com (128.107.224.69) 65.650 ms 74.358 ms 69.952 ms
~C
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Three levels: LAN, intra-domain, and inter-domain

Tal-210 to HAWK

Ca-2ul 1 -c3550-01

Cs-2ul1 -c2850-01

Swiichi-3
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Verizon Remote Access

‘Thorntown Fiber Hut
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Inter-domain topology:

— each dot (or node) is a domain (e.g., Purdue)

— called autonomous system (AS): 16-bit ID
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Inter-domain connectivity of Purdue:

o Level3 (AS 3356) — INDIANAGIGAPOP (AS 19782)
— Purdue (AS 17)

e Internet2/Abilene (AS 11537) — INDIANAGIGAPOP
(AS 19782) — Purdue (AS 17)

— changes over time (e.g., economic reasons)

The Indy GigaPoP has its own AS number (19782).
— part of I-Light (Indiana state-wide project)
—— located at IUPUI, connects Purdue & IU
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Level3 backbone network: www.level3.com
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—
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Abilene/Internet2 backbone: www.internet2.edu
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Granularity of routing network:
e Router

e Domain: autonomous system

— 16 bit identifier ASN
— assigned by IANA along with IP prefix block (CIDR)

Network topology (i.e., map/connectivity):
e Router graph

— node: router
— edge: physical link between two routers
e AS graph
— node: AS
— edge: physical link between 2 or more border routers

— sometimes at exchange point or network
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Router type:
® access router
e border router

e backbone router

AS type:
e stub AS

— no forwarding
— may be multi-homed (more than one provider)

e transit AS

— tier-1: global reachability & no provider above

— tier-2 or tier-3: providers above
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AS graph:
Stub AS

Transit AS Customer Provider

Peering

Transit AS

Transit AS

Stub AS

Transit AS

Inter-AS relationship: bilateral

e customer-provider: customer subscribes BW from provider
— most common
— customer can reach provider’s reachable IP space

® peering:
— only the peer’s IP address and below

— the peer’s provider’s address space: invisible
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Common peering:
e among tier-1 providers

— ensures global reachability
— socio-economic self-organization
— less regulated than telephony

e among tier-2 providers

— regional providers
— economic factors

e among stubs

— economic factors

— e.g., content provider & access ( “eyeball”) provider

— e.g., Time Warner & AOL
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Route or path: criteria of goodness
e Hop count
e Delay
e Bandwidth

e [.0ss rate

Composition of goodness metric:
— quality of end-to-end path

e Additive: hop count, delay
e Min: bandwidth

e Multiplicative: loss rate
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Goodness of routing:
—— assume [V users or sessions
— suppose path metric is delay
e System optimal routing
— choose paths to minimize + Zfil D,
e User optimal routing

— each user 7 chooses path to minimize D,

— selfish actions
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Pros/cons:
e System optimal routing:

— Good: minimizes delay for the system as a whole

— Bad: complex and difficult to scale up
e User optimal routing:

— Good: simple
— Bad: may not make efficient use of resources

— utilization

Some pitfalls of user optimal routing:
— stemming from selfishness
e Fluttering or ping pong effect

e Braess paradox

— adding more resources makes things worse
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Algorithms

Find short, in particular, shortest paths from source to
destination.

Key observation on shortest paths:
e Assume p is a shortest path from S to D
— S D
e Pick any intermediate node X on the path
e Consider the two segments p; and po
- S XA D

e The path p; from S to X is a shortest path, and so
is the path py from X to D
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[l1lustration:

s 0D

shortest path

shortest path shortest path

— reverse implication need not hold

— suggests algorithm for finding shortest path
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Procedure: Grow a routing tree 7 rooted at source S

— initially 7 only contains S
1. Find a node X with shortest path from S

— there may be more than one such node
— add X (and path S <> X) to routing tree 7
2. Find node Y ¢ 7T with shortest path from S
— update existing paths if going through Y is shorter
— ie, min{d(S, Z),d(S,Y)+ Y, Z)}
— need only check for Z ¢ T

3. Repeat step two until no more nodes lett to add

Observations:
— once node is added, it’s final (no backtracking)
—— builds minimum spanning tree routed at S

—— Dijkstra’s algorithm
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Remarks:

e Running time: O(n?) time complexity
— n: number of nodes

e I[f heap is used: O(|F|log|V])
— good for sparse graphs: |E| < n?
— e.g., if linear: O(nlogn)

e Can also be run “backwards”
— start from destination D and go to all sources
— a variant used in inter-domain routing

— forward version: used in intra-domain routing

e Source S requires global link distance knowledge

— centralized algorithm (center: source S

— every router runs Dijkstra with itself as source
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e Internet protocol implementation

— OSPF (Open Shortest Path First)
— link state algorithm
— broadcast protocol

e Minimum spanning tree routed at .S:

— multicasting: multicast tree

— standardized but not implemented on Internet
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Distributed /decentralized shortest path algorithm:
—— Bellman-Ford algorithm

—— based on shortest path decomposition property

Key procedure:

e Flach node X maintains current shortest distance to
all other nodes

— a distance vector

e Flach node advertises to neighbors its current best dis-
tance estimates

— 1.e., neighbors exchange distance vectors

e Node X, upon receiving an update from neighbor Y,
performs update: for all Z

d(X,Z) —min{d(X,2), dY,Z)+{X,Y)}

... same criterion as Dijkstra’s algorithm
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Remarks:
e Running time: O(n?)
e Fach source or router only talks to neighbors

— local interaction
— 1o need to send update if no change
— if change, entire distance vector must be sent

e Knows shortest distance, but not path
— just the next hop is known

e [llegant but additional issues compared to Dijkstra’s
algorithm

— e.g., stability
e Internet protocol implementation

— RIP (Routing Information Protocol)
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QoS routing:

Given two or more performance metrics—e.g., delay and
bandwidth—find path with delay less than target delay D
(e.g., 100 ms) and bandwidth greater than target band-
width B (e.g., 1.5 Mbps)

—— from shortest path to best QoS path
— multi-dimensional QoS metric

—— other: jitter, hop count, etc.

How to find best QoS path that satisfies all requirements?

Brute-force
e Enumerate all possible paths

e Rank them
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How many paths are there:

e [f there are n nodes, there can be up to
n(n —1)
2

undirected links

e Hence, from source S there can be up to
(m—1)(n—2)---321 = (n—1)!
paths
e By Stirling’s formula

n n
n! ~V2mn (—)
— superexponential

— too many for brute-force
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[s there a more clever or better algorithm?
—— as of Nov. 12, 2007: unknown
—— specifically: QoS routing is NP-complete

— strong evidence there may not exist good algorithm

In networking: several problems turn out to be NP-complete
— e.g., scheduling, control, ...
— “P = NP” problem

—— one of the hardest problems in science ever

Doesn’t matter too much for QoS routing
—— little demand for very good algorithm
— roughly ok is fine
— intra-domain: short paths

— inter-domain: other factors (“policy”)
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Policy routing:
—— policy is not precisely defined

— almost anything goes

Routing criteria include

e Performance
— e.g., short paths

e Trust
— what in the world is “trust”?

e [conomics
— pricing
— flexibility through multiple providers

e Politics, social issues, etc.

— 1o good understanding of “policy” to date

—— anecdotal



