
Distributed Credential Chain Discovery in Trust
Management with Parameterized Roles and Constraints

(Short Paper)

Ziqing Mao1, Ninghui Li1, and William H. Winsborough2

1 CERIAS and Department of Computer Science, Purdue University
{zmao,ninghui}@cs.purdue.edu

2 Department of Computer Science, University of Texas at San Antonio
{wwinsborough}@acm.org

Abstract. Trust management (TM) is an approach to access control in decen-
tralized distributed systems with access control decisions based on statements
made by multiple principals. Li et al. developed the RT family of Role-Based
Trust-management languages, which combine the strengths of Role-Based Ac-
cess Control and TM systems. We present a distributed credential chain discovery
algorithm for RT C

1 , a language in the RT family that has parameterized roles and
constraints. Our algorithm is a combination of the logic-programming style top-
down query evaluation with tabling and a goal-directed version of the deductive
database style bottom-up evaluation. Our algorithm uses hints provided through
the storage types to determine whether to use a top-down or bottom-up strategy
for a particular part of the proof; this enables the algorithm to touch only those
credentials that are related to the query, which are likely to be a small fraction of
all the credentials in the system.

1 Introduction

In [1], Blaze, Feigenbaum, and Lacy coined the term “trust management” to group to-
gether some principles dealing with access control in decentralized distributed systems.
In the TM approach, access control decisions are based on the attributes (rather than the
identity) of the requester, such as citizenship, credit status, date of birth, employment,
group membership, security clearance, etc. These attributes need to be certified: they
are documented by digitally-signed credentials issued by appropriate authorities, which
may have their own attributes documented in other credentials. When one requests a
resource from a server, the access is granted if the requester’s attributes in its creden-
tials satisfy the server’s policy. TM systems allow the authority to certify attributes to
be delegated. Like attributes themselves, such delegation relationships are documented
in credentials. For example, a university can issue a credential to delegate to its registrar
the authority to certify who are students of the university. The process of making an ac-
cess control decision involves finding a chain of credentials that together prove that the
requester satisfies the server’s policy. Thus, a central problem in trust management is to
determine whether such a chain exists and, if so, to find it. We call this the credential
chain discovery problem.

In a series of papers [12, 11, 10], Li et al. developed the RT family of Role-Based
Trust-management languages, which combine the strengths of Role-Based Access Con-
trol (RBAC) [16] and TM systems. Two central concepts in RT are principals and roles.
Each principal represents a uniquely identified entity in the system. A role is designated
by a principal and a role term. For example, HospB.physician is the physician role de-
fined by principal HospB and can be read as HospB’s physician role. In RT0, the most
basic language in the RT family, each role term is a string. Li et al. [12] introduced an
approach for doing distributed credential chain discovery in RT0. In credential chain
discovery, one needs to determine whether a requester has the attributes that satisfy the
policy. One approach is to use backward search, which starts with the policies that gov-
ern the requested resource and tries to enumerate all principals that are entitled to access
the resource. One difficulty of this approach is that because of recursive dependency in
policies, the search may never terminate. Clarke et al. [4] proposed an algorithm that
addresses the problem by doing a full-scale forward search, which tries to compute all
facts entailed by all the credentials and policies in the system. These approaches have
two drawbacks: First, using either forward or backward search alone, one may evalu-
ate a large number of credentials unrelated to the query. Second, when credentials are
stored in a distributed manner, one may not know the existence of some relevant cre-
dentials. The approach in [12] addresses these problems by using a goal-directed chain
discovery algorithm that combines goal-directed back search and goal-directed forward
search.

