
CS 422 Park

Direct Link Communication I:

Basic Techniques

Data Transmission

Link speed unit: bps

−→ abstraction

−→ ignore carrier frequency, coding etc.

Point-to-point link:

−→ wired or wireless

−→ includes broadcast case



CS 422 Park

Interested in completion time :

−→ time elapsed between sending/receiving first bit

• Single bit:

→ ≈ L/SOL (lower bound)

→ latency (or propagation delay)

→ optical fiber, wireless: exact

• Multiple, say S, bits:

→ ≈ L/SOL + S/B

→ latency + transmission time

Latency vs. transmission time: which dominates?

−→ a lot to send, a little to send, . . .

−→ satellite, Zigbee, WLAN, broadband WAN



CS 422 Park

Reliable Transmission

Principal methodology: ARQ (Automatic Repeat reQuest)

−→ use retransmission

−→ used in both wired/wireless

• function duplication

→ link layer, transport layer, etc.

• alternative: FEC

→ not assured

→ hybrid schemes



CS 422 Park

Three components:

• timer

• acknowledgment (ACK)

• retransmit

data

ACK

timer



CS 422 Park

Stop-and-Wait

Assumption: Frame is “lost” due to corruption; discarded

by NIC after error detection.

data

tim
eo

ut

time

ACK tim
eo

ut

time

data

tim
eo

ut

time

data

tim
eo

ut

time

ACK

data

data

ACK

data

ACK

data

ACK

ACK



CS 422 Park

Issue of RTT (Round-Trip Time) & timer management:

• what is proper value of timer?

→ RTT estimation

• easier for single link

→ RTT is more well-behaved

• more difficult for multi-hop path in internetwork

→ latency + queueing effect



CS 422 Park

Another key problem: not keeping the pipe full.

−→ delay-bandwidth product

−→ volume of data travelling on the link

High throughput: want to keep the pipe full

Stop-and-wait throughput (bps):

• RTT

• frame size (bits)

−→ throughput = frame size / RTT



CS 422 Park

Ex.: Link BW 1.5 Mbps, 45 ms RTT

• delay-bandwidth product:

→ 1.5 Mbps × 45 ms = 67.5 kb ≈ 8 kB

• if frame size 1 kB, then throughput:

→ 1024× 8/0.045 = 182 kbps

→ utilization: only 182 kbps/1500 kbps = 0.121

Solution: increase frame size

• brute increase of frame size can be problematic

→ bully problem

→ existing LAN frame standards (legacy compatible)

• send blocks of data, i.e., sequence of frames



CS 422 Park

Sliding Window Protocol

−→ send window/block of data

Issues:

• Shield application process from reliability manage-

ment chore

→ exported semantics: continuous byte stream

→ simple app abstraction: e.g., read system call

• Both sender and receiver have limited buffer capacity

→ efficiency: space-bounded computation

→ task: “plug holes & flush”

Sender Receiver

1 2 3 4 5 3 4 5

Dropped

1 2



CS 422 Park

Simple solution when receiver has infinite buffer capacity:

• sender keeps sending at maximum speed

• receiver informs sender of holes

→ i.e., negative ACK

• sender retransmits missing frames

−→ sender’s buffer capacity?

−→ need for positive ACK?

With finite buffer:

−→ issue of bookkeeping

Flow control & congestion control:

→ sending too much is counterproductive

→ regulate sending rate



CS 422 Park

Set-up:

SWS

LAR LFS

RWS

NFE LFA

Sender:

Receiver:

• SWS : Sender Window Size (sender buffer size)

• RWS : Receiver Window Size (receiver buffer size)

• LAR: Last ACK Received

• LFS : Last Frame Sent

• NFE : Next Frame Expected

• LFA: Last Frame Acceptable



CS 422 Park

Assign sequence numbers to frames.

−→ IDs

Maintain invariants:

• LFA− NFE + 1 ≤ RWS

• LFS− LAR + 1 ≤ SWS

Sender:

• Receive ACK with sequence number X

• Forwind LAR to X

• Flush buffer up to (but not including) LAR

• Send up to SWS− (LFS− LAR + 1) frames

• Update LFS



CS 422 Park

Receiver:

• Receive packet with sequence number Y

• Forwind to (new) first hole & update NFE

→ NFE need not be Y + 1

• Send cumulative ACK (i.e., NFE)

• Flush buffer up to (but not including) NFE to appli-

cation

• Update LFA← NFE + RWS− 1



CS 422 Park

ACK variants:

• piggyback

• negative ACKs

• selective ACKs

Sequence number wrap-around problem:

SWS < (MaxSeqNum + 1)/2.

−→ note: stop-and-wait is special binary case



CS 422 Park

Error Detection and Correction

−→ recall: reliable transmission over noisy channel

Key problem:

• sender wishes to send a; transmits code word wa

• receiver receives w

• due to noise, w may, or may not, be equal to wa

−→ would like to detect error has occurred

−→ would like to correct error



CS 422 Park

Error detection problem:

• determine if w is a valid code word

→ i.e., for some symbol c ∈ Σ, F (c) = w

• e.g., parity bit in ASCII transmission

→ odd or even parity

→ limitation?

Error correction problem:

• even if w 6= wa, recover symbol a from scrambled w

→ correction is tougher than detection

• how to correct single errors for ASCII transmission?

→ e.g., assume 21 bits available

→ what about 14 bits?



CS 422 Park

Conceptual approach to detection & correction:

Error detection:

• valid/legal code word set S = {wa : a ∈ Σ}
• can detect k-bit errors if

→ corrupted w does not belong to S

→ for all k-bit error patterns

−→ flipped code word cannot impersonate as valid

What kind of S can satisfy these properties?

−→ e.g., ASCII with 1-bit, 2-bit, . . ., k-bit flips

−→ intuition?



CS 422 Park

Key idea:

−→ valid code words should not look alike

−→ well-separatedness

−→ “distance” between two binary strings?

Error correction:

• suppose wa has turned into w under k-bit errors

• for all b ∈ Σ, calculate d(wb, w)

→ use Hamming distance

→ e.g., d(1011, 1101) = 2

• pick c ∈ Σ with smallest d(wc, w) as answer



CS 422 Park

Ex.: 0 7→ 000 and 1 7→ 111

−→ want to send 0, hence send 000

−→ 010 arrives: d(010, 000) = 1 & d(010, 111) = 2

−→ conclude 000 was corrupted into 010

−→ original data bit: 0

Obviously not fool-proof . . .

−→ the larger k, the more distant the code words

−→ need a roomier playing area

−→ imbed valid/legal code words



CS 422 Park

Pictorially: “ball” of radius r centered at wa

−→ Br(wa) = {w : d(wa, w) ≤ r}
−→ well-separated code word set S layout

If k bit flips, sufficient conditions for error detection and

correction in terms of d(wa, wb) for all a, b ∈ Σ?



CS 422 Park

Network protocol context: different approach to detection

vs. correction

−→ error detection: use checksum and CRC codes

−→ error correction: use retransmission

−→ humans?

−→ can also use FEC; for real-time data

Internet checksum: group message into 16-bit words; cal-

culate their sum in one’s complement; append “check-

sum” to message.

−→ problem?


