CS 422 Park

LINK LAYER: BASIC TECHNIQUES

Data Transmission

Link speed unit: bps
—— abstraction

—— ignore carrier frequency, coding etc.
Simplest case: point-to-point link

widih B

length L

—— wired or wireless



CS 422 Park

Interested in completion time:
— time elapsed between sending /receiving first bit

— 1.e., how long will it take?

e Single bit:
— = L/SOL (lower bound)
— latency (or propagation delay)
— optical fiber, wireless: exact
e Multiple, say S, bits:
— =~ L/SOL + S/B

— latency + transmission time

Latency vs. transmission time: which dominates?

—— a lot to send, a little to send, ...

—— satellite, Zighee, WLAN, broadband WAN



CS 422 Park

Reliable Transmission

Main method: ARQ (Automatic Repeat reQuest)

—— use retransmission

— used in both wired /wireless

e function duplication
— link layer, transport layer, etc.

e alternative: FEC (forward error correction)
— transmit redundant information

— not assured

— pros and cons?



CS 422 Park

ARQ: three components

e flmer
e acknowledgment (ACK)

e retransmit

data

timer O O
@ ACK




CS 422

Park

Special case: stop-and-wait

Handle one packet (i.e., frame) at a time.

timeout

timeout

time

time

timeout

timeout

time

time



CS 422 Park

[ssue of RTT (Round-Trip Time) & timer management:

e what is proper value of timer?
— RT'T estimation
e casier for single link
— RT'T is more well-behaved
e more difficult for multi-hop path in internetwork

— latency + queueing effect

A “good” thing about stop-and-wait:

—— simple throughput formula



CS 422 Park

Stop-and-wait throughput (bps):
o RI'T

e frame size (bits)

— throughput = frame size / RTT

Another important problem: not keeping the pipe full.
—— delay-bandwidth product

—— volume of data travelling on the link

High throughput: want to keep the pipe full



CS 422 Park

Ex.: Link BW 1.5 Mbps, 45 msec RTT
e if frame size 1 kB, then throughput:
— 1024 x 8/0.045 = 182 kbps

— utilization: only 182 kbps/1500 kbps = 0.121

e note: delay-bandwidth product
— 1.5 Mbps x 45 msec = 67.5 kb ~ 8 kB

What happens to utilization if RTT increases to 90 msec?

What happens if bandwidth increases to 3 Mbps?

—— how to reduce bandwidth wastage?



CS 422 Park

Sliding Window Protocol

— send block (i.e., window) of data

[ssues:

e Shield application process from reliability manage-
ment chore

— exported semantics: continuous data stream
— simple app abstraction: e.g.. read system call

e Both sender and receiver have limited buffer capacity

— task: plug holes & flush buffer

Dropped
1 2
Sender ><< Receiver
EEENEN - HE N




CS 422 Park

Simple solution when receiver has infinite buffer capacity:
e sender keeps sending at maximum speed
e receiver informs sender of holes

— “I'm missing this and that”
— called negative ACK

e sender retransmits missing frames

Drawbacks?

What about positive ACK?

—— pros and cons



CS 422 Park

Sliding window operation with positive ACK:

SWS
Sender:

Receiver: RWS

NFE LFA

SWS: Sender Window Size (sender buffer size)

o RWS: Receiver Window Size (receiver buffer size)

LAR: Last ACK Received

e LFS: Last Frame Sent
e NFFE: Next Frame Expected

LFA: Last Frame Acceptable



CS 422

Park

Assign sequence numbers to frames.

—— IDs

Maintain mvariants:

e LFA — NFE +1 < RWS
o LFS — LAR +1 < SWS

Sender:

e Receive ACK with sequence number X

e Forwind LAR to X

e Flush buffer up to (but not including) LAR
e Send up to SWS — (LFS — LAR + 1) frames
e Update LES



CS 422 Park

Recelver:

e Receive packet with sequence number Y

e Forwind to (new) first hole & update NFE
— NFE need not be Y + 1

e Send cumulative ACK (i.e., NFE)

e Flush buffer up to (but not including) NFE to appli-
cation

e Update LFA «+ NFE + RWS — 1



CS 422 Park

Sequence number wrap-around problem:

SWS < (MaxSeqNum + 1) /2

— why?
—— consider special case: stop-and-wait

—— 18 sequence number needed?



