
The Role Control Center: Features and Case Studies

David F. Ferraiolo
NIST

820 West Diamond Dr.
Gaithersburg, MD 20899

dferraiolo@nist.gov

Gail-Joon Ahn
Univ. of NC at Charlotte
9801 University City Blvd.

Charlotte, NC 28223
gahn@uncc.edu

R.Chandramouli
NIST

820 West Diamond Dr.
Gaithersburg, MD 20899

mouli@nist.gov

Serban I. Gavrila
VDG Inc.

6009 Brookside Dr.
Chevy Chase, MD 20815

serban.gavrila@nist.gov

ABSTRACT
Role-based Access Control (RBAC) models have been
implemented not only in self-contained resource management
products such as DBMSs and Operating Systems but also in a
class of products called Enterprise Security Management Systems
(ESMS). ESMS products are used for centralized management of
authorizations for resources resident in several heterogeneous
systems (called target systems) distributed throughout the
enterprise. The RBAC model used in an ESMS is called the
Enterprise RBAC model (ERBAC). An ERBAC model can be
used to specify not only sophisticated access requirements
centrally for resources resident in several target systems, but also
administrative data required to map those defined access
requirements to the access control structures native to the target
platforms. However, the ERBAC model (i.e., the RBAC
implementation) supported in many commercial ESMS products
has not taken full advantage of policy specification capabilities of
RBAC. In this paper we describe an implementation of ESMS
called the ‘Role Control Center’ (RCC) that supports an ERBAC
model that includes features such as general role hierarchy, static
separation of duty constraints, and an advanced permission review
facility (as defined in NIST’s proposed RBAC standard). We
outline the various modules in the RCC architecture and describe
how they collectively provide support for authorization
administration tasks at the enterprise and target-system levels.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – access
controls; K.6.5 [Management of Computing and Information
Systems]: Security and Protection; C.2.2 [Computer-
Communication Networks]: Network Protocols – applications.

General Terms
Security, Design, Experimentation.

Keywords
Authorization Management, Role Hierarchy, Administrative
Roles, Role Graph, Separation of Duty

1. INTRODUCTION
RBAC Models have come of age since they were first proposed.
Researchers have extended the basic model to allow for
increasingly sophisticated authorization policies. Along with these
advancements, the application space for RBAC has also increased.
Initially RBAC models were implemented within self-contained
resource management products such as Database Management
Systems [CS98] and Operating systems [FA99]. The scope of
these models is access control for the resources under the control
of those individual systems. Recently RBAC models have been
used in a class of products called Enterprise Security Management
Systems (ESMS). ESMS products are typically used for
centralized management of authorizations for resources resident in
several heterogeneous systems (called target systems) distributed
throughout the enterprise though they may provide other security
administration features such as password synchronization, single
sign-on, and PKI.
We refer to the class of RBAC model used in an ESMS as the
Enterprise RBAC model (ERBAC). An ERBAC model differs
from an RBAC model used in a self-contained resource
management product in the following ways. First, the objects
whose permissions are specified in the ERBAC model are abstract
objects as compared to actual system objects such as NT files and
their associated permissions may also be abstract as compared to
actual permissions such as read, write etc. Secondly, the ERBAC
model contains administrative roles in addition to regular roles.
The permissions associated with these administrative roles pertain
to administrative operations as opposed to resource-level
operations like Read, Write etc. Examples of administrative
operations are: Assign Users to Roles, Assign a role to role (to
build a hierarchy), Assign permission to a role etc. In addition, an
ERBAC model includes data structures for mapping the
authorization information at the enterprise-level (that is in terms
of abstract objects and abstract permissions) to actual objects and
permissions on the resources resident in various heterogeneous
systems throughout the enterprise in the format required by native
access control structures.
The ERBAC model (i.e., the RBAC implementation) supported in
many commercial ESMS products [TIV02, BMC02] has not taken
full advantage of policy specification and administrative
capabilities of RBAC. To demonstrate the virtues of a robust
RBAC feature set, we have developed an ESMS called the ‘Role
Control Center’ (RCC). RCC supports an ERBAC model with
general role hierarchies, static separation of duty constraints, and
an advanced permission review facility (as defined in NIST’s
proposed RBAC standard [FSGKC01]).

