Wireless LAN (WLAN): infrastructure mode WLAN: Infrastructure Network - \longrightarrow shared uplink & downlink channel F1 - → single baseband channel - basic service set (BSS) - base station: access point (AP) - mobile stations must communicate through AP ### WLAN: ad hoc mode WLAN: Ad Hoc Network - → homogeneous: no base station - \longrightarrow everyone is the same - → share forwarding responsibility - independent basic service set (IBSS) - mobile stations communicate peer-to-peer - \rightarrow also called peer-to-peer mode ## WLAN: internetworking WLAN: Extended Service Set - → internetworking between BSS's through APs - \longrightarrow mobility and handoff - extended service set (ESS) - APs are connected by distribution system (DS) - → typically: Ethernet switch • How do APs and Ethernet switches know where to forward frames? - \rightarrow spanning tree - → IEEE 802.1 (Perlman's algorithm) - → learning bridge: source address discovery - \rightarrow if unclear: broadcast ## Additional headache: mobility - → how to perform handoff - → mobility management at MAC vs. IP # Mobility between BSSes in an ESS - association - \rightarrow registration process - → AP sends out periodic beacon - \rightarrow mobile station (MS) associates with one AP - disassociation - → upon permanent departure: notification - reassociation - → movement of MS from one AP to another - \rightarrow inform new AP of old AP - \rightarrow forwarding of buffered frames CS 422 Park IEEE 802.11b/g WLAN spectrum 2.4–2.4835 GHz: - \longrightarrow 11 channels (U.S.) - \longrightarrow 2.412 GHz, 2.417 GHz, ..., 2.462 GHz - → unlicensed ISM (Industrial, Scientific, Medical) band - \longrightarrow global: 2.4–2.4835 GHz - \longrightarrow up to 14 channels IEEE 802.11a: 5.15–5.35 GHz and 5.725–5.825 GHz - → UNNI (unlicensed National Information Infrastructure) - \longrightarrow non-global IEEE 802.11n: both 2.4 and 5 GHz - → 2.4 GHz: backward compatible - → also uses multiple antennae - → called MIMO (multiple input multiple output) - → e.g., Apple's 802.11n has 3 antennae Non-interference specification for 802.11b: - each channel has 22 MHz bandwidth - require 25 MHz channel separation - → thus, only 3 concurrent channels possible - \longrightarrow e.g., channels 1, 6 and 11 - \longrightarrow 3-coloring... #### Examples: Purdue Univ.: IEEE 802.11b (11 Mbps) WLAN network - → PAL (Purdue Air Link) - → partial mobility: MAC roaming (within ESS) - \longrightarrow no mobile IP - → football scores at Ross-Ade through PDAs Dartmouth College: IEEE 802.11b WLAN (500+ APs) - → full VoIP - \longrightarrow free long distance Seattle, SF, San Diego, Boston, etc.: WiFi communities - → "free" Internet access - → city: lamp-post; called mesh networks - → private: roof-top - → cable & DSL companies don't like it ### <u>IEEE 802.11 MAC</u> - → CSMA/CA with exponential backoff - \longrightarrow almost like CSMA/CD - \longrightarrow drop CD - → explicit positive ACK frame - → added optional feature: CA (collision avoidance) ## Two modes for MAC operation: - Distributed coordination function (DCF) - → multiple access (default mode) - Point coordination function (PCF) - \rightarrow polling-based priority - ... neither PCF nor CA used in practice #### Timeline without collision: - SIFS (short interframe space): 10 μ s - Slot Time: 20 μ s - \bullet DIFS (distributed interframe space): 50 μs - \rightarrow DIFS = SIFS + 2 × slot time - BO: variable back-off (within one CW) - ightarrow CWmin: 31; CWmax: 1023 Time snapshot with Mira-come-lately: → Sue sends to Arnold # Time snapshot with collision (Sue & Mira): # MAC throughput and collision (simulation): MAC throughput (experiment): → HP iPAQ pocket PC running Linux Additional issues with CSMA in wireless media: Hidden station problem: Hidden Station Problem - (1) A transmits to B - (2) C does not sense A; transmits to B - (3) interference occurs at B: i.e., collision But: collision does not always mean junk \longrightarrow i.e., transmission failure For example: if A's frame has stronger signal strength than C's frame, B may still be able to successfully decode A's frame but not C's frame \longrightarrow called capture effect Biggest problem: starvation problem - → related to hidden station problem - \longrightarrow A cannot hear C, C cannot hear A - \longrightarrow B can hear both A and C - \longrightarrow by CS, B gets little chance to speak - \longrightarrow hence "sandwiched" B may starve Consider 4 APs, each with 10 laptops (i.e., 4 adjacent BSS): → middle two APs get half the throughput 400-AP (20 \times 20) mesh network: - ---- campus-scale wireless network - → could be city block - → large residential community - → black squares: regions of near-starvation - → note alternating checker pattern - \longrightarrow solution? Hidden station problem: CA (congestion avoidance) - → RTS/CTS reservation handshake - Before data transmit, perform RTS/CTS handshake - RTS: request to send - CTS: clear to send Hidden station problem: RTS/CTS handshake "clears" hidden area RTS/CTS Handshake RTS/CTS perform only if data > RTS threshold - \longrightarrow why not for small data? - ... feature available but not used