Digital vs. Analog Data

Digital data: bits.

- $\longrightarrow$  discrete signal
- $\longrightarrow$  both in time and amplitude

Analog "data": audio/voice, video/image

- $\longrightarrow$  continuous signal
- $\longrightarrow$  both in time and amplitude

Both forms used in today's network environment.

- $\longrightarrow$  burning CDs
- $\longrightarrow$  audio/video playback

In broadband networks:

 $\longrightarrow$  use analog signals to carry digital data

Important task: analog data is often digitized

- $\longrightarrow$  useful: why?
- $\longrightarrow$  it's convenient
- $\longrightarrow$  use full power of digital computers
- $\longrightarrow$  simple form: digital signal processing
- $\longrightarrow$  analog computers are not as versatile/programmable
- $\longrightarrow$  cf. "Computer and the Brain," von Neumann (1958)

How to digitize such that digital representation is faithful?

- $\longrightarrow$  sampling
- $\longrightarrow$  interface between analog & digital world

Intuition behind sampling:

 $\rightarrow$  slowly vs. rapidly varying signal



If a signal varies quickly, need more samples to not miss details/changes.

$$\nu_1 = 1/T_1 < \nu_2 = 1/T_2$$

Sampling criterion for guaranteed faithfulness:

**Sampling Theorem (Nyquist):** Given continuous bandlimited signal s(t) with  $S(\omega) = 0$  for  $|\omega| > W$ , s(t) can be reconstructed from its samples if

$$\nu > 2W$$

where  $\nu$  is the sampling rate.

 $\longrightarrow \nu$ : samples per second

Remember simple rule: sample twice the bandwidth

Issue of digitizing amplitude/magnitude ignored

- $\longrightarrow$  problem of quantization
- $\longrightarrow$  possible source of information loss
- $\longrightarrow$  exploit limitations of human perception
- $\longrightarrow$  logarithmic scale

### Compression

Information transmission over noiseless medium

- $\longrightarrow$  medium or "channel"
- $\longrightarrow$  fancy name for copper wire, fiber, air/space

Sender wants to communicate information to receiver over noiseless channel.

- $\longrightarrow$  can receive exactly what is sent
- $\longrightarrow$  idealized scenario



Set-up:

- $\longrightarrow$  take a system perspective
- $\longrightarrow$  e.g., modem manufacturer

Need to specify two parts: property of data source—what are we supposed to send?—and how compression is done.

 $\longrightarrow$  need to know what we're dealing with

 $\longrightarrow$  if we want to do a good job compressing

Part I. What does the (data) source look like:

- source s emits symbols from finite alphabet set  $\Sigma$  $\rightarrow$  e.g.,  $\Sigma = \{0, 1\}; \Sigma = ASCII$  character set
- symbol  $a \in \Sigma$  is generated with probability  $p_a > 0$ 
  - $\rightarrow$  e.g., books have known distribution for 'e', 'x' ...  $\rightarrow$  let's play "Wheel of Fortune"

Part II. Compression machinery:

- code book F assigns code word  $w_a = F(a)$  for each symbol  $a \in \Sigma$ 
  - $\rightarrow w_a$  is a binary string of length  $|w_a|$
  - $\rightarrow F$  could be just a table
- F is invertible
  - $\rightarrow$  receiver d can recover a from  $w_a$
  - $\rightarrow F^{-1}$  is the same table, different look-up



• 
$$F^1$$
:  $w_A = 00, w_C = 01, w_G = 10, w_T = 11$ 

• 
$$F^2$$
:  $w_A = 0, w_C = 10, w_G = 110, w_T = 1110$ 

 $\longrightarrow$  pros & cons?

Note: code book F is not unique

- $\longrightarrow$  find a "good" code book
- $\longrightarrow$  when is a code book good?

Performance (i.e., "goodness") measure: average code length L

$$L = \sum_{a \in \Sigma} p_a |w_a|$$

 $\longrightarrow$  average number of bits consumed by given F

Ex.: If DNA sequence is 10000 letters long, then require on average  $10000 \cdot L$  bits to be transmitted.

 $\longrightarrow$  good to have code book with small L

Optimization problem: Given source  $\langle \Sigma, \mathbf{p} \rangle$  where  $\mathbf{p}$  is a probability vector, find a code book F with least L.