Copyright 2003 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
SACMAT’03, June 2-3, 2003, Como, Italy.
Copyright 2003 ACM 1-58113-681-1/03/0006…$5.00.

12

The remainder of the paper is organized as follows. In section 2,
we outline the architecture of RCC. In section 3, we provide an
overview of RCC features. The next three sections provide a
detailed description of each of the features. The ERBAC model
definition and visualization features are dealt with in section 4.
The enterprise-level administrative operations are the focus of
section 5, while section 6 deals with target system-level
administrative operations. Section 7 concludes the paper.

2. RCC ARCHITECTURE
RCC is a three-tiered application (viz., Fig. 1) that is made up of
the following tiers: Presentation Layer, Application Logic Layer
and Data Layer. The presentation layer is the RCC client, the
application logic layer consists of the RCC server and RCC agents
(resident in various target systems) and the data layer consists of
the data repository. The RCC client is an application that uses the
interface exposed by the RCC server. The standard RCC client
provides the graphical user interface (see figure 2 for an example),
the code responsible for displaying the ERBAC model graph
(referred to as the role graph in the rest of the paper), capturing
user actions and transforming them into calls to the APIs provided
by the RCC server. The RCC client performs a function similar to
a browser in a web application. The RCC client is however more
sophisticated than a web browser. While a web browser requests
services from a web server by sending just the URL string, the
RCC client can send different types of commands that are
available in the interface exposed by the RCC server. The RCC
client communicates with the RCC Server and its agents using
Secure Sockets Layer (SSL) protocol.

Figure 1 RCC Architecture

The RCC server (1) analyzes the commands received from the
RCC client (2) retrieves the necessary data from the data layer and
checks the commands’ consistency with the data; (3) updates the
RBAC sets of users and roles, and the user-role, role-role, role-
permission relations according to the commands, and (4) sends
the updated data back to the data layer. The RCC server is also
responsible for mapping selected subgraphs of the role graph
(called views) to user accounts and groups on heterogeneous hosts
(called also target systems), and for mapping abstract objects and
role permissions to actual objects and permission structures (e.g.,
ACLs) on those hosts. For these tasks, RCC uses agent software
running on each host to create/delete groups and user accounts,
populate the groups with user accounts, and set up ACLs,
according to commands received from the RCC server. The RCC
Server is currently implemented as a Windows NT/2000
application and there are now two versions – one written in Visual
Basic and the other in Java.

The data layer consists of a directory service, which stores,
retrieves, and protects the actual ERBAC data, i.e., the user and

role sets, the various relations, the abstract objects, and the
mappings between ERBAC data and target system data.

3. OVERVIEW OF RCC FEATURES
As an ESMS, RCC provides features for two levels of
administrative operations – Enterprise-level administrative
operations and Target system-level administrative operations.
RCC server through the RCC client provides the features for
enterprise-level administrative operations:

• Create and maintain the ERBAC model elements and
relations– users, roles, permissions, constraints, user-role
relations, role-role relations and role-permission relations.
The role permissions are defined in terms of abstract
objects/abstract operations. Their mappings to actual
objects/actual operations on the various target systems are
also defined. The roles include regular roles (defined in any
RBAC model –e.g., payroll clerk) as well as administrative
roles (e.g., financial_admin_role).

Figure 2 RCC Administrative Interface

• Visualization of various ERBAC model relations referred
above.

The features for target-system-level operations include:

• Map Enterprise users/roles (defined in the ERBAC model) to
user accounts/groups in target systems.

• Map abstract objects/operations in the ERBAC model to
actual objects (e.g., NT file) and actual operations (e.g.,
Read, Write etc.) in target systems.

All the operations are carried out using menus in RCC’s
administrative interface. The role graph displayed in the interface
uses single ellipses to represent roles and double ellipses to
represent users. A role called ‘rbac’ is pre-defined in the graph to
act as the root node for building the entire ERBAC model for the
enterprise. There are two types of menus in the RCC interface.
They are: (a) The menus that are associated with the objects in the

Presentation Layer Data LayerApplication Logic

DirectoryDirectoryDirectoryDirectory
ServiceServiceServiceServiceRBAC

Data

Local Host n

RCCRCCRCCRCC
AgentAgentAgentAgent

Local Host i ...

