CONGESTION CONTROL

Phenomenon: when too much traffic enters into system, performance degrades

 \longrightarrow excessive traffic can cause congestion

Problem: regulate traffic influx such that congestion does not occur

- \longrightarrow not too fast, not too slow
- \longrightarrow congestion control
- \longrightarrow first question: what is congestion?

Viewpoint: traffic coming in, in transit, going out

At time t:

- traffic influx: $\lambda(t)$ "offered load" (bps)
- traffic outflux: $\gamma(t)$ "throughput" (bps)
- traffic in-flight: Q(t) "load"

 \rightarrow volume: total packets in transit (no. of packets)

Examples:

Highway system:

- traffic influx: no. of cars entering highway per second
- traffic outflux: no. of cars exiting highway per second
- traffic in-flight: no. of cars traveling on highway

 \rightarrow at time instance t

California Dept. of Transportation (Caltrans)

Water faucet and sink:

- traffic influx: water influx per second
- traffic outflux: water outflux per second
- traffic in-flight: water level in sink

 \longrightarrow "congestion?"

faucet.com

Thermostat ...

802.11b WLAN:

• Throughput

 \longrightarrow unimodal or bell-shaped \longrightarrow recall: less pronounced in real systems

- \longrightarrow traffic influx rate $\lambda(t)$
- \longrightarrow no power over anything else

Ex.:

- Faucet knob in water sink
- Temperature needle in thermostat
- Cars entering onto highway: traffic light
- Packets entering the Internet
 - \rightarrow from web server, P2P server, PC, laptop/handheld

How does in-flight traffic or load Q(t) vary?

 \longrightarrow obeys simple rule

Compare two time instances t and t + 1.

At time t + 1:

$$Q(t+1) = Q(t) + \lambda(t) - \gamma(t)$$

- Q(t): what was there to begin with
- $\lambda(t)$: what newly arrived
- $\gamma(t)$: what newly exited
- $\lambda(t) \gamma(t)$: net influx (+ or -)
- Q(t) cannot be negative: no. of packets $\rightarrow Q(t+1) = \max\{0, Q(t) + \lambda(t) - \gamma(t)\}$
- missing item?

Pseudo Real-Time Multimedia Streaming

- \longrightarrow e.g., RealPlayer, iTunes, Internet radio
- \longrightarrow "pseudo" because of prefetching trick
- \longrightarrow application is given headstart: few seconds
- \longrightarrow fill buffer & prevent from becoming empty

Steps involved:

- prefetch X seconds worth of audio/video data
- causes initial delayed playback
 - \rightarrow e.g., couple of seconds delay after click
- keep fetching audio/video data such that X seconds worth of future data resides in receiver's buffer
 - \rightarrow hides spurious congestion
 - \rightarrow user: continuous playback experience

Pseudo real-time application architecture:

Sender

Receiver

- Q(t): current buffer level
- Q^* : desired buffer level
- γ : throughput, i.e., playback rate

 \rightarrow e.g., for video 24 frames-per-second (fps)

Goal: vary $\lambda(t)$ such that $Q(t) \approx Q^*$

- \longrightarrow don't buffer too much: memory cost
- \longrightarrow don't buffer too little: cannot hide congestion

- \longrightarrow pseudo real-time set-up is highly versatile
- \longrightarrow captures many scenarios
- Ex. 1: Router congestion control
 - \longrightarrow active queue management (AQM)
 - receiver is a router/switch
 - $\bullet \ Q^*$ is desired buffer occupancy/delay at router
 - \bullet router throttles sender(s) to maintain Q^*
 - \longrightarrow send control packets to senders
 - \longrightarrow slow down, go faster, stay put

- \longrightarrow e.g., AOL, MSN, Skype, Yahoo
- \longrightarrow video quality is not good: why?
- \longrightarrow misconception: network is blamed

Video Quality: Miss vs. Hit

Thus: pseudo real-time multimedia streaming application of congestion control

- \longrightarrow producer/consumer rate mismatch problem
- \longrightarrow also called "flow control"

Note: producer/consumer problem in OS

- \longrightarrow focus on orderly access of shared data structure
- \longrightarrow mutual exclusion
- \longrightarrow e.g., use of counting semaphores
- \longrightarrow necessary but insufficient

 \longrightarrow achieve $Q(t) = Q^*$

How to: basic idea

- if $Q(t) = Q^*$ do nothing
- \bullet if $Q(t) < Q^*$ increase $\lambda(t)$
- if $Q(t) > Q^*$ decrease $\lambda(t)$
 - \longrightarrow a rule of thumb

$$\longrightarrow$$
 called "control law"

Network protocol implementation:

- \longrightarrow some design options available
- \bullet control action undertaken at sender
 - \rightarrow smart sender/dump receiver
 - \rightarrow preferred mode in many Internet protocols
 - \rightarrow when might the opposite be better?
- receiver informs sender of Q^* and Q(t)
 - \rightarrow feedback packet ("control signaling")
 - \rightarrow or simply +/- indication (binary)
 - \rightarrow or actual gap $Q^* Q(t)$

Receiver sends feedback to sender; sender takes action

- \longrightarrow called feedback control
- \longrightarrow or closed-loop control

Key question in feedback congestion control:

- \longrightarrow how much to increase/decrease $\lambda(t)$
- \longrightarrow we already know in which direction

Desired state of the system:

$$Q(t) = Q^*$$
 and $\lambda(t) = \gamma$

 \longrightarrow why is " $\lambda(t) = \gamma$ " needed?