- $\longrightarrow$  practically super-important
- $\longrightarrow$  shrink-and-send
- $\longrightarrow$  lossless shrinkage

A fundamental result on what is achievable to attain small L.

 $\longrightarrow$  kind of like speed-of-light

First, define entropy H of source  $\langle \Sigma, \mathbf{p} \rangle$ 

$$H = \sum_{a \in \Sigma} p_a \log \frac{1}{p_a}$$

Ex.:  $\Sigma = \{A, C, G, T\}$ ; *H* is maximum if  $p_A = p_C = p_G = p_T = 1/4$ .

 $\longrightarrow$  when is it minimum?

Source Coding Theorem (Shannon): For all code books F,

$$H \leq L_F$$

where  $L_F$  is the average code length under F.

Furthermore,  $L_F$  can be made to approach H by selecting better and better F.

- to approach minimum H use blocks of k symbols
  - $\rightarrow$  e.g., treat "THE" as one unit (not 3 separate letters)

 $\rightarrow$  called extension code

- $\bullet$  entropy is innate property of data source s
- limitation of ensemble viewpoint
  - $\rightarrow$  e.g., sending number  $\pi = 3.1415927...$
  - $\rightarrow$  better way?

Information Transmission under Noise



Uncertainty introduced by noise:

- $\longrightarrow$  encoding/decoding:  $a \mapsto w_a \mapsto w \mapsto [?]$
- $\longrightarrow w_a$  gets corrupted, i.e., becomes w
- $\longrightarrow$  if  $w = w_b$ , incorrectly conclude b as symbol
- $\longrightarrow$  detect w is corrupted: error detection
- $\longrightarrow$  correct w to  $w_a$ : error correction

Would like: if received code word  $w = w_c$  for some symbol  $c \in \Sigma$ , then probability that actual symbol sent is indeed c is high

$$\longrightarrow$$
 Pr{actual symbol sent =  $c \mid w = w_c$ }  $\approx 1$ 

 $\longrightarrow$  noiseless channel: special case (prob = 1)

In practice, w may not match any legal code word:

$$\longrightarrow$$
 for all  $c \in \Sigma, w \neq w_c$ 

 $\longrightarrow$  good or bad?

 $\longrightarrow$  what's next?

Shannon showed that there is a fundamental limitation to reliable data transmission.

 $\rightarrow$  the noisier the channel, the smaller the reliable throughput

 $\rightarrow$  overhead spent dealing with bit flips

Definition of channel capacity C: maximum achievable reliable data transmission rate (bps) over a noisy channel (dB) with bandwidth W (Hz).

Channel Coding Theorem (Shannon): Given bandwidth W, signal power  $P_S$ , noise power  $P_N$ , channel subject to white noise,

$$C = W \log \left(1 + \frac{P_S}{P_N}\right)$$
 bps.

 $P_S/P_N$ : signal-to-noise ratio (SNR)

 $\longrightarrow$  upper bound achieved by using longer codes

$$\longrightarrow$$
 detailed set-up/conditions omitted

Increasingly important for modern day networking:

- Power control (e.g., pocket PCs)
  - $\rightarrow$  trade-off w.r.t. battery power
  - $\rightarrow$  trade-off w.r.t. multi-user interference
  - $\rightarrow$  signal-to-interference ratio (SIR)
- Recent trend: software radio
  - $\rightarrow$  hardware-to-software migration
  - $\rightarrow$  kind of like cordless phones (e.g., 2.4 GHz)
  - $\rightarrow$  configurable: make it programmable

Signal-to-noise ratio (SNR) is expressed as  $dB = 10 \log_{10}(P_S/P_N).$ 

Answer: First, W = 3000 Hz,  $P_S/P_N = 1000$ . Using Channel Coding Theorem,

 $C = 3000 \log 1001 \approx 30$  kbps.

- $\longrightarrow$  compare against 28.8 kbps modems
- $\longrightarrow$  what about 56 kbps modems?
- $\longrightarrow$  DSL lines?

## Digital vs. Analog Transmission

Two forms of *transmission*:

- digital transmission: data transmission using square waves
- analog transmission: data transmission using all other waves

Four possibilities to consider:

• analog data via analog transmission

 $\rightarrow$  "as is" (e.g., radio)

• analog data via digital transmission

 $\rightarrow$  sampling (e.g., voice, audio, video)

- digital data via analog transmission
  - $\rightarrow$  broadband & wireless ("high-speed networks")
- digital data via digital transmission

 $\rightarrow$  baseband (e.g., Ethernet)

Why consider digital transmission?