RCCRCCRCCRCC
AgentAgentAgentAgent

RCCRCCRCCRCC
ClientClientClientClient

RCCRCCRCCRCC
ServerServerServerServer

RCCRCCRCCRCC
ClientClientClientClient

13

ERBAC model graph and (b) the top-level menus. The object-
level menus support operations for creating/deleting roles, users
and role-role relations (i.e., role hierarchies) as well as review of
role permissions (both administrative permissions for
administrative roles and resource permissions for regular roles).
The top-level menus support static separation of duty
specifications, definition of abstract objects/abstract permissions,
visualization of role subgraph instantiated on a particular host,
mappings from abstract objects/abstract permissions to actual
objects/actual permissions on a designated host as well as
assignment of resource permissions and administrative
permissions to regular and administrative roles respectively.

4. RBAC MODEL FEATURES IN RCC
As we already stated, the distinguishing feature of RBAC is the
support for policy specification capabilities through support for
general hierarchies and static separation of duty constraints in its
ERBAC model. In sections 4.3 and 4.4, we describe the
implementation of these features in RCC and the visualization of
these specifications through the RCC administrative interface. In
order to perform visualization of specifications we need to have a
quick review of navigational features available for the ERBAC
model graph (role graph) provided by the RCC administrative
interface in the RCC client. This is the focus of the next two
sections.

4.1 Role Graph Navigation
A principal goal of RCC is to provide an easy and satisfactory
way of navigating through a role graph containing a large number
of roles, without imposing restrictions on the inheritance relation.
We provide a simple schema that is very similar to the navigation
through a directory structure (which is a tree) so that RCC can be
familiar to users of Window-based systems.

For any node a of the graph, we call the subset of roles consisting
of the node a and its direct ascendants (direct descendants),
partially ordered by the inheritance relation →, the upward (or
downward) projection with anchor a (see Section 4.3).

Figures 4 and 5 show upward and downward projections extracted
from the graph in Figure 3. We can generalize the projection by
introducing the n-tiered upward or downward projection:

 up_projn(a) = ({a}∪ {r| r →n a}, →)

 down_projn(a) = ({a}∪ {r| a →n r}, →)

where x →n y means that x inherits y through at most n direct
inheritances. Obviously, up_proj(a) = up_proj1(a), down_proj(a)
= down_proj1(a), and the ∞-tiered projection is the entire role
graph. In general, an n-tiered projection with n=2 is not a tree,
while the 1-tiered projections are trees.

RCC uses a navigation scheme in which, at any moment, one of
the graph nodes is selected as the anchor and is marked
distinctively. The graphical user interface displays both the n-
tiered upward and downward projections of the current anchor,
where n is the currently chosen number of tiers. For example,
Figure 6 shows the portion of the graph in Figure 3 displayed by
RCC when the anchor is PayrollSuper and n=2.
To change the anchor, the user selects one of the anchor's
descendants or ascendants. That node becomes the new anchor,

and RCC displays the projections corresponding to the new
anchor.

Two questions arise related to our navigation schema. The first is
how to select the initial anchor? The second problem arises when
the role graph is not connected: how does one navigate from one
connected component of the graph to another?

A simple solution to both questions is solved by introducing an
artificial graph node, called the base role, as the smallest element
of the role set under the partial order →. The base role has the
same semantics as the minrole as described in [NO99]. The graph
becomes connected, and the base role can be used as the initial
anchor. In addition, the base role can help simplify the problem of
merging the role graphs corresponding to roles of two or more
merging organizations. In Figure 3, the role rbac is the base role.
The remainder of this document will use the name rbac to
designate the base role.

Implementing the base role as smallest element of the role set
requires the following actions. When a user or role is created
without specifying whose ascendant it is, the new user or role is
made a direct ascendant of rbac. When a role r is set to inherit
another role r’, the direct inheritance r→rbac is deleted if it
exists. When an inheritance r→r’ is deleted and consequently role
r has no more direct descendants, then the direct inheritance
r→rbac is established.