Starting state:

- \longrightarrow empty buffer and nothing is being sent
- \longrightarrow think of iTunes, Rhapsody, etc.

i.e.,
$$Q(t) = 0$$
 and $\lambda(t) = 0$

Time evolution (or dynamics): track Q(t) and $\lambda(t)$

Congestion control methods: A, B, C and D

Method A:

- if $Q(t) = Q^*$ then $\lambda(t+1) \leftarrow \lambda(t)$
- if $Q(t) < Q^*$ then $\lambda(t+1) \leftarrow \lambda(t) + a$
- if $Q(t) > Q^*$ then $\lambda(t+1) \leftarrow \lambda(t) a$

where a > 0 is a fixed parameter

 \longrightarrow called linear increase/linear decrease

Question: how well does it work?

Example:

- $\bullet \ Q(0) = 0$
- $\lambda(0) = 0$
- $Q^* = 100$
- $\gamma = 10$
- a = 1

With a = 0.5:

With
$$a = 3$$
:

With
$$a = 6$$
:

- Method A isn't that great no matter what *a* value is used
 - \rightarrow keeps oscillating
- Actually: would lead to unbounded oscillation if not for physical restriction $\lambda(t) \ge 0$ and $Q(t) \ge 0$
 - \longrightarrow i.e., bottoms out
 - \longrightarrow easily seen: start from non-zero buffer
 - \longrightarrow e.g., Q(0) = 110

With
$$a = 1$$
, $Q(0) = 110$, $\lambda(0) = 11$:

Method B:

- if $Q(t) = Q^*$ then $\lambda(t+1) \leftarrow \lambda(t)$
- if $Q(t) < Q^*$ then $\lambda(t+1) \leftarrow \lambda(t) + a$
- if $Q(t) > Q^*$ then $\lambda(t+1) \leftarrow \delta \cdot \lambda(t)$

where a > 0 and $0 < \delta < 1$ are fixed parameters

Note: only decrease part differs from Method A.

- \longrightarrow linear increase with slope a
- \longrightarrow exponential decrease with backoff factor δ
- \longrightarrow e.g., binary backoff in case $\delta = 1/2$

Similar to Ethernet and WLAN backoff

 \longrightarrow question: does it work?

With
$$a = 1, \, \delta = 1/2$$
:

With
$$a = 3, \, \delta = 1/2$$
:

With
$$a = 1, \, \delta = 1/4$$
:

With
$$a = 1, \, \delta = 3/4$$
:

- Method B isn't that great either
- One advantage over Method A: doesn't lead to unbounded oscillation
 - \rightarrow note: doesn't hit "rock bottom"
 - \rightarrow due to asymmetry in increase vs. decrease policy
 - \rightarrow we observe "sawtooth" pattern
- Method B is used by TCP
 - \rightarrow linear increase/exponential decrease
 - \rightarrow additive increase/multiplicative decrease (AIMD)

Question: can we do better?

 \longrightarrow what "freebie" have we not made use of?

$$\lambda(t+1) \leftarrow \lambda(t) + \varepsilon(Q^* - Q(t))$$

where $\varepsilon > 0$ is a fixed parameter

Tries to adjust magnitude of change as a function of the gap $Q^* - Q(t)$

 \longrightarrow incorporate distance from target Q^*

 \longrightarrow before: just the sign (above/below)

Thus:

- if $Q^* Q(t) > 0$, increase $\lambda(t)$ proportional to gap
- if $Q^* Q(t) < 0$, decrease $\lambda(t)$ proportional to gap

Trying to be more clever...

 \longrightarrow bottom line: is it any good?

With
$$\varepsilon = 0.1$$
:

With
$$\varepsilon = 0.5$$
:

- \longrightarrow looks good
- \longrightarrow but looks can be deceiving

Time to try something strange

- \longrightarrow any (crazy) ideas?
- \longrightarrow good for course project

Method D:

$$\lambda(t+1) \leftarrow \lambda(t) + \varepsilon(Q^* - Q(t)) - \beta(\lambda(t) - \gamma)$$

where $\varepsilon > 0$ and $\beta > 0$ are fixed parameters

- \longrightarrow odd looking modification to $\texttt{Method}\ \texttt{C}$
- \longrightarrow additional term $-\beta(\lambda(t) \gamma)$
- \longrightarrow what's going on?
- \longrightarrow does it work?

With
$$\varepsilon = 0.1$$
 and $\beta = 1.0$:

Remarks:

- Method D has desired behavior
- Is superior to Methods A, B, and C
- No unbounded oscillation
- In fact, dampening and convergence to desired state
 - \rightarrow converges to target operating point (Q^*,γ)
 - \rightarrow called asymptotically stable

 \rightarrow why?