In [11, 10], a number of other components of RT were introduced. In particular,
RT1 adds parameterized roles to RT0. Parameterized roles can represent attributes that
have fields. For example, if HospB has a policy that allows the primary care physician
(pcp) of a patient to access the patient’s medical record, then HospB needs to define
the pcp role. Without parameterized roles, HospB needs to define a pcp role for each
patient and to grant access to each of these roles individually. In RT1, one can param-
eterize the role HospB.pcp by patient id, and then use only one statement to express
the policy. RTC

1 enhances RT1 with constraints. This enables one to succinctly express
permissions regarding structured resources and potentially unbounded domains. For ex-
ample, using one statement, one can grant the permission to connect to any port over
1024 at any host in the domain abc.dom. Clearly these are essential capabilities in a
real-world policy language.

While introducing parameterized roles and constraints greatly increases the expres-
sive power of the RT family, credential chain discovery was also made significantly
more challenging. In this paper, we present a distributed credential chain discovery
algorithm for RTC

1 . Our algorithm is a novel combination of goal-directed backward
search with tabling and goal-directed forward search, using a storage typing system and
a mechanism for communicating results between the two search directions and manag-
ing search in the two directions. We describe this algorithm in detail; in our specification
of the algorithm, we state logical invariants that ensure correctness.

The rest of this paper is organized as follows. Related work is discussed in Section 2.
We give a detailed example scenario in Section 3. In Section 4, we describe the syntax
and semantics of the RTC

1 language. Distributed credential chain discovery algorithms
are given in Section 5. We conclude in Section 6.

2 Related Work

Clarke et al. [4] gave an algorithm for credential chain discovery in SPKI/SDSI 2.0 [5].
Their algorithm views discovery as a term-rewriting problem. Each certificate is viewed
as a rewriting rule. Determining whether there is a credential chain that proves a role
expression e has a member D is equivalent to whether there is a way to rewrite e into D.
In order to avoid potential nontermination caused by recursive definitions, the algorithm
in [4] computes a closure the member-sets of all roles in C. This may be suitable when
large numbers of queries are made about a slowly changing credential pool of modest
size. However, when the credential pool is large, or when the frequency of changes to
the credential pool (particularly deletions, such as credential expirations or revocations)
approaches the frequency of queries against the pool, the efficiency of the bottom-up
approach deteriorates rapidly. The algorithm in [4] also requires that evaluation begin
by collecting all credentials in the system at a single location, where the evaluation will
be carried out. This is a common problem with many evaluation techniques. In an open
system, it will typically be the case that a large number of credentials have nothing
to do with the current query. Evaluation methods should not require these irrelevant
credentials to be collected. However, because there are no restrictions on the delega-
tion of authority that credentials can specify, there is no simple means of determining
which credentials are relevant without examining the chains and partial chains in which
they participate. This is the principle our approach uses to avoid collecting irrelevant
credentials.

Jha and Reps [7] pointed out that SDSI string rewriting systems correspond ex-
actly to the class of string rewriting systems modeled using push-down systems [2],
and therefore, one could use techniques for model checking pushdown systems to do
credential chain discovery. This approach, however, does not extend to parameters and
constraints.

Query Certificate Managers (QCM) [6] and Secure Dynamically Distributed Dat-
alog (SD3) [8] also consider distributed storage of credentials. The approach in QCM
and SD3 assumes that issuers initially store all credentials and every query is answered
by doing a form of backward search.

Li et al. [12] gave a distributed credential chain discovery algorithm for RT0. Ex-
tending the algorithm in [12] to deal with parameterized roles and constraints turns out
to be quite challenging. One can compare RT0 to a propositional language, and RTC

1

to a first-order language.
As RT languages have a logic programming semantics, chain discovery in RTC

1 is
closely related to deduction in logic programming and deductive databases. Backward
search is top-down evaluation, which is used in Prolog engines; and forward search is
similar to bottom-up evaluation, which is used in deductive databases. Issues such as
tabling and goal-directed evaluation have been extensively studied. For example, top-
down evaluation with tabling is studied in [3], and goal-directed bottom-up evaluation
is studied in [13]. The uniqueness of our problem lies in the fact that it dictates a com-
bination of top-down evaluation and bottom-up evaluation, because of the distributed
storage of credentials. The search algorithm needs to be able to manage searches in
both directions and to pass solutions from the search in one direction to the search in
the other direction. Also, as RTC

1 has constraints; the search algorithm needs to incor-

porate ideas from the evaluation algorithms for constraint datalog (e.g., [17]). On the
other hand, our problem is simpler than the general problem in that our algorithm only
needs to handle four types of logical rules corresponding to the four types of statements
in RT .