Figure 3 A role graph

Figure 4 An upward projection (with anchor PayrollClerk)

14

Figure 5 A downward projection (with anchor PayrollSuper)

Figure 6 – Subgraph with anchor PayrollSuper and n=2

4.2 Role Views
RCC uses role views to define and instantiate sets of relevant
users and roles on a target system, and to delegate administrative
privileges for certain portions of the role graph to administrative
roles (discussed in detail in section 6).
A role view defined by a set of roles {r1,…,rn}is a sub-graph of
the of the overall role graph with the following properties:
1. the view contains r1,…,rn as nodes;
2. if the view contains a role r, then it contains any user or role

q such that q→r;
3. the view contains no other nodes except those included by

rules 1, 2;
4. the view contains an arc q→r iff q and r are included in the

view and q→r is an arc in the original graph.

Figure 7 – Defining a role view

As a consequence, to define a view it suffices to indicate the
“most general” roles contained in that view, which are called
principal nodes of the view. If the view obtained from those
principals applying the above properties is not a connected graph,
then a base role is added when displaying and navigating the
view. For example, (see Figure 7), roles PayrollClerk and
Auditing define the view shown in Figure 8. Note that the sub-
graph is built from the principals, their direct and indirect
ascendants, and their inheritance relationships, and is augmented
with the base node rbac as a direct descendant of the principals
PayrollClerk and Auditing. Views may overlap, for example
PayrollSuper, Sheila, and David are common to the views defined
by the principals {PayrollClerk, Auditing} and {Taxes}.

Figure 8 – A view displayed by RCC

4.3 Inheritance Structures
The role graph [FSGKC01, NO99] describes the hierarchical
structure of roles in the enterprise. As a major component of an
RBAC system, role hierarchies go beyond flat role structures, in
their ability to depict and manage user privileges. Simply by
virtue of a role’s relative position in a role hierarchy, the
permissions that are assigned to the role may be made to contain,
or be contained by other roles in the hierarchy. By creating a
suitable role hierarchy, administrators are better able to formulate
access policies in terms of organization-specific functions and
business structures.
The primary role-role relation that results in the hierarchy is the
"containment" or "inheritance" relation. The inheritance relation
between two roles r1 and r2 when represented as r1 → r2 means
that role r1 inherits or contains role r2. The inheritance property is
with respect to privileges/permissions while the containment
refers to membership. Hence r1 → r2 if and only if all privileges of
r2 are also privileges of r1, and all users of r1 are also users of r2.
The role graph nodes represent users and roles, and the arcs
represent the relation →.
The combined property of privilege inheritance and membership
containment is realized in RCC using the following
implementation technique. In this technique permissions are not
directly assigned to roles. Permissions are assigned to groups and
groups are mapped to roles that are organized into a role
hierarchy. Groups assigned to a role are included in all the roles
higher up in the hierarchy. Hence if r1 → r2, a user assigned to
role r1 becomes a member in all the groups mapped to role r2 and
by implication a member of role r2 as well. Also since groups are

15

bundles of permissions, permission inheritance from role r2 also
occurs.
In practice role hierarchies are of two types – general role
hierarchies and limited role hierarchies. As implemented in RCC,
general role hierarchies provide support for an arbitrary partial
order to serve as the role hierarchy, to include the concept of
multiple inheritances of permissions and user membership among
roles. In particular, general role hierarchies allow a role to have
more than one immediate ascendant (potentially inheriting user
membership from multiple sources) and at the same time one or
more immediate descendents (potentially inheriting permissions
from multiple sources). Limited role hierarchies impose
restrictions resulting in a simpler tree structure (e.g., a role may
have one or more immediate ascendants, but is restricted to a
single immediate descendent, or visa versa).
As demonstrated by RCC, general hierarchies provide greater
flexibility in defining roles and allows for greater visibility and
understanding of the distribution and composition of permissions
among users and roles. By taking advantages of the properties of a
general hierarchy, RCC can apply an object-oriented approach at
organize and manage users and roles. For instance the permissions
that are authorized for a role can be decomposed into lower-level
roles representing the positions, functions: such as duties, tasks,
and entitlements, or organizational units: such as divisions,
departments, groups, and teams. Once these lower-level roles are
created, they may be re-used in the creation of one or more
higher-level roles.
The graph depicted in Figure 9 illustrates several properties of a
general hierarchy in terms of a hospital application. Because
general hierarchies place no restrictions on the number of
immediate role inheritance relations, the Cardiologist role is able
to inherit permissions from both the functional roles beginning
with Specialist and the organizational roles beginning with
Cardiology, As such, the Cardiologist role is neither a functional
nor an organizational role, but rather a hybrid.
We denote by →* the reflexive-transitive closure of the
inheritance relation, i.e., r1 →* r2 iff r1 = q1→ … → qn = r2, where
n>0 (note that the definition allows for roles r1 and r2 to
coincide). RCC requires the inheritance relation →* to be a partial
order on the set of RBAC users and roles. Consequently, the role
graph is a directed acyclic graph. Usually, we represent the graph
with the arcs corresponding to the inheritance relation → oriented
top-down. Thus, we can say the role membership is inherited top-
down, and the role privileges are inherited bottom-up.
Another interesting property of a general hierarchy is its uniform
treatment of a user/role assignment (user-role relation) and the
immediate role inheritance relation. By virtue of a user’s
assignment to a role, the user inherits the permissions assigned to
the role, and the user becomes a member of the role. Also,
because a user may be assigned to multiple roles, a general role
hierarchy allows for the representation of all user role
assignments, without resorting to multiple instances of the user.
For example, Figure 9 shows that user Smith is assigned to two
roles – Consultant and Cardiologist. By virtue of the role
hierarchy that exists under those assigned roles, Smith becomes
authorized for other roles such as Development, Specialist,
Doctor, Issue_drugs etc. To graphically illustrate the same
relations within a limited role hierarchy would require two
instances of user Smith.

