Wireless LAN (WLAN): infrastructure mode

WLAN: Infrastructure Network

- \longrightarrow shared uplink & downlink channel F1
- → single baseband channel
- basic service set (BSS)
- base station: access point (AP)
- mobile stations must communicate through AP

WLAN: ad hoc mode

WLAN: Ad Hoc Network

- → homogeneous: no base station
- \longrightarrow everyone is the same
- → share forwarding responsibility
- independent basic service set (IBSS)
- mobile stations communicate peer-to-peer
 - \rightarrow also called peer-to-peer mode

WLAN: internetworking

WLAN: Extended Service Set

- → internetworking between BSS's through APs
- \longrightarrow mobility and handoff
- extended service set (ESS)
- APs are connected by distribution system (DS)
 - → typically: Ethernet switch

• How do APs and Ethernet switches know where to forward frames?

- \rightarrow spanning tree
- → IEEE 802.1 (Perlman's algorithm)
- → learning bridge: source address discovery
- \rightarrow if unclear: broadcast

Additional headache: mobility

- → how to perform handoff
- → mobility management at MAC vs. IP

Mobility between BSSes in an ESS

- association
 - \rightarrow registration process
 - → AP sends out periodic beacon
 - \rightarrow mobile station (MS) associates with one AP
- disassociation
 - → upon permanent departure: notification
- reassociation
 - → movement of MS from one AP to another
 - \rightarrow inform new AP of old AP
 - \rightarrow forwarding of buffered frames

CS 422 Park

IEEE 802.11b/g WLAN spectrum 2.4–2.4835 GHz:

- \longrightarrow 11 channels (U.S.)
- \longrightarrow 2.412 GHz, 2.417 GHz, ..., 2.462 GHz
- → unlicensed ISM (Industrial, Scientific, Medical) band
- \longrightarrow global: 2.4–2.4835 GHz
- \longrightarrow up to 14 channels

IEEE 802.11a: 5.15–5.35 GHz and 5.725–5.825 GHz

- → UNNI (unlicensed National Information Infrastructure)
- \longrightarrow non-global

IEEE 802.11n: both 2.4 and 5 GHz

- → 2.4 GHz: backward compatible
- → also uses multiple antennae
- → called MIMO (multiple input multiple output)
- → e.g., Apple's 802.11n has 3 antennae

Non-interference specification for 802.11b:

- each channel has 22 MHz bandwidth
- require 25 MHz channel separation
 - → thus, only 3 concurrent channels possible
 - \longrightarrow e.g., channels 1, 6 and 11
 - \longrightarrow 3-coloring...

Examples:

Purdue Univ.: IEEE 802.11b (11 Mbps) WLAN network

- → PAL (Purdue Air Link)
- → partial mobility: MAC roaming (within ESS)
- \longrightarrow no mobile IP
- → football scores at Ross-Ade through PDAs

Dartmouth College: IEEE 802.11b WLAN (500+ APs)

- → full VoIP
- \longrightarrow free long distance

Seattle, SF, San Diego, Boston, etc.: WiFi communities

- → "free" Internet access
- → city: lamp-post; called mesh networks
- → private: roof-top
- → cable & DSL companies don't like it

<u>IEEE 802.11 MAC</u>

- → CSMA/CA with exponential backoff
- \longrightarrow almost like CSMA/CD
- \longrightarrow drop CD
- → explicit positive ACK frame
- → added optional feature: CA (collision avoidance)

Two modes for MAC operation:

- Distributed coordination function (DCF)
 - → multiple access (default mode)
- Point coordination function (PCF)
 - \rightarrow polling-based priority
- ... neither PCF nor CA used in practice

Timeline without collision:

- SIFS (short interframe space): 10 μ s
- Slot Time: 20 μ s
- \bullet DIFS (distributed interframe space): 50 μs
 - \rightarrow DIFS = SIFS + 2 × slot time
- BO: variable back-off (within one CW)
 - ightarrow CWmin: 31; CWmax: 1023

Time snapshot with Mira-come-lately:

→ Sue sends to Arnold

Time snapshot with collision (Sue & Mira):

MAC throughput and collision (simulation):

MAC throughput (experiment):

→ HP iPAQ pocket PC running Linux

Additional issues with CSMA in wireless media:

Hidden station problem:

Hidden Station Problem

- (1) A transmits to B
- (2) C does not sense A; transmits to B
- (3) interference occurs at B: i.e., collision

But: collision does not always mean junk

 \longrightarrow i.e., transmission failure

For example:

if A's frame has stronger signal strength than C's frame, B may still be able to successfully decode A's frame

but not C's frame

 \longrightarrow called capture effect

Biggest problem: starvation problem

- → related to hidden station problem
- \longrightarrow A cannot hear C, C cannot hear A
- \longrightarrow B can hear both A and C
- \longrightarrow by CS, B gets little chance to speak
- \longrightarrow hence "sandwiched" B may starve

Consider 4 APs, each with 10 laptops (i.e., 4 adjacent BSS):

→ middle two APs get half the throughput

400-AP (20 \times 20) mesh network:

- ---- campus-scale wireless network
- → could be city block
- → large residential community

- → black squares: regions of near-starvation
- → note alternating checker pattern
- \longrightarrow solution?

Hidden station problem: CA (congestion avoidance)

- → RTS/CTS reservation handshake
- Before data transmit, perform RTS/CTS handshake
- RTS: request to send
- CTS: clear to send

Hidden station problem: RTS/CTS handshake "clears" hidden area

RTS/CTS Handshake

RTS/CTS perform only if data > RTS threshold

- \longrightarrow why not for small data?
- ... feature available but not used