LINK LAYER: WIRELESS MEDIA

Current Trend

- WLAN explosion (also called WiFi)
 - \rightarrow took most by surprise
- cellular telephony: 3G/4G
 - \rightarrow cellular providers, telcos, data in the same mix
 - \rightarrow all-in-one handheld: e.g., Apple iPhone
- \bullet self-organization by citizens for local access
 - \rightarrow free WiFi hot spots
- large-scale hot spots: coffee shops, airport lounges, trains, university/enterprise campuses, cities, etc.
 - \rightarrow part of everyday life
 - \rightarrow difficult to turn back clock

- boundary between local and wide area wireless blurring
 - \rightarrow cellular (long-distance) vs. WLAN (short-distance)
 - \rightarrow 802.16 (WiMax): designed to compete with cellular; different version WiBro (Korea)
- also very short distances ("wireless personal area networks")
 - \rightarrow bluetooth, UWB, Zigbee: in general, 802.15
 - $\rightarrow 802.11$ n also in the mix (e.g., Apple TV)
 - $\rightarrow 2.4$ and 5 GHz spectra: very busy

Integral part of the Internet:

 \longrightarrow where it's happening

Wireless Communication: Background

Use electromagnetic waves in wireless media (air/space) to transmit information.

 \longrightarrow NIC: also called air interface

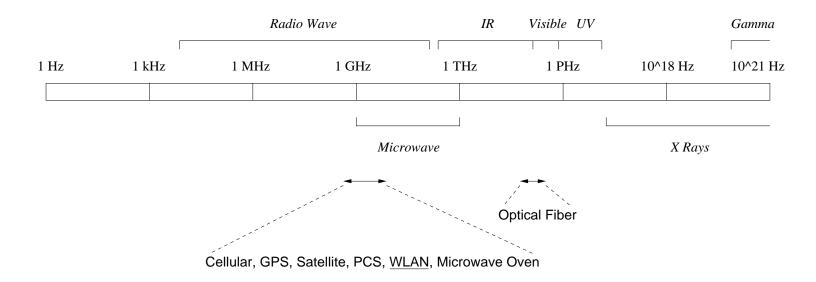
- directed signal propagation: e.g., directed antenna or IR (infrared)
- undirected signal propagation: e.g., omni-directional antenna

 \longrightarrow mainly: microwaves (2–66 GHz)

 \longrightarrow focus: 2–10 GHz

Key differences with wired communication:

- increased exposure to interference and noise \rightarrow lack of physical shielding
- \bullet inter-user interference cannot be localized at switch
 - \rightarrow cannot use buffering
 - \rightarrow problem for QoS (e.g., VoIP)
 - \longrightarrow information is inherently exposed
 - \longrightarrow bad for networking
 - \longrightarrow bad for security
 - \longrightarrow good for convenient access (trumps others)


• signal propagation and variation is more complex

- \longrightarrow attenuation (also in wired)
- \longrightarrow refraction, absorption, reflection, diffraction
- \longrightarrow multi-path fading
- \longrightarrow mobility (extreme: bullet train)

Network bandwidth: polarized

- \longrightarrow high and low bandwidth coexist
- \longrightarrow e.g., 10 Gbps and 11 Mbps
- \longrightarrow shrinking (e.g., 802.11n) but slowly
- \longrightarrow speed mismatch: makes things challenging
- \longrightarrow i.e., weakest link

Electromagnetic spectrum (logarithmic scale):

- \longrightarrow RF: 9 kHz–300 GHz
- \longrightarrow Microwave: 1 GHz–1 THz
- \longrightarrow Wireless: concentration ~0.8 GHz–6 GHz
- \longrightarrow Optical fiber: ~200 THz; 25 THz bandwidth

Miscellaneous spectrum allocations (U.S.):

 \longrightarrow FCC (Federal Communications Commission)

- AM Radio: 0.535 MHz–1.7 MHz
- FM Radio: 88 MHz–108 MHz
- TV: 174 MHz–216 MHz, 470 MHz–825 MHz

 \longrightarrow audio (FM), video (AM)

- GPS (Global Positioning System): 1.2276 GHz–1.57542 GHz
 - \longrightarrow CDMA
 - \longrightarrow 24 satellites (DoD), 10900 miles
 - \longrightarrow navigation service: trilateration

- Cellular telephone: 824 MHz–849 MHz, 869 MHz–894 MHz
 - \longrightarrow AMPS: FDM, analog
 - \longrightarrow GSM: TDMA, digital
 - \longrightarrow IS-95: CDMA, digital
- PCS: 1.85 GHz–1.99 GHz

 \longrightarrow CDMA, TDMA

- E.g., quad-band phone
 - \longrightarrow works at different frequency bands
 - \longrightarrow loosely called: 800, 900, 1800, 1900 MHz

- WLAN: IEEE 802.11b 2.4 GHz–2.4835 GHz \rightarrow CSMA/CA
 - \rightarrow same frequency range for 802.11g
- WLAN: Bluetooth 2.4 GHz–2.4835 GHz
- WLAN: IEEE 802.11a 5.725 GHz–5.850 GHz
- \bullet WiMax: IEEE 802.16 2 GHz–66 GHz
 - \rightarrow TDMA based

• Satellite: C-band 3.7 GHz–4.2 GHz (downlink), 5.925 GHz–6.425 GHz (uplink)

 \rightarrow TDMA based

- Satellite: Ku-band 11.7 Ghz–12.2 Ghz (downlink), 14 GHz–14.5 GHz (uplink)
- Many other frequency bands
 - \rightarrow cf. FCC chart
 - \rightarrow www.ntia.doc.gov/osmhome/allochrt.pdf