The above discussion implies that the representation of
inheritance relation → and its closure are used for representing
user-role assignments and authorization respectively. Hence a user
u is said to be assigned to role r if u → r, while u is said to be
authorized for role r if u →+r, where →+ is the transitive closure
of the → relation.
For example, in the role graph of Figure 10, user Kim is assigned
to role GastologyNurse, and is authorized to roles
GastologyNurse, NurseSpeialist, NursePractitioner Issue_Drugs,
Functions and HealthCare. Also, the privileges available to Kim
are those that are assigned to Kim plus those that are assigned to
Kim’s authorized roles.

Figure 9 User Smith’s authorized roles
The semantics of the inheritance relation and the uniformity in the
representation of role-role and user-role relation greatly facilitates
permission review. Since a role can represent either a function,
department or organizational position, consider the case where a
role represents a function (e.g., Issue_Drugs). By generating a
graph view with Issue_Drugs as the anchor (Figure 10), it is
possible to view all the roles and all the users who have been
authorized to issue drugs.

4.4 Static Separation of Duty Constraints
The next policy specification capability of RCC pertains to Static
Separation of duty (SSoD) constraints that is an example of a
conflict of interest rule as they uniquely apply to an organization
[SZ97, GGF98, AS00, JT01]. A SSoD constraint specifies that a
user may be authorized as a member of a role only if that role is
not designated as mutually exclusive with any of the other roles
for which the user already is authorized.
A common example of a set of mutually exclusive roles is the
purchasing manager and accounts payable manager roles.
Generally, the same individual is not permitted to belong to both
roles because this creates a possibility for committing fraud by an
individual with combined permissions for purchasing and
approving a payment.

16

Figure 10 The roles/users that are authorized to Issue Drugs
 Consider role graph in Figure 3, we can identify several
conflicting roles. For example, the role Auditing should be
mutually exclusive with Taxes and PayrollClerk. This means that
no user may be authorized to Auditing and PayrollClerk, or
Auditing and Taxes, or Auditing and PayrollSuper.
In order to support this Static SoD (SSoD), we first define the
name of conflicting role set and determine conflicting role sets.
Figure 5 shows a “Static Separation of Duties” dialog box
illustrating a conflicting role set and conflicting roles selected.
Suppose a new user Ross is assigned to the role Auditing. In the
case of SSoD on these two roles Auditing and PayrollClerk, Ross
should not be allowed to be a member of the role PayrollClerk.
Current environment for the user Ross is summarized as Table 2.
From the above table, we can say that the user Ross can have
privileges assigned to roles Auditing and Payroll but not on
PayrollClerk. This constraint is imposed by the SSoD set (named
Payroll_Auditing) as shown in Figure 11. RCC represents such a
conflicting relationship with colored nodes in a role graph. The
system enforces such constraints whenever a new user-role
assignment (an instance of user-role relation) is initiated. For
example, a supervisor may want to assign the user Ross to the role
PayrollClerk or PayrollSuper. Such an assignment is not allowed
by RCC because Ross is a member of the role Auditing, which is
in conflict with the role PayrollClerk.1 This indicates that any
user, who is a member of one of roles in a conflicting role set
either implicitly or explicitly, cannot be assigned to any other
roles in the same conflicting role set.
In role-based systems, two conflicting permissions can be
assigned to a role. An SSoD constraint may simply require that

