
Impact of mobility: Doppler frequency shift and fading

First, Doppler frequency shift

Set-up:

- mobile (e.g., car, train, pedestrian) travels in straight line at speed v mph
- \bullet sender transmits data on carrier frequency $f~{\rm Hz}$
- \bullet angle between mobile and sender is θ

 \rightarrow frequency experienced by mobile is not f but distorted version of f: call it f'

Distorted frequency under Doppler effect:

$$f' = f + f\left(\frac{v}{\text{sol}}\cos\phi\right)$$

Hence:

- φ = 0 deg: "head-on collision"
 → frequency experienced: fastest
 φ = 180 deg: "going on oppositve direction"
 → frequency experienced: slowest
 φ = 90 deg: "at right angle"
 - \rightarrow no distortion
- Ex.: carrier frequency f 1.8 GHz
- $\rightarrow 4$ mph: 10 Hz, 40 mph: 100 Hz

Depending upon PHY layer encoding:

 \rightarrow bit flips may occur

Second, fading

- \rightarrow fading: means that signal is changing, often weak ening
- \rightarrow consider city environment with many buildings and no direct line of sight between sender and receiver

Assumption: received signal is comprised of bounced off copies (i.e., echos) from buildings and other reflective obstructions

 \rightarrow called multi-path propagation

Clarke's fading model:

if there are many echos and the echos are independent of each other

then the average signal strength of the echos has a Gaussian (i.e., normal) distribution

 \rightarrow central limit theorem

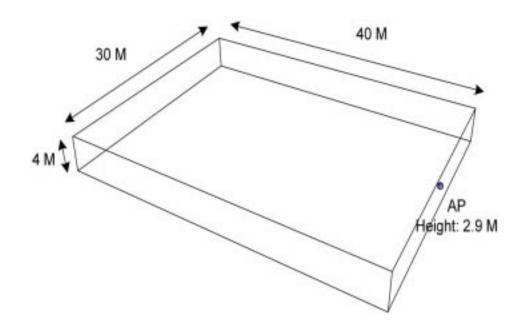
 \rightarrow called Rayleigh fading

Thus: mobile's signal strength fluctuates erratically

- \rightarrow fading plus Doppler shift
- \rightarrow may lead to bit flips
- \rightarrow knowing the statistical properties of signal fluctuation helps with applying error correction
- \rightarrow FEC is common in wireless networks (e.g., WiFi)

What about the case when the mobile (in a city environment) becomes stationary?

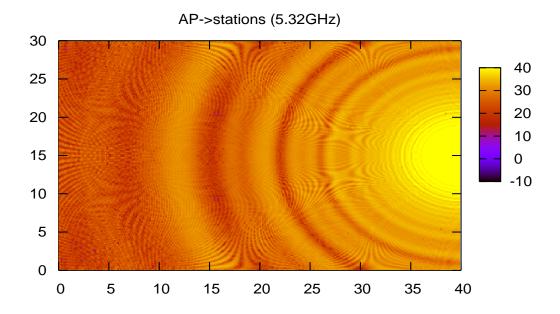
 \rightarrow e.g., sitting at a coffee shop and checking e-mail on pre-4G phone?


Outdoors: signal strength rapidly decreases with distance \rightarrow recall: signal diminishes as $1/d^2$

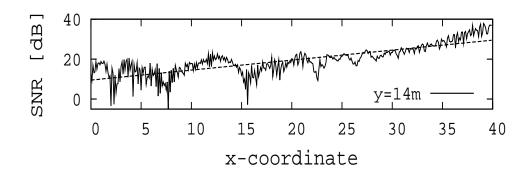
 \rightarrow plus signal fluctuation: Rayleigh fading

Indoor environment: more complex

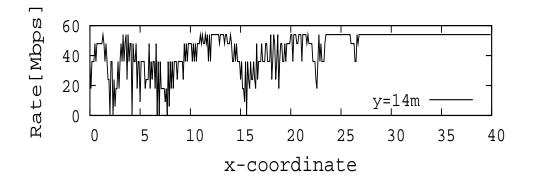
- \rightarrow distance need not be dominant factor
- \rightarrow a new factor: spatial diversity


Consider an empty room:

- \rightarrow large lecture room
- \rightarrow no obstructions
- \rightarrow e.g., 802.11 WLAN hot spot
- \rightarrow AP sends out signal at 2.4 (802.11b/g) or 5 GHz (802.11a/n) frequency
- \rightarrow how does indoor signal reception look like?