3 An Example

In this section, we describe an example scenario we will use throughout this paper to
illustrate credentials and policy statements in RT and the distributed credential chain
discovery process. This example is given in Figure 1 and explained below.

DC is a data center that maintains medical data about patients. The data maintained
by it includes patient’s personal information (such as name and birthdate), contact info,
as well as other medical data such as test results and images. These data are labeled with
category information, and the category information is organized in a hierarchy. Some
sample categories are shown in the Figure 1(a). There are 3 categories at the top level:
person, contact, and medical; each contains subcategories. For example, one’s blood
test result will be labeled with the category ‘medical.testresult.blood’ and one’s email
address will be labeled with the category ‘contact.online.email’.

In the discussions below, we distinguish between policy statements and credentials.
Policy statements are issued by DC and used by DC locally, thus they do not need
to digitally signed. On the other hand, credentials are digitally signed, and DC needs
to verify the signatures before accepting them. Other than the above difference, policy
statements and credentials can be handled in exactly the same way in the chain discov-
ery process. Note that credentials support the full generality of policy statements, and
typically must be collected from distributed storage during chain discovery.

Policies DC’s policy about accessing the data includes the following two rules:

– The primary care physician (PCP) of a patient has access to all information about a
patient.

– The PCP of a patient is allowed to delegate access to medical info to another physi-
cian in an affiliated clinic or hospital.

These two rules are encoded using policy statements (p1) and (p2) in Figure 1(c).
The statement (p1) [DC.access(pname=?x, data=?y)←−DC.pcp(pname=?x)] states
that any principal that is the PCP of a patient X can access any data about the patient
X. In the statement ?x and ?y are two variables. DC.access(pname=?x, data=?y) is a
parameterized role. Note that the same variable ?x appears both in the head (the part to
the left of←−) and the body (the part to the right of←−).

The statement (p2) [DC.access(pname=?x, data=?y)←−DC.delAcc(pname=?x,
data=?y) ∩DC.physician ; ?y ¹ 〈medical〉] states that if a principal is being delegated
access to certain medical data, and is a physician, then the principal is allowed to access
the data. The symbol ∩ denotes set intersection, if one views each role as the set of
principals who are members of the role; it can also be equivalently viewed as a logical
AND. Note that (p2) includes a constraint ?y ¹ 〈medical〉, which means that ?y must
be a subcategory of medical. This syntax for constraints will be explained in Section 4.

(a) The Category Hierarchy for the Patient Data

(b) Principals
DC a data center that maintains medical data
ClinicA a clinic that is affiliated with DC
HospB a hospital that is affiliated with DC
Alice a physician at ClinicA and the PCP of the patient ‘Paul’
Bob a physician at HospB, and is referred by Alice to access image data of ‘Paul’

(c) Policy Statements and Credentials
label statement stored by
(p1) DC.access(pname=?x, data=?y)←−DC.pcp(pname=?x). DC

where pname stands for “patient name”
(p2) DC.access(pname=?x, data=?y)←−

DC.delAcc(pname=?x, data=?y) ∩ DC.physician ; ?y ¹ 〈medical〉. DC
(p3) DC.delAcc(pname=?x, data=?y)←−

DC.pcp(pname=?x).refAcc(pname=?x, data=?y). DC
(p4) DC.pcp(pname=?x)←−DC.affil.pcp(pname=?x). DC
(p5) DC.physician←−DC.affil.physician. DC
(c1) DC.affil←−ClinicA. ClinicA
(c2) DC.affil←−HospB. HospB
(c3) ClinicA.pcp(pname=?x)←−Alice ; ?x =‘Paul’. ClinicA
(c4) HospB.physician←−Bob. Bob
(c5) Alice.refAcc(pname=?x, data=?y)←−Bob ;

