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Direct Link Communication I:

Basic Techniques

Data Transmission

Link speed unit: bps

−→ abstraction

−→ ignore carrier frequency, coding etc.

Point-to-point link:

−→ wired or wireless

−→ includes broadcast case
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Interested in completion time :

−→ time elapsed between sending/receiving first bit

• Single bit:

→ ≈ L/SOL (lower bound)

→ latency (or propagation delay)

→ optical fiber, wireless: exact

• Multiple, say S, bits:

→ ≈ L/SOL + S/B

→ latency + transmission time

Latency vs. transmission time: which dominates?

−→ a lot to send, a little to send, . . .

−→ satellite, Zigbee, WLAN, broadband WAN
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Reliable Transmission

Principal methodology: ARQ (Automatic Repeat reQuest)

−→ use retransmission

−→ used in both wired/wireless

• function duplication

→ link layer, transport layer, etc.

• alternative: FEC

→ not assured

→ hybrid schemes
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Three components:

• timer

• acknowledgment (ACK)

• retransmit

data

ACK

timer
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Stop-and-Wait

Assumption: Frame is “lost” due to corruption; discarded

by NIC after error detection.
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Issue of RTT (Round-Trip Time) & timer management:

• what is proper value of timer?

→ RTT estimation

• easier for single link

→ RTT is more well-behaved

• more difficult for multi-hop path in internetwork

→ latency + queueing effect
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Another key problem: not keeping the pipe full.

−→ delay-bandwidth product

−→ volume of data travelling on the link

High throughput: want to keep the pipe full

Stop-and-wait throughput (bps):

• RTT

• frame size (bits)

−→ throughput = frame size / RTT



CS 422 Park

Ex.: Link BW 1.5 Mbps, 45 ms RTT

• delay-bandwidth product:

→ 1.5 Mbps × 45 ms = 67.5 kb ≈ 8 kB

• if frame size 1 kB, then throughput:

→ 1024× 8/0.045 = 182 kbps

→ utilization: only 182 kbps/1500 kbps = 0.121

Solution: increase frame size

• brute increase of frame size can be problematic

→ bully problem

→ existing LAN frame standards (legacy compatible)

• send blocks of data, i.e., sequence of frames
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Sliding Window Protocol

−→ send window/block of data

Issues:

• Shield application process from reliability manage-

ment chore

→ exported semantics: continuous byte stream

→ simple app abstraction: e.g., read system call

• Both sender and receiver have limited buffer capacity

→ efficiency: space-bounded computation

→ task: “plug holes & flush”

Sender Receiver

1 2 3 4 5 3 4 5

Dropped

1 2
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Simple solution when receiver has infinite buffer capacity:

• sender keeps sending at maximum speed

• receiver informs sender of holes

→ i.e., negative ACK

• sender retransmits missing frames

−→ sender’s buffer capacity?

−→ need for positive ACK?

With finite buffer:

−→ issue of bookkeeping

Flow control & congestion control:

→ sending too much is counterproductive

→ regulate sending rate
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Set-up:

SWS

LAR LFS

RWS

NFE LFA

Sender:

Receiver:

• SWS : Sender Window Size (sender buffer size)

• RWS : Receiver Window Size (receiver buffer size)

• LAR: Last ACK Received

• LFS : Last Frame Sent

• NFE : Next Frame Expected

• LFA: Last Frame Acceptable
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Assign sequence numbers to frames.

−→ IDs

Maintain invariants:

• LFA− NFE + 1 ≤ RWS

• LFS− LAR + 1 ≤ SWS

Sender:

• Receive ACK with sequence number X

• Forwind LAR to X

• Flush buffer up to (but not including) LAR

• Send up to SWS− (LFS− LAR + 1) frames

• Update LFS
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Receiver:

• Receive packet with sequence number Y

• Forwind to (new) first hole & update NFE

→ NFE need not be Y + 1

• Send cumulative ACK (i.e., NFE)

• Flush buffer up to (but not including) NFE to appli-

cation

• Update LFA← NFE + RWS− 1
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ACK variants:

• piggyback

• negative ACKs

• selective ACKs

Sequence number wrap-around problem:

SWS < (MaxSeqNum + 1)/2.

−→ note: stop-and-wait is special binary case
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Error Detection and Correction

−→ recall: reliable transmission over noisy channel

Key problem:

• sender wishes to send a; transmits code word wa

• receiver receives w

• due to noise, w may, or may not, be equal to wa

−→ would like to detect error has occurred

−→ would like to correct error
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Error detection problem:

• determine if w is a valid code word

→ i.e., for some symbol c ∈ Σ, F (c) = w

• e.g., parity bit in ASCII transmission

→ odd or even parity

→ limitation?

Error correction problem:

• even if w 6= wa, recover symbol a from scrambled w

→ correction is tougher than detection

• how to correct single errors for ASCII transmission?

→ e.g., assume 21 bits available

→ what about 14 bits?
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Conceptual approach to detection & correction:

Error detection:

• valid/legal code word set S = {wa : a ∈ Σ}
• can detect k-bit errors if

→ corrupted w does not belong to S

→ for all k-bit error patterns

−→ flipped code word cannot impersonate as valid

What kind of S can satisfy these properties?

−→ e.g., ASCII with 1-bit, 2-bit, . . ., k-bit flips

−→ intuition?
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Key idea:

−→ valid code words should not look alike

−→ well-separatedness

−→ “distance” between two binary strings?

Error correction:

• suppose wa has turned into w under k-bit errors

• for all b ∈ Σ, calculate d(wb, w)

→ use Hamming distance

→ e.g., d(1011, 1101) = 2

• pick c ∈ Σ with smallest d(wc, w) as answer
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Ex.: 0 7→ 000 and 1 7→ 111

−→ want to send 0, hence send 000

−→ 010 arrives: d(010, 000) = 1 & d(010, 111) = 2

−→ conclude 000 was corrupted into 010

−→ original data bit: 0

Obviously not fool-proof . . .

−→ the larger k, the more distant the code words

−→ need a roomier playing area

−→ imbed valid/legal code words
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Pictorially: “ball” of radius r centered at wa

−→ Br(wa) = {w : d(wa, w) ≤ r}
−→ well-separated code word set S layout

If k bit flips, sufficient conditions for error detection and

correction in terms of d(wa, wb) for all a, b ∈ Σ?
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Network protocol context: different approach to detection

vs. correction

−→ error detection: use checksum and CRC codes

−→ error correction: use retransmission

−→ humans?

−→ can also use FEC; for real-time data

Internet checksum: group message into 16-bit words; cal-

culate their sum in one’s complement; append “check-

sum” to message.

−→ problem?


