
CS 422 Park

Transport Protocols: TCP and UDP

−→ end-to-end protocol

−→ runs on top of network layer protocols

−→ treat network layer & below as black box

Three-level encapsulation:

TCP/UDPIPMAC Payload (TCP/UDP)

Payload (IP)

Payload (MAC)

MAC TrailerHeaders

−→ meaning of protocol “stack”: push/pop headers

−→ common TCP payload: HTTP

CS 422 Park

Network layer (IP) assumptions:

• unreliable

• out-of-order delivery

• absence of QoS guarantees (delay, throughput, etc.)

• insecure (IPv4)

→ IPsec

Additional performance properties:

•Works “ok”

• Can break down under high load conditions

→ Atlanta Olympics

→ DoS and worm attack

•Wide behavioral range

→ sometimes good, so so, or bad

CS 422 Park

Goal of UDP (User Datagram Protocol):

−→ process identification

−→ port number as demux key

−→ minimal support beyond IP

Process A

Port X

Process B

Port Y

End System O.S.

UDP

IP

Process A’

Port X’

Process B’

Port Y’

End System O.S.

UDP

IP

Network

CS 422 Park

UDP packet format:

Source Port Destination Port

Length Checksum

Payload

2 2

Checksum calculation (pseudo header):

Source Address

Destination Address

4

UDP LengthProtocol00 0. . .

−→ pseudo header, UDP header and payload

CS 422 Park

UDP usage:

• multimedia streamining

→ lean and nimble

→ at minimum requires process identification

→ congestion control carried out above UDP

• stateless client/server applications

→ persistent state a hinderance

→ lightweight

CS 422 Park

Goals of TCP (Transmission Control Protocol):

• process identification

• reliable communication: ARQ

• speedy communication: congestion control

• segmentation

−→ connection-oriented, i.e., stateful

−→ complex mixture of functionalities

CS 422 Park

Segmentation task: provide “stream” interface to higher

level protocols

−→ exported semantics: contiguous byte stream

−→ recall ARQ

• segment stream of bytes into blocks of fixed size

• segment size determined by TCP MTU (Maximum

Transmission Unit)

• actual unit of transmission in ARQ

CS 422 Park

TCP packet format:

Source Port Destination Port

Sequence Number

Acknowledgement Number

Window Size

Urgent Pointer

DATA (if any)

Options (if any)

Checksum

Header
Length

F
I
NN

Y
SR

S
T

P

H
S

A
C
K

U

G
R

2 2

CS 422 Park

• Sequence Number: position of first byte of payload

• Acknowledgement: next byte of data expected (re-

ceiver)

• Header Length (4 bits): 4 B units

• URG: urgent pointer flag

• ACK: ACK packet flag

• PSH: override TCP buffering

• RST: reset connection

• SYN: establish connection

• FIN: close connection

•Window Size: receiver’s advertised window size

• Checksum: prepend pseudo-header

• Urgent Pointer: byte offset in current payload where

urgent data begins

• Options: MTU; take min of sender & receiver (default

556 B)

CS 422 Park

Checksum calculation (pseudo header):

Source Address

Destination Address

4

Protocol00 0. . . TCP Segment Length

−→ pseudo header, TCP header and payload

CS 422 Park

TCP connection establishment (3-way handshake):

A B

SYN = 1, Seq. No. = X

SYN = 1, Seq. No. = Y

ACK = 1, Ack. No. = X + 1

ACK = 1, Ack. No. = Y + 1

• X , Y are chosen randomly

→ sequence number prediction

• piggybacking

CS 422 Park

2-person consensus problem: are A and B in agreement

about the state of affairs after 3-way handshake?

−→ in general: impossible

−→ can be proven

−→ “acknowledging the ACK problem”

−→ also TCP session ending

−→ lunch date problem

CS 422 Park

TCP connection termination:

.

.

.
A B

Ack. No. = Y

Ack. No. = X + 1

Ack. No. = Y + 1

FIN = 1, Seq. No. = Y

FIN = 1, Seq. No. = X

Seq. No. = X + 1

• full duplex

• half duplex

CS 422 Park

More generally, finite state machine representation of TCP’s

control mechanism:

−→ state transition diagram

CS 422 Park

Features to notice:

• Connection set-up:

– client’s transition to ESTABLISHED state without

ACK

– how is server to reach ESTABLISHED if client ACK

is lost?