?x = ‘Paul’ ∧ ?y ¹ 〈medical.image〉. Bob

(d) The Inference Process:
label conclusion using
(r1) DC.pcp(pname=?x) ; ?x =‘Paul’ ´ Alice (p4), (c1), (c3)
(r2) DC.physician ´ Bob. (p5), (c2), (c4)
(r3) DC.delAcc(pname=?x, data=?y) ;

?x = ‘Paul’ ∧ ?y ¹ 〈medical.image〉´ Bob. (p3), (r1), (c5)
(r4) DC.access(pname=?x, data=?y) ;

?x = ‘Paul’ ∧ ?y ¹ 〈medical.image〉´ Bob. (p2), (r3), (r2)

Fig. 1. A Running Example. This example is explained in detail Section 3.

One cannot use (p2) to gain access to data other than those under the medical category;
for example, even if a physician is being delegated access to the contact information by
the PCP, the physician still cannot use this rule to gain access to the information.

Policies (p1) and (p2) refer to the three roles: DC.delAcc(· · ·), DC.pcp(· · ·), and
DC.physician. They are defined in (p3), (p4), and (p5), respectively. The policy (p3)
states that one can be delegated access to a patient’s data by the PCP of the patient; (p4)
states that DC delegates the authority to certify the PCP relationship to members of the
role DC.affil; and (p5) is a similar delegation about physicians.

Credentials and Inferences The data center DC may have many affiliated clinics and
hospitals, each of which may have hundreds of physicians and thousands of patients,
and there may be even more referring relationships. Therefore, in the whole system
there may be millions of credentials. In this example, we consider only the five creden-
tials in Figure 1(c).

Credential (c1) is issued by DC to ClinicA, and asserts that ClinicA is affiliated
with DC. Credential (c3) is issued by ClinicA and asserts that Alice the PCP of the pa-
tient who has patient name3 ‘Paul’. From these two credentials and the policy (p4),
one can infer (r1): Alice is a member of the constrained role DC.pcp(pname=?x);
?x =‘Paul’. (In Figure 1(c), this is denoted by the syntax DC.pcp(pname=?x);
?x =‘Paul’ ´ Alice.) Similarly, from credentials (c2) and (c4), together with the policy
(p5), one can infer (r2): Bob is a member of the role DC.physician.

Credential (c5) is issued by Alice when Alice wants Bob to look at the medical
image date of patient ‘Paul’, maybe for a second opinion. From (p3), (r1), and (c5), one
can infer (r3): Bob is a member of the role DC.delAcc(pname=?x, data=?y); ?x =
‘Paul’ ∧ ?y ¹ 〈medical.image〉.

Finally, using (p2), (r3), and (r2), one can infer that Bob is able to get access to the
medical image data of the patient ‘Paul’. For example, if Bob requests to access the
MRI image, then the access should be allowed.

Credential Storage and Discovery The first question that we need to address to enable
the above access is: Suppose that DC maintains all credentials that are issued by every-
one, when Bob requests access to the MRI image of patient ‘Paul’, how can one make
the authorization decision efficiently? We point out that there may be tens of thousands
of patients in the system, most of which are unrelated to the above access query; there-
fore, even if an algorithm runs in time linear in the total number of credentials, it is
still not efficient enough. We need an algorithm that touches only the small fraction of
credentials that are related to the query.

Furthermore, it is unreasonable to have DC maintain all credentials. For example,
credentials (c3), (c4), and (c5) do not even mention DC. It is illogical to have DC
store these credentials. The second question that we need to address is then how to
find these credentials that are needed. For example, credential (c4) is issued by HospB
and certify that Bob is a physician with HospB. Intuitively, it should be stored either
by HospB or Bob. When we say a principal stores a credential, it means that we can

3 In practice, patient records are more likely to be identified with unique patient ids, rather than
names. We use patient names here to make the presentation smoother.

find the credential once we know the principal. Some system, such as a directory, may
actually house the credential on the principal’s behalf. We require that one can find the
directory’s address once knowing the principal. One approach to do this is to require
the representation of a principal to include both the public key and the directory server
address. See [15] for more discussions on this.