Common to both: problem of attenuation.





- decrease in signal strength as a function of distance
- increase in attenuation as a function of frequency

Rejuvenation of signal via amplifiers (analog) and repeaters (digital). Delay distortion: different frequency components travel at different speeds.

Most problematic: effect of noise

 $\longrightarrow$  thermal, interference, . . .

- Analog: Amplification also amplifies noise—filtering out just noise, in general, is a complex problem.
- Digital: Repeater just generates a new square wave; more resilient against ambiguitity.



## Analog Transmission of Digital Data

Three pieces of information to manipulate: amplitude, frequency, phase.

- Amplitude modulation (AM): encode bits using amplitude levels.
- Frequency modulation (FM): encode bits using frequency differences.
- Phase modulation (PM): encode bits using phase shifts.



FM radio uses ... FM!

AM radio uses ... AM!

iPod & radio experiment uses  $\dots$ ?

Why is FM radio clearer ("high fidelity") than AM radio?

Broadband uses ... ?

#### Baud Rate vs. Bit Rate

*Baud rate*: Unit of time within which carrier wave can be altered for AM, FM, or PM.

- $\longrightarrow$  signalling rate
- $\longrightarrow$  e.g., clock

Not synonymous with bit rate: e.g., AM with 8 levels, PM with 8 phases

 $\longrightarrow$  bit rate (bps) = 3 × baud rate

... less than one bit per baud?

### Broadband vs. Baseband

Presence or absence of carrier wave: allows many channels to co-exist at the same time

 $\longrightarrow$  frequency division multiplexing (FDM)



Ex.: AM radio (535 kHz–1705 kHz)

- $\rightarrow$  tuning to specific frequency: Fourier transform
- $\longrightarrow$  coefficient (magnitude) carries bit information

### Ex.: FM radio

- $\longrightarrow$  88 MHz–108 MHz
- $\longrightarrow$  200 kHz slices
- $\longrightarrow$  how does it work?
- $\longrightarrow$  better or worse than AM?
- Ex.: Digital radio
  - $\longrightarrow$  digital audio radio service
  - $\longrightarrow$  GEO satellites (a.k.a. satellite radio)
  - $\longrightarrow$  uses 2.3 GHz spectrum (a.k.a. S-band)
  - $\longrightarrow$  e.g., XM, Sirius

In the absence of carrier wave, can still use multiplexing:

 $\longrightarrow$  time-division multiplexing (TDM)



- digital transmission of analog data
  - $\rightarrow$  first digitize
  - $\rightarrow$  PCM (e.g., PC sound cards), modem
- digital transmission of digital data
  - $\rightarrow$  e.g., telephony backbone network



- 24 simultaneous users
- 7 bit quantization

Assuming 4 kHz telephone channel bandwidth, Sampling Theorem dictates 8000 samples per second.

 $\longrightarrow$  125 µsec inter-sample interval

Bandwidth =  $8000 \times 193 = 1.544$  Mbps

# Digital Transmission of Digital Data

Direct encoding of square waves using voltage differentials; e.g., -15V-+15V for RS-232-C.

- NRZ-L (non-return to zero, level)
- NRZI (NRZ invert on ones)
- Manchester (biphase or self-clocking codes)



 $\rightarrow$  baud rate vs. bit rate of Manchester?

Trade-offs:

- NRZ codes—long sequences of 0's (or 1's) causes synchronization problem; need extra control line (clock) or sensitive signalling equipment.
- Manchester codes—synchronization achieved through self-clocking; however, achieves only 50% efficiency vis-à-vis NRZ codes.

4B/5B code

Encode 4 bits of data using 5 bit code where the code word has at most one leading 0 and two trailing 0's.

 $0000 \leftrightarrow 11110, 0001 \leftrightarrow 01001,$ etc.

- $\longrightarrow$  at most three consecutive 0's
- $\longrightarrow$  efficiency: 80%

Multiplexing techniques:

- TDM
- FDM
- mixture (FDM + TDM); e.g., TDMA
- CDMA (code division multiple access) or spread spectrum
  - $\rightarrow$  wireless communication
  - $\rightarrow$  competing scheme with TDMA