Signal strength reception at table height 0.7 m:

- \rightarrow carrier frequency: 5.32 GHz
- \rightarrow channel 8 in U.S. (12 channels in 5 GHz 802.11a/n)

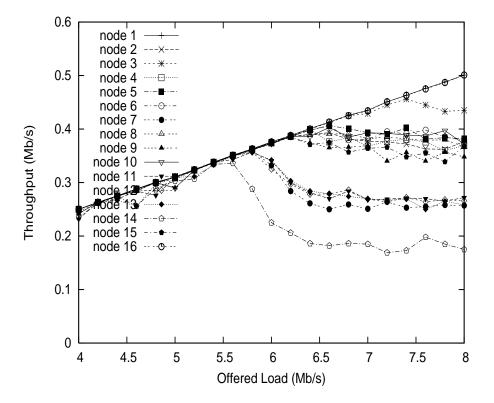


 \rightarrow distance does not determine signal strength \rightarrow signal irregularity: called spatial diversity

 \rightarrow SNR and throughput along straight line

 \rightarrow SNR: significant variation

 \rightarrow good locations, bad locations


 \rightarrow can lead to unfairness and even starvation

Throughput share of 16 HP/Compaq pocket PCs:

\rightarrow uplink CSMA competition

 \rightarrow significant unfairness: why?

Spatial diversity:

Location—not distance from AP—is determining factor

 \rightarrow switching around the handhelds doesn't change throughput

Persistent unfairness

 \rightarrow bad location remains bad location, good location remains good location

What causes uneven—some say chaotic—signal strength distribution in indoor environments?

Unique feature of wireless networks: wave interference

- \rightarrow multi-path reflections (aka echos) interact
- \rightarrow constructive vs. destructive interference

Ex.: constructive

 \rightarrow two sine waves both of frequency f meet constructively

$$\sin f + \sin f = 2\sin f$$

- Ex.: destructive
- \rightarrow two sine waves of frequency f and $f + \pi$ meet destructively

$$\sin f + \sin(f + \pi) = 0$$

Note: second sine wave is phase-shifted by 180 degrees

- \rightarrow multi-path reflection causes phase shifting
- \rightarrow longer distance to travel

Consequence indoors: good and bad reception spots cause by wave interference

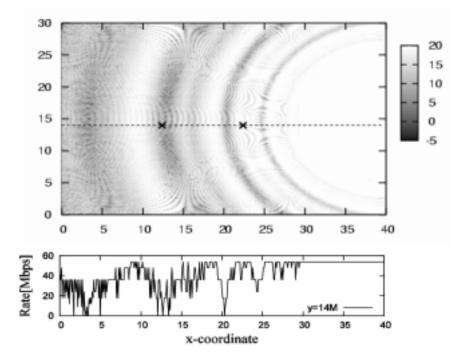
Significant real-world consequences:

- 1. Unfair throughput in WiFi hot spots
- \rightarrow depends on location: good or bad spot
- \rightarrow closeness to AP not determining factor (unless very close)
- \rightarrow unfairness in networks is a big deal
- \rightarrow a key goal of network protocols: fairness
- \rightarrow e.g., CSMA is fair—if signal strengths are uniform
- \rightarrow another source of throughput unfairness in networks we have seen?

