END-TO-END COMMUNICATION

Goal: Interconnect multiple LANs.

Why?

• Diverse LANs speak different languages

 \rightarrow need to make them talk to each other

• Management flexibility

 \rightarrow global vs. local Internet

Problems:

- How to choose paths (routing)?
- How to regulate flow (congestion control)?
 - \rightarrow not too much, not too little
- How to provide service quality (QoS control)?

Route set-up: circuit-switched

connection set-up message: signaling

→ route selection: routing subsystem
→ different from route set-up subsystem

source tag "A" inserted into look-up table

→ on-demand look-up table
→ deletion upon termination

Route set-up: packet-switched

- \longrightarrow dispense with connection set-up signaling
- \longrightarrow each packet: autonomous entity

Source routing:

 \bullet packet contains path information

 $\rightarrow \langle A, C, \dots, B \rangle$

• drawback: header length increases with path length \rightarrow not good for fast packet handling

Destination-based forwarding:

- determine output port by destination address
- source address ignored
 - \longrightarrow same destination, same path: at any node
 - \longrightarrow Internet packet switching
 - \longrightarrow any problems with ignoring source address?

Internet Protocol (IP)

Goals:

- interconnect diverse LANs into one logical entity
- implement best-effort service
 - \rightarrow no assurances ("what you get is what you get")
 - \rightarrow simplicity is key
- IP represents:
 - common language for carrying out non-LAN-specific conversations
 - \rightarrow technical definition of Internet
 - functionality and design philosophy
 - \rightarrow simple core / complex edge
 - \rightarrow called end-to-end paradigm

- simplifies router design but increases complexity of end stations (e.g., PCs, PDAs)
 - \rightarrow implement ARQ at sender/receiver
 - \rightarrow router does not carry out ARQ

IP packet format:

- Header length: in 4 byte (word) units.
- TOS (type-of-service): Partially used.
- 4 bytes used for fragmentation.
- TTL (time-to-live): Prevent cycling (default 64).
- Protocol: demultiplexing key (TCP 6, UDP 17).

LAN has maximum transmission unit (MTU): maximum frame size

 \longrightarrow e.g., Ethernet 1500 B, WLAN 2313 B

- potential size mismatch problem (IP 64 kB)
- may happen multiple times hopping from LAN to LAN

Solution: fragment IP packet when needed, maintain sequencing information, then reassemble at destination.

- assign unique fragmentation ID
- set 3rd flag bit if fragmentation in progress
- sequence fragments using offset in units of 8 bytes

Example: IP fragmentation (Ethernet MTU)

Note: Each fragment is an independent IP packet.

Destination discards all fragments of an IP packet if one is lost.

- \longrightarrow "all for one, one for all"
- \longrightarrow set 2nd flag bit to disable fragmentation

TCP: Negotiate at start-up TCP segment (packet) size based on MTU

 \longrightarrow tries to prevent fragmentation

Dotted decimal notation: 10000000 00001011 00000011 00011111 \leftrightarrow 128.11.3.31

Symbolic name to IP address translation: domain name server (DNS).

Hierarchical organization: 2-level

 \longrightarrow network and host

Each interface (NIC) has an IP address; single host can have multiple IP addresses.

 \longrightarrow single-homed vs. multi-homed

Running out of IP addresses . . . or not?

- \longrightarrow should Purdue get a class B address?
- \longrightarrow how about your start-up company?
- \longrightarrow what about Purdue's Biology Dept.?
- \longrightarrow what about the Math Dept.?

Waste of address space:

 \longrightarrow typical organization: network of networks

 \longrightarrow not too many hosts (class B: 64K)

Solution: subnetting—subdivide host ID into subnetwork ID and host ID

To determine subnet ID:

- AND IP address and subnet mask
 - \rightarrow already know if class A, B, C, or D
- 3-level hierarchy

Subnet ID	Subnet Mask	Next Hop
128.10.2.0	255.255.255.0	Interface 0
128.10.3.0	255.255.255.0	Interface 1
128.10.4.0	255.255.255.0	128.10.4.250

Forwarding and address resolution:

Either destination host is connected on a shared LAN, or not (additional IP hop needed).

- \longrightarrow reachable by LAN address forwarding
- \longrightarrow if not, network address (IP) forwarding

Table look-up I ("where to"):

- For each entry, compute SubnetID = DestAddr AND SubnetMask.
- Compare *SubnetID* with *SubnetID*.
- Take forwarding action (LAN or IP).

Remaining task: translate destination or next hop IP address into LAN address

- \longrightarrow must be done in either case
- \longrightarrow address resolution protocol (ARP)

Table look-up II ("what's your LAN name"):

• If ARP table contains entry, using LAN address link layer can take over forwarding task.

 \rightarrow ultimately everything is LAN

 \rightarrow network layer: virtual

• If ARP table does not contain entry, broadcast ARP Request packet with destination IP address.

 \rightarrow e.g., Ethernet broadcast address (all 1's)

• Upon receiving ARP response, update ARP table.

Dynamically maintain ARP table: use timer for each entry (15 min) to invalidate entries.

 \longrightarrow aging (standard caching technique)

Subnetting only goes so far.

- \longrightarrow depts. within Purdue share same class B address
- \longrightarrow what about your start-up company?
- \longrightarrow only 2^{21} class C addresses available

Other approaches to solve address depletion problem:

• IPv6

- $\rightarrow 128$ bits (who wants it?)
- \rightarrow not used much
- Classless (vs. classful) IP addressing
- \rightarrow variable length subnetting
- \rightarrow that is, a.b.c.d/x (x: mask length)
- \rightarrow e.g., 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
- \rightarrow used in inter-domain routing
- \rightarrow CIDR (classless inter-domain routing)
- \rightarrow de facto global Internet addressing standard

- Dynamically assigned IP addresses
- \rightarrow share an IP address pool

 \rightarrow reusable

- \rightarrow e.g., DHCP (dynamic host configuration protocol)
- \rightarrow used by access ISPs, enterprises, etc.
- Network address translation (NAT)
- \rightarrow dynamically assigned + address translation
- \rightarrow private vs. public IP address
- \rightarrow private: Internet routers discard them
- \rightarrow e.g., 192.168.0.0 is private
- \rightarrow useful for home networks, small businesses

\bullet NATP

- \rightarrow variant of NAT: use src port numbers as address bits
- \rightarrow e.g.: 192.168.10.10 and 192.168.10.11 map to 128.10.27.10
- \rightarrow but 192.168.10.10 maps to 128.10.26.10:6001
- \rightarrow and 192.168.10.11 maps to 128.10.26.10:6002
- \rightarrow what about source port numbers?

Ex.: SOHO (small office/home office)

 \longrightarrow now: home networking

- dynamic IP address provided by ISP is shared through NAT
- IANA (Internet Assigned Numbers Authority)

 \rightarrow non-routable: e.g., 192.168.0.0/16, 10.0.0/8

CIDR and dynamically assigned IP addresses with NAPT

- \rightarrow significant increase of Internet's effective address space
- \rightarrow saved the day (for now)!
- \rightarrow perception: no pressing need for IPv6
- \rightarrow can one run a web server behind at NATP box?
- \rightarrow other limitations?