1 In addition, RCC displays an error message such as “Inheritance

would contradict SSoD set.”

no user can be assigned to such a role or any role senior to it,
which makes that role quite useless as identified in [AS99].

Figure 11 SSoD Set: Payroll_Audit

However, RCC tool can prevent certain kinds of mistakes in role-
permissions and user-roles assignments. The RCC tool checks for
the SSoD constraints, if any, before performing any assignment
task. Other forms of mutual exclusivity, as static operational
separation of duties, or static object-based separation of duties,
can be enforced by RCC but are not implemented at this time.
The SSoD constraints are restrictions affecting creation of user-
role relations. Restrictions governing creation of other relations
such as role-permission relations are also possible in RCC thus
opening up the potential for supporting a richer set of policies.

5. ENTERPRISE-LEVEL
ADMINISTRATIVE OPERATIONS

Enterprise-level administrative operations are tasks involved in
the creation and maintenance of the ERBAC model. The
permissions to perform these administrative operations are called
administrative privileges. The logic for assignment of these
administrative privileges in turn is specified through an
administrative model. One such administrative model is the
URA97 model [SB97]. In this section, we demonstrate how
URA97 features can be supported by RCC.
The main goal of URA97 model is to impose restrictions on
which users can be added to a role by whom, as well as to provide
different semantics for user assignment to roles and for user
revocation from roles.
The URA97 model controls the assignment of user to roles by
means of the relation “can_assign”. The meaning of can-assign
(x, y, {a,b,c}) is that a member of the administrative role x (or a
member of an administrative role that is senior to x) can assign a
user whose current membership, or non-membership, in regular
roles satisfies the prerequisite condition y to be a member of
regular roles a, b or c.
To simulate the notion of can_assign relationship in URA97
model, we first construct the role hierarchy as shown in Figure 12.
Figure 12 shows two role hierarchies: one for regular roles and
the other for administrative roles. The administrative role

17

hierarchy has the senior most role Sec_Off_Senior which inherits
a junior administrative role Sec_Off_Junior. Suppose the
Sec_Off_Junior role has a partial administrative control over the
roles {PayrollClerk, Taxes} but not over PayrollSuper in the
hierarchy. In the regular role hierarchy, a user Alice is a member

Figure 12 Role Hierarchy Example

of the Sec_Off_Junior role and Andrew is a member of the role
Payroll. Therefore, Alice can assign Andrew to any roles between
{PayrollClerk, Taxes} but not to PayrollSuper. In summary, Alice
can assign any user to the roles in {PayrollClerk, Taxes} if and
only if the user is a member of the Payroll role. This can_assign
relation can be specified as shown in Table 1(a)2.
Next, the aforementioned scenario requires that RCC assign the
Sec_Off_Junior role as an administrative role for the set of roles
{PayrollClerk, Taxes}. It allows the Sec_Off_Junior role to
partially perform administrative control over those roles.
This can be done by assigning administrative permissions to the
Sec_Off_Junior role. Figure 13 administrative permissions of the
Sec_Off_Junior role over the roles {PayrollClerk, Taxes}. At the
moment, RCC does not provide any means of specifying the
notions of prerequisite condition and role range. Corresponding
can_assign relation of RCC to Table 1(a) can be represented as
shown in Table 1(b).
Another important feature in URA97 includes “weak” and
“strong” revocations. RCC allows system administrators to revoke
users from roles depending upon their inheritance structure. A
user or role can be deleted only if it inherits the base role rbac. It
supports a notion of weak revocation in URA97. However,
RCC’s weak revocation cannot delete any roles (or users) if those
roles (or users) inherits any other user(s) or role(s) in role
hierarchy. Such users (or roles) can be deleted only by strong
revocation. RCC can support those revocation mechanisms.
However, RCC does not have a way to specify can_revoke
relation at the moment. The relation specification (or
configuration) needs to be considered in RCC to fully support
URA97.