- 2. WiFi NICs are half-duplex
- \rightarrow cannot send and receive at the same time
- \rightarrow recent proposal for full-duplex: echo cancellation using 3 antennas
- \rightarrow two send antennas: how?
- 3. Indoor triangulation using signal strength is difficult
- \rightarrow companies: indoor employee location tracking software
- \rightarrow NIC reports RSSI (received signal strength indication)
- \rightarrow full range: 0–255
- \rightarrow RSSI_Max capped by different chipset vendors (e.g., 127 Atheros)
- \rightarrow key problem: spatial diversity

Solutions: what can be done?

First, for sliding window whose throughput decreases with RTT


- \rightarrow no good solution
- \rightarrow e.g., increasing window size too much has negative side effects

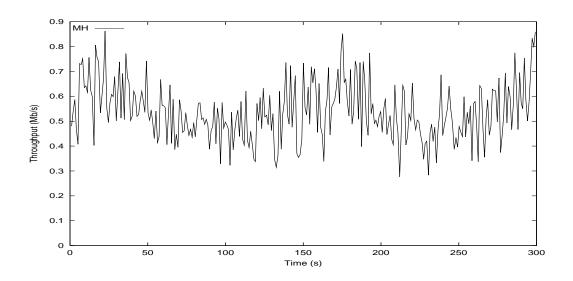
Second, spatial diversity in indoor wireless networks

- \rightarrow moving around: even a little (inches) can help
- \rightarrow does increasing power help?

Changing carrier frequency (i.e., channels) can help: \rightarrow good/bad location depends on frequency

Carrier frequency 5.805 GHz (channel 12)

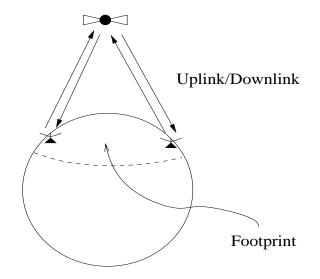
- \rightarrow qualitatively similar to channel 8
- \rightarrow but quantitatively different


Consequence: good spot under channel 8 may become bad spot under channel 12, and vice versa

- \rightarrow different from channel switching to reduce overcrowding
- \rightarrow i.e., frequency reuse

Ex.: old cordless phones with manual channel switch button

- \rightarrow switch to channel that no one else is using
- \rightarrow avoid multi-user interference
- \rightarrow different from spatial diversity


 \rightarrow mobile throughput at walking speed (HAAS corridor)

- \rightarrow walking back-and-forth from AP
- \rightarrow can observe gradual distance dependence
- \rightarrow but significant short-term fluctuation
- \rightarrow not due to Doppler shift but spatial diversity
- \rightarrow i.e., moving in and out of good/bad spots

Long Distance Wireless Communication

Principally satellite communication:

• LOS (line of sight) communication

 \rightarrow for good reception

• Effective for broadcast/multicast services

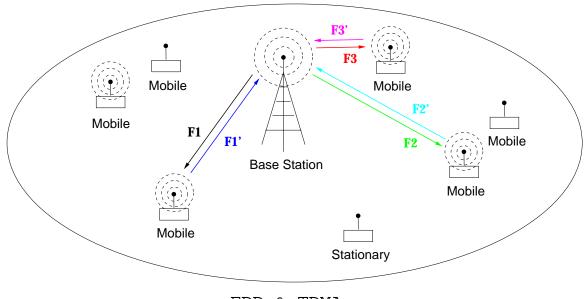
 \rightarrow e.g., "cable" TV, satellite radio, atomic clock

Not effective for unibroadcast services:

- \rightarrow video-on-dem and (VoD) and Internet service
- \rightarrow limited bandwidth
- \rightarrow what about GPS?

Satellites can also be used as routers/switches

- \rightarrow satellite phones
- \rightarrow VSAT (very small aperture terminal): e.g., remote gas stations
- \rightarrow low bandwidth, specialized applications


Shorter Distance Wireless Communication

- medium: wireless MAN (IEEE 802.16)
- short: wireless LAN (IEEE 802.11)
- very short: wireless PAN (IEEE 802.15)
 - \rightarrow home area networks
- very very shot: near field communication: ISO \rightarrow e.g., RFID
- others: wireless USB, WRAN (wireless regional area network) for white spaces—IEEE 802.22, 60 GHz (mainly indoor), etc.