– ESTABLISHED is macrostate (partial diagram)

• Connection tear-down:

– three normal cases

– special issue with TIME WAIT state

– employs hack

CS 422 Park

Basic TCP data transfer:

0K

0K

A B

Ack = 1024, Win = 1024

Seq = 1024

Ack = 2048, Win = 0

Seq = 1024

Seq =2048

Seq = 0

Timer Expires;
Retransmit

1K

1K

0K

2K

Ack = 2048, Win = 0

Ack = 2048, Win = 1024

CS 422 Park

TCP’s sliding window protocol

Stream
Byte

Stream
Byte

Receiver:
NextByteExpected

LastByteRead LastByteRcvd

Sender:

LastByteAcked

LastByteSent

LastByteWritten

• sender, receiver maintain buffers MaxSendBuffer,

MaxRcvBuffer

CS 422 Park

Note asynchrony between TCP module and application.

Sender side: maintain invariants

• LastByteAcked ≤ LastByteSent ≤ LastByteWritten

• LastByteWritten−LastByteAcked < MaxSendBuffer

−→ buffer flushing (advance window)

−→ application blocking

• LastByteSent−LastByteAcked ≤ AdvertisedWindow

Thus,

EffectiveWindow = AdvertisedWindow−
(LastByteSent− LastByteAcked)

−→ upper bound on new send volume

CS 422 Park

Actually, one additional refinement:

−→ CongestionWindow

EffectiveWindow update procedure:

EffectiveWindow = MaxWindow−
(LastByteSent− LastByteAcked)

where

MaxWindow =

min{ AdvertisedWindow, CongestionWindow }

How to set CongestionWindow.

−→ domain of TCP congestion control

CS 422 Park

Receiver side: maintain invariants

• LastByteRead < NextByteExpected ≤
LastByteRcvd + 1

• LastByteRcvd− NextByteRead < MaxRcvBuffer

−→ buffer flushing (advance window)

−→ application blocking

Thus,

AdvertisedWindow = MaxRcvBuffer−
(LastByteRcvd− LastByteRead)

CS 422 Park

Issues:

How to let sender know of change in receiver window size

after AdvertisedWindow becomes 0?

• trigger ACK event on receiver side when

AdvertisedWindow becomes positive

• sender periodically sends 1-byte probing packet

−→ design choice: smart sender/dumb receiver

−→ same situation for congestion control

CS 422 Park

Silly window syndrome: Assuming receiver buffer is full,

what if application reads one byte at a time with long

pauses?

• can cause excessive 1-byte traffic

• if AdvertisedWindow < MSS then set

AdvertisedWindow← 0

CS 422 Park

Do not want to send too many 1 B payload packets.

Nagle’s algorithm:

• rule: connection can have only one such unacknowl-

edged packet outstanding

• while waiting for ACK, incoming bytes are accumu-

lated (i.e., buffered)

. . . compromise between real-time constraints and effi-

ciency.

−→ useful for telnet-type applications

CS 422 Park

Sequence number wrap-around problem: recall sufficient

condition

SenderWindowSize < (MaxSeqNum + 1)/2

−→ 32-bit sequence space/16-bit window space

However, more importantly, time until wrap-around im-

portant due to possibility of roaming packets.

bandwidth time until wrap-around †
T1 (1.5 Mbps) 6.4 hrs

Ethernet (10 Mbps) 57 min

T3 (45 Mbps) 13 min

F/E (100 Mbps) 6 min

OC-3 (155 Mbps) 4 min

OC-12 (622 Mbps) 55 sec

OC-24 (1.2 Gbps) 28 sec

CS 422 Park

RTT estimation

. . . important to not underestimate nor overestimate.

Karn/Partridge: Maintain running average with precau-

tions

EstimateRTT← α · EstimateRTT + β · SampleRTT

• SampleRTT computed by sender using timer

• α + β = 1; 0.8 ≤ α ≤ 0.9, 0.1 ≤ β ≤ 0.2

• TimeOut← 2 · EstimateRTT or

TimeOut← 2 · TimeOut (if retransmit)

−→ need to be careful when taking SampleRTT

−→ infusion of complexity

−→ still remaining problems

CS 422 Park

Hypothetical RTT distribution:

RTT

Samples

RTT

Samples

−→ need to account for variance

−→ not nearly as nice

CS 422 Park

Jacobson/Karels:

• Difference = SampleRTT− EstimatedRTT

• EstimatedRTT = EstimatedRTT + δ · Difference
• Deviation = Deviation+δ(|Difference|−Deviation)

Here 0 < δ < 1.

Finally,

• TimeOut = µ · EstimatedRTT + φ · Deviation

where µ = 1, φ = 4.

−→ persistence timer

−→ how to keep multiple timers in UNIX