2 The Role Range specifies the Sec_Off_Junior role has an
administrative control over the roles between Payroll and
PayrollSuper.

Figure 13 Representation of Administrative Permissions

Admin role Prerequisite Role set Role range
Sec_off_junior Payroll {PayrollClerk,

Taxes}
{Payroll,

PayrollSuper}

 (a) URA 97

Admin role Prerequisite Role set Role range
Sec_off_junior none {PayrollClerk,

Taxes}
none

 (b) RCC
Table 1. can_assign relation

User Assigned role Authorized role Conflicting role

Ross Auditing Auditing, Payroll PayrollClerk

Table 2. Separation of Duty Example

5.1 Delegation of Administrative Privileges
The number of roles and role relationships within a large
enterprise can become overwhelming for a single administrator to
maintain. In addition, administrators who are closer to the day-to-
day operations of a specific organizational entity are typically
better suited to administer the roles and role relationships with
respect to that organizational entity. To deal with these
administrative issues, RCC supports the delegation of
administrative privileges, i.e., assignment of access rights
necessary to modify the RCC database of roles and role
relationships from a senior administrator to a subordinate
administrator. Furthermore, it is often desirable to impose policy
constraints across administrative boundaries.
This process is best described by an example. Assume that the
enterprise role graph is much more complex than that of Figure 3,
but still contains the view with the principal Payroll. The super
user, which may perform all RCC operations on all users and

18

Figure 14 Granting Permissions to PayrollAdmins

roles, may want to delegate the administration of the Payroll view
to a user Ronald. To that purpose, super may create a new,
administrative, role, called PayrollAdmins, grant it all permissions
on the roles included in the Payroll view (see Figure 12), and
assign the user Ronald to PayrollAdmins. Ronald will be able to
perform all RCC operations, but only on roles included in the
Payroll view. Note that RCC user interface allows for defining
permissions on all roles in a view by checking the “Apply to
Entire View” box. Figure 15 shows per-user review of
permissions for Ronald. The small arrow in front of permissions
indicates the permission is inherited from an assigned role, and
not directly granted to Ronald.

Figure 15 Ronald's permissions

In turn, Ronald may want to delegate the administration (or at
least some administrative duties) of the Taxes view to a third
administrator, Michael. To this purpose, Ronald may create a new
administrative role TaxAdmins (but as an ascendant of Payroll –
remember that Ronald has no access to roles outside the Payroll
view), grant TaxAdmins some administrative permissions to the
Taxes view, and assign Michael to TaxAdmins. Ronald is allowed
to grant TaxAdmins permissions on roles in the Taxes view if and
only if super has granted him (through the PayrollTaxes role) the
permission change permissions on those roles.

6. TARGET SYSTEM-LEVEL
ADMINISTRATIVE OPERATIONS

RCC is intended to help administrators in setting up access
control information based on a user’s function in an enterprise. To
that aim, RCC uses the notions of RBAC users, roles, abstract
objects and permissions at the abstract, central level of the
enterprise. However, most existing operating systems and
applications perform the actual access checks by using actual user
accounts, groups, and ACLs on host computers, and do not
recognize roles. RCC performs and automatically maintains a
mapping between roles, users, and abstract permissions on one
hand, and groups, user accounts and actual permissions on the
target systems it controls, on the other hand.

Mapping users, roles, and membership to user accounts and
groups is based on views. The RCC administrator has to select a
view relevant for a given host, then map (or instantiate) that view
to user accounts and groups of the given host by using RCC. The
instantiation process is simple; the only rule being that the entire
view has to be mapped. For each user in the view, RCC creates
(through the agent running on that host) a user account on that
host. For each role in the view, RCC creates a group on that host.
Then RCC populates the new groups with user accounts
according to the role membership defined by the role graph.

