Network performance

In computer networks, speed is at a premium.

Three yardsticks of performance:

- bandwidth: bps (bits-per-second)
 - \rightarrow throughput: includes software processing overhead
- latency: msec (millisecond)
 - \rightarrow signal propagation speed
 - \rightarrow approximately: speed of light
 - \rightarrow delay: includes software processing overhead
- jitter: delay variation

Bandwidth vs. throughput:

bandwidth—maximum data transmission rate achievable at the hardware level; determined by signalling rate of physical link and NIC.

throughput—maximum data transmission rate achievable at the software level; overhead of network protocols inside OS is accounted for.

reliable throughput—maximum reliable data transmission rate achievable at the software level; effect of recovery from transmission errors and packet loss accounted for.

 \longrightarrow note: the Internet is "leaky"

Meaning of "high-speed" networks:

• signal propagation speed is bounded by SOL (speed-of-light)

 $\rightarrow \sim \! 300 \mathrm{K} \mathrm{~km/s}$ or $\sim \! 186 \mathrm{K} \mathrm{~miles/s}$

 \rightarrow optical fiber, copper: nearly same

- Ex.: latency: Purdue to West Coast
 - \rightarrow around 2000 miles: $\sim 10 \text{ msec} (= 2000/186000)$
 - \rightarrow lower bound
- \bullet Ex.: geostationary satellites: ${\sim}22.2 {\rm K}$ miles
 - \rightarrow latency: $\sim 120 \text{ msec}$
 - \rightarrow end-to-end (one-way): \sim 240 msec
 - \rightarrow round-trip (two-way): ~480 msec
 - \rightarrow typically: \sim 500 msec

- thus: a single bit cannot go faster
 - \rightarrow for example: digital pulse
 - \rightarrow can only increase "bandwidth"
 - \rightarrow analogous to widening highway, i.e., more lanes
 - \rightarrow simulatenous transmission
- interpretation: "high-speed" \Leftrightarrow "many lanes"
 - \rightarrow what does it buy?
 - \rightarrow completion time of large files faster
 - \rightarrow in this sense, "higher" speed
 - \rightarrow more accurate term: broadband networks

Some units:

Tbps, Gbps, Mbps, Kbps:

 $10^{1}2$, 10^{9} , 10^{6} , 10^{3} bits per second; indicates data transmission rate; influenced by clock rate (MHz/GHz) of signaling hardware

- \longrightarrow communication rate: factors of 1000
- \longrightarrow data size: 1 KB means 1024 bytes

Common bit rates:

- 10, 100, 1000 Mbps (1 Gbps); 10 Gbps Ethernet
- 11 Mbps (and 5, 2, 1 Mbps) for 802.11b WLAN \rightarrow 5, 2 and 1 Mbps: fallback rates
- 54 Mbps (and 48, 36, 24, 18, 12, 9, 6 Mbps) for 802.11g/a WLAN
- \bullet 540 Mbps for 802.11n WLAN
- 64 Kbps (toll quality digitized voice) \rightarrow landline
- ~ 10 Kbps (cell phone quality voice)
- 1.544 Mbps (T1), 44.736 Mbps (T3)
- \bullet popular backbone speeds: 1 and 10 Gbps

Purdue's backbone network: ITaP

Level3 backbone network: www.level3.com

LEVEL 3 IP BACKBONE

 \rightarrow 10 Gbps backbone (green): same speed as Purdue

 \rightarrow Purdue CS Dept.: 10 Gbps backbone

What is traveling on the wires?

Mixture of:

- bulk data, audio/voice, video/image, real-time interactive data, etc.
- $\longrightarrow~>85\%$ of Internet traffic is bulk TCP traffic
- \longrightarrow due to Web/HTTP
- \longrightarrow share of P2P traffic (TCP) increasing rapidly

Multimedia (voice/audio/video) streaming on the rise but still a minority

- \longrightarrow e.g., Skype (voice)
- \longrightarrow e.g., desktop video conferencing (webcams)
- \longrightarrow e.g., Internet radio, iTunes snippets (audio)

Internet traffic is "bursty":

 \longrightarrow multimedia: MPEG compressed video

Why?

- video compression
 - \rightarrow utilize inter-frame compression
- pattern of scene changes in movies
 - \rightarrow within a scene few changes
- across scenes, significant scenary changes
 - \rightarrow e.g., action movies

Why?

- \bullet bulk data: 80/20 rule-of-thumb
- majority of files are small, a few very large

 \rightarrow "many mice, a few elephants"

- \rightarrow the few elephants make up 80% of total traffic
- \rightarrow same for disk space

Real-world is inherently uneven ...

How to make sense of all this?

Study of networks has three aspects:

- \bullet architecture
 - \rightarrow system design or blue print
- algorithms
 - \rightarrow how do the components work
- implementation
 - \rightarrow how are the algorithms implemented

Keep in mind when viewing networking material.

Also, importance of performance, i.e., speed.

 \rightarrow slow technologies do not survive in networking world

 \rightarrow e.g., cryptography