In [12], a storage type system and a notion of well-typed credentials were presented
to address these problems. They guarantee that credential chains can be discovered
even when credentials are stored in a distributed manner. The types also guide search in
the right direction, avoiding huge fan-outs. See [12] for description of the storage type
system.

4 An Overview of RT C
1

Constraints RTC
1 uses constraints to support finite expression of authorizations over

infinite or unbounded domains, such as integer ranges or directory hierarchies. Each role
parameter has a data type, which is associated with a constraint domain. For example, in
the role DC.access(pname=?x, data=?y), ?x has the data type corresponding to patient
names and we can use equality constraints of the form ?x = ‘Paul’, and ?y has the data
type corresponding to patient data categories, and we can use constraints of the form
?y ¹ 〈medical〉.

Intuitively, a constraint domain is a domain of objects, such as numbers, points in
the plane, or files in a file hierarchy, together with a language for speaking about these
objects. The language is typically defined by a set of first-order constants, function
symbols, and relation symbols. See [10] for a formal definition of constraint domains.
For the purpose of this paper, it suffices to say that each constraint domain has a set of
primitive constraints, and these primitive constraints can be conjuncted to form more
complicated constraints. We now give several classes of constraint domains that have
been defined in RTC

1 .

Tree domains Each constant of a tree domain takes the form 〈a1.a2. · · · .ak〉. Imagine
a tree in which every edge is labeled with a string value. The constant 〈a1. · · · .ak〉
represents the node for which a1. · · · .ak are the strings on the path from root to
this node. A primitive constraint is of the form x = y or xθ〈a1. · · · .ak〉, in which
x and y are variables and θ ∈ {=, <,≤,≺,¹}.
The primitive constraint x < 〈a1. · · · .ak〉 means that x is a child of the node
〈a1. · · · .ak〉, and x ≤ 〈a1. · · · .ak〉 means that either x = 〈a1. · · · .ak〉 or x <
〈a1. · · · .ak〉. Similarly, the primitive constraint x ≺ 〈a1. · · · .ak〉 means that x is
a descendant of 〈a1. · · · .ak〉 (i.e., the latter is a prefix of x), and x ¹ 〈a1. · · · .ak〉
means that either x = 〈a1. · · · .ak〉 or x ≺ 〈a1. · · · .ak〉.
Tree domains are used in the running example for the hierarchically organized data
categories.

Discrete domains with sets Such a domain has a set of constants and one predicate =.
A primitive constraint has the form x = y, or x ∈ {c1, . . . , c`}, in which x and y
are variables, and c1, . . . , c` are constants.
In our running example, the patient name is a discrete domain with sets. In our ex-
amples, we use the constraint ?x = ‘Paul’, which is a shorthand for ?x ∈ {‘Paul’}.

A constraint is a conjunction of primitive constraints, possibly from multiple con-
straint domains. Given a constraint φ(x), where x is a tuple of variables including
all variables that occur free in φ, and a tuple t of constants, we say that φ(t) is sat-
isfied if each primitive constraint in φ(x) evaluates to true when the variables in it
are replaced with the corresponding constants in t . For example, given the constraint
φ(〈x1, x2〉) = x1 ≤ 〈a1.a2〉∧x2 ∈ (1, 10), and the tuple t = 〈〈a1.a2.a3〉, 2〉, we have
φ(t) is satisfied, because 〈a1.a2.a3〉 ≤ 〈a1.a2〉 and 2 ∈ (1, 10) both evaluate to true.