Figure 16 Instantiated PayrollClerk's instance view for the
host Pear

For example, assume that the view of Figure 8 represents the users
and roles relevant for a host computer called pear. By mapping
the view on pear, RCC creates user accounts for Ross, Laura,
Gray, Jim, Sheila, and David, groups for Auditing, PayrollClerk,
and PayrollSuper, and populates these groups as follows:

- group PayrollSuper has Sheila, David as members;

- group PayrollClerk has Laura, Gray, Jim, Sheila, David as
members;

- group Auditing has Ross as member.

The following lines show part of the commands sent to the RCC
agent running on pear, used to accomplish the instantiation task:

connect
adduser&user=Ross&password=Ross_password
addglobalgroup&group=Auditing
addusertogroup&user=Ross&group=Auditing

On hosts running Windows NT™ operating system, the RCC
administrator can choose to create local or global groups,

19

depending on the host’s role in the NT domain. A version of RCC
uses an instantiation algorithm that takes advantage of NT’s group
nesting mechanism to avoid unnecessary duplication of user
membership.

It is worth noting that the so-called hosts do not need to be
computers on a network; they can be any system that uses users
and groups (and ACLs) as a security mechanism (for example, an
Apache server).
RCC also allows the administrator to delete instances of users and
roles from given hosts, with the requirement that at any moment
the instantiated users/roles form a view. For example, if the view
in Figure 8 were instantiated on a host, it would be possible to
delete the instances of PayrollClerk or Auditing, but not that of
PayrollSuper or Ross. After deleting the PayrollClerk instance,
the view instantiated on that host would be that of Figure 16.

7. CONCLUSION
RCC is a tool that enables centralized management of
authorizations for resources distributed throughout an enterprise.
For this purpose RCC provides an interface through its Client to
create and maintain an enterprise-level Role-based Access control
Model (ERBAC) on the RCC server and map the authorization
data contained in the ERBAC model to the various target systems
through the resident RCC Agent module. The ERBAC model in
RCC provides support for defining arbitrary role structures
(generalized role hierarchies) and flexible separation of duty
constraints. The present version of RCC contains agents for
Windows NT and Apache Web Server platforms. Work is
underway to develop agents for more target platforms and to
enhance the policy support capabilities of the ERBAC model.

References
[AS99] Gail-J. Ahn and Ravi Sandhu. The RSL99 language for
role-based separation of duty constraints. In Proceedings of 4th
ACM Workshop on Role-Based Access Control, pages 43{54.
ACM, 1999.

[AS00] Gail-J. Ahn, Ravi Sandhu, Role-based authorization
constraints specification, ACM Transactions on Information and
Systems Security 3 (4) (2000).

[BMC02] Enterprise Security Station – User Guide (Windows
GUI) – BMC Software Inc., 2002.

[CS98] R. Chandramouli, R. Sandhu, "Role Based Access
Control Features in Commercial Database Management Systems",
21st National Information Systems Security Conference, October,
1998. Crystal City, Virginia.

[FA99] G. Faden, “RBAC in UNIX Administration”, 4th ACM
workshop on Role-based Access Control, Fairfax, VA, USA,
1999.

[FSGKC01] D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, R.
Chandramouli, Proposed NIST standard for role-based access
control, ACM Transactions on Information and Systems Security
4 (3) (2001).

[GGF98] V.D. Gligor, S.I. Gavrila, D.F. Ferraiolo: “On the
Formal Definition of Separation-of-Duty Policies and their
Composition,” Proc. 1998 Symposium on Security and Privacy,
May 1998, Oakland, California.

[JT01] Trent Jaeger and Jonathon Tidswell, “Practical Safety in
Flexible Access Control Models.” ACM Transactions on
Information and Systems Security, Volume 4, Number 3, August
2001.

[NO99] M.Nyanchama, S. Osborn: “The Graph Model and
Conflict of Interest,” ACM Transactions on Information and
System Security, 2(1), February 1999.

[SB97] R. Sandhu, V. Bhamidipati, The URA97 model for role-
based administration of user-role assignment, in: T.Y. Lin, X.
Qian (Eds.), Database Security XI: Status and Prospects, North-
Holland, Amsterdam, 1997.

[SZ97] R.T. Simon, M.E. Zurko: Separation of Duty in Role-
Based Environments, in Proc. Computer Security Foundations
Workshop X, Rockport, Massachusetts, June 1997.

[TIV02] Enterprise Security Architecture using IBM Tivoli
Security Solutions (2002) – IBM Corporation

20

