Signal Propagation and Power

Free space loss:

- \bullet transmitting antenna: signal power $P_{\rm snd}$
- receiving antenna: signal power $P_{\rm rcv}$
- distance: d
- \bullet frequency: f

$$P_{
m rev} \propto P_{
m snd} rac{1}{d^2 f^2}$$

- \longrightarrow quadratic decrease in distance
- \longrightarrow quadratic decrease in frequency
- \longrightarrow idealized case: free space
- \longrightarrow in-doors and mobility: much more complicated

Power profile in 2-D space:

In real-world:

www.cs.purdue.edu/ \sim park/cs422-wireless-pic

Design implications:

- coverage limited primarily by distance
 - \longrightarrow impacts SNR (signal-to-noise ratio)
 - \longrightarrow the farther away, the weaker the signal
 - \longrightarrow in CSMA: SIR (signal-to-interference ratio)
- choice: single high-power antenna or multiple lowpower antennae

spatial coverage by one high-power antenna

spatial coverage by two low-power antennas

• low-power:

- \longrightarrow decreases cell size: bad for coverage
- \longrightarrow but good because enables frequency reuse
- \longrightarrow think of radio stations
- \longrightarrow good: increased battery life
- \longrightarrow bad: more antennae required
- \longrightarrow creates handoff coordination overhead (e.g., I65)

Cellular Networks

 \longrightarrow network of wireless base stations

Can view as:

- \longrightarrow both affect tiling of the plane
- \longrightarrow why hexagonal?

Frequency reuse: assume adjacent cells do not use common carrier frequency

- \longrightarrow avoid interference
- \longrightarrow how many frequencies are required?

. . .

For example, using seven frequencies:

 \rightarrow in general, coloring problem

4-coloring of U.S. map:

 \rightarrow Y. Kanada, Y. Sato; Univ. of Tokyo

Old CS Building (aka HAAS):

First floor frequency reuse:

Computer Science Building - First Floor

Weil Dei 21 30(1444-5005

Compress Science Rabbing - Second Floor 124 12. -----27 -Ш Mark C A DECK BC.D. 1.1 - 78 e.ite of Chan s. 0111 100 . 14 31 TR 32 42 3. ×. ιĸ. 10 and the second , and , 12

Second floor frequency reuse:

Ground floor frequency reuse:

Computer Science Building - Ground Floor

4.0.01200230

Non-uniform covering:

- \longrightarrow directional antenna: triangular shape (like cone)
- \longrightarrow non-uniform density (e.g., city center, stadium)

Long Distance Wireless Communication

Principally satellite communication:

 \bullet LOS (line of sight) communication

 \rightarrow satellite base station is relay

- Effective for broadcast
- Limited bandwidth

- FDM + TDMA: dominant
 - \rightarrow broadband
 - \rightarrow GSM cellular
- CDMA: e.g., GPS and defense related systems
- CSMA: viable?

Long-distance wireless communication: useful for broadcast service

- \longrightarrow subset of killer applications
- \longrightarrow e.g., TV, GPS, digital radio, atomic clock
- \longrightarrow not suited for Internet access service!

Short Distance Wireless Communication

- very short: wireless PAN (IEEE 802.15)
- short: wireless LAN (IEEE 802.11)
- medium: wireless MAN (IEEE 802.16)

- \longrightarrow FDM, TDM, TDMA, CDMA
- \longrightarrow contention-based multiple access (CSMA)

Cellular telephony: TDMA (frequency and time division)

FDD & TDMA

Ex.: GSM (U.S. IS-136) with 25 MHz frequency band

- uplink: 890–915 MHz
- \bullet downlink: 935–960 MHz
- 125 channels 200 kHz wide each (= $25000 \div 200$)
 - \rightarrow separation needed due to cross-carrier interference
 - \rightarrow FDM component

- 8 time slots within each channel (i.e., carrier frequency)
 → TDM component
- total of 1000 possible user channels

 $\rightarrow 125 \times 8 \ (124 \times 8 \ realized)$

- codec/vocoder (i.e., compression): 13.4 kbps
- compare with T1 standard
 - $\rightarrow 24$ users at 64 kbps data rate each
 - $\rightarrow 64$ kbps vs. 13.4 kbps: landline has clearer sound

Cellular telephony: CDMA

FDD & CDMA

 \longrightarrow different code (i.e., basis vector) per user

Ex.: IS-95 CDMA with 25 MHz frequency band

- uplink: 824–849 MHz; downlink: 869–894 MHz
 - \rightarrow no separate carrier frequencies
 - \rightarrow every one shares same 25 MHz band
- codec: 9.6 kb/s

Packet radio: ALOHA

 \longrightarrow shared uplink channel F1'

Ex.: ALOHANET

- data network over radio frequency
- Univ. of Hawaii, 1970; 4 islands, 7 campuses

- Norm Abramson
 - \rightarrow precursor to Ethernet (Bob Metcalfe)
 - \rightarrow pioneering Internet technology
 - \rightarrow parallel to wired packet switching technology
- FM carrier frequency
 - \rightarrow uplink: 407.35 MHz; downlink: 413.475 MHz
- bit rate: 9.6 kb/s
- \bullet contention-based multiple access: MA
 - \rightarrow plain and simple
 - \rightarrow needs explicit ACK frames