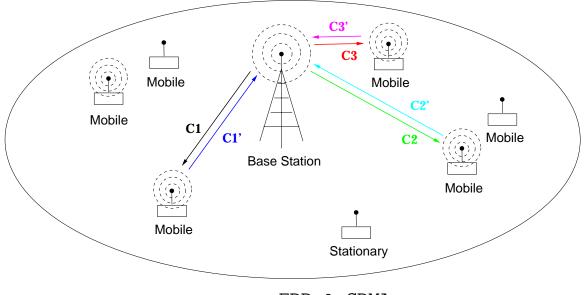
MAC protocols:

- \rightarrow OFDMA, FDMA, TDMA, CDMA, CSMA
- \rightarrow MIMO (multiple input multiple output): use multiple antennas
- \rightarrow e.g., 802.11n: unclear how useful given extra cost

Cellular telephony: hybrid FDMA/TDMA

FDD & TDMA

Ex.: U.S. IS-136 with 25 MHz frequency band


- uplink: 890–915 MHz
- \bullet downlink: 935–960 MHz
- 125 channels 200 kHz wide each (= $25000 \div 200$)
 - \rightarrow higher spectral efficiency with OFDMA

- 8 time slots within each channel (i.e., carrier frequency)
 → TDM component
- total of 1000 possible user channels

 $\rightarrow 125 \times 8 \ (124 \times 8 \ realized)$

- codec/vocoder (i.e., compression): 13.4 kbps
- compare with landline toll quality (64 kbps) standard

Cellular telephony: CDMA

FDD & CDMA

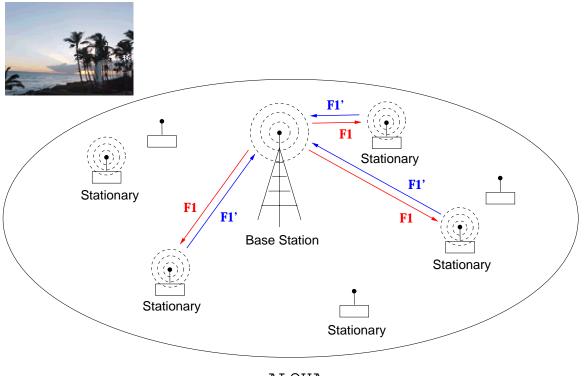
 \longrightarrow different code vector per user

Ex.: IS-95 CDMA with 25 MHz frequency band

- uplink: 824–849 MHz; downlink: 869–894 MHz
 - \rightarrow no separate carrier frequencies

 \rightarrow every one shares same 25 MHz band

• codec: 9.6 kb/s


Recall: in CDMA each user gets a code vector

- \rightarrow code vectors between users: orthogonal
- \rightarrow called pseudonoise (PN) sequence or chipping code

Moreover: a single data bit is encoded using r > 1 code bits

- \rightarrow apply FEC
- $\rightarrow r$ is called code rate
- \rightarrow common for wireless: why?

Packet radio: ALOHA

- \longrightarrow downlink broadcast channel F1
- \longrightarrow shared uplink channel F1'

Ex.: ALOHANET

- data network over radio frequency
- Univ. of Hawaii, 1970; 4 islands, 7 campuses

- Norm Abramson
 - \rightarrow precursor to Ethernet (Bob Metcalfe)
 - \rightarrow pioneering Internet technology
 - \rightarrow parallel to wired packet switching technology
- FM carrier frequency
 - \rightarrow uplink: 407.35 MHz; downlink: 413.475 MHz
- bit rate: 9.6 kb/s
- contention-based multiple access: MA
 - \rightarrow plain and simple
 - \rightarrow needs explicit ACK frames (stop-and-wait)