Syntax In RTC
1 , a ground role is a role in which each parameter is constrained to be

equal to one constant. A ground role defines a set of principals who are members of this
ground role. Given a tuple of type-compatible constants t , we use members(A.r(t))
informally in the following to refer to the set of principals that are member of A.r(t).

Credentials define role membership. (Here we use “credentials” to refer to both
unsigned policy statements and to digitally signed credentials.) The variables that occur
in a credential are local to that credential in the sense that they are implicitly universally
quantified at the outermost level of the credential. In the following, x, y , x1, and x2 are
tuples of variables that are all distinct. We now describe the four kinds of credentials in
RTC

1 :

– Type-1: A.r(x)←−B; ψ(x)

A.r(x) is a role with each parameter being a variable, B is a principal, and ψ(x) is
a constraint over the variables in x.
This means that B ∈ members(A.r(t)), for any n-tuple of constants t such that
ψ(t) is satisfied.

– Type-2: A.r(x)←−B.r2(y); ψ(x, y)

A.r(x) and B.r2(y) are both roles, and ψ(x, y) is a constraint (over the variables
in x and y).
This means that

members(A.r(t)) ⊇ members(B.r2(s)),

for every constant-tuple t and s such that ψ(t, s) is satisfied.
– Type-3: A.r(x)←−A.r1(y).r2(z); ψ(x,y ,z)

A.r(x) and B.r1(y) are both roles, r2(z) is a role term, and ψ(x,y ,z) is a con-
straint. We call B.r1(y).r2(z) a linked role.
This means that

members(A.r(t)) ⊇ members(D.r2(w))

for all D ∈ members(B.r1(s)) for every t, s, and w such that ψ(t , s, w) is satis-
fied.

– Type-4: A.r(x0)←−A1.r1(x1) ∩A2.r2(x2);
ψ(x0,x1, x2)

A.r(x0), A1.r1(x1) and A2.r2(x2) are roles, and ψ(x0,x1,x2) is a constraint.
We call A1.r1(x1) ∩A2.r2(x2) a role intersection.

This means that

members(A.r(s0)) ⊇ (members(A1.r1(s1)) ∩ members(A2.r2(s2))),

for all constant-tuple s0, s1, s2 such that ψ(s0, s1, s2) is satisfied.

We use σ to denote a credential, Head(σ) to denote the role to the left of “←−” in
the credential σ, and Body(σ) to denote the list of roles and constraints to the right of
“←−”.

Semantics Given a set P credentials, its semantics is formally defined by translating
each credential into a constraint datalog clause [9, 10, 14, 17]. We call the set of all
resulting clauses the semantic program of P .

Definition 1 (Semantic Program). Given a set P of policy statements, the semantic
program, SP(P), of P , has one predicate r of arity n + 2 for each n-ary role name r.
Intuitively, r(A,D, t) means that D is a member of the role A.r(t). SP(P) is the set
of all constraint datalog clauses produced from policy statements in P . The Semantic
Program SP(P) can be generated from P as follows.

For each A.r(x)←−D;φ(x) in P , add
r(A,D,x) :− φ(x) (m1)

For each A.r(x)←−B.r1(y); φ(x,y) in P , add
r(A, z1, x) :− r1(B, z2,y), z1 = z2, φ(x,y) (m2)

For each A.r(x)←−A.r1(y).r2(z); φ(x, y ,z) in P , add
r(A, z′0, x) :− r1(A, y′1, y), r2(y′2, z

′
2, z), y′1 = y′2, z

′
0 = z′2, φ(x, y , z) (m3)

For each A.r(x)←−B1.r1(y) ∩B2.r2(z); φ(x,y ,z) in P , add
r(A, z′0, z) :− r1(B1, z

′
1,y), r2(B2, z

′
2,z), z′0 = z′1, z

′
1 = z′2, φ(x, y , z) (m4)

An algorithm for evaluating a semantic program (which is a constraint Datalog pro-
gram) is given in [10]. The algorithm requires using existential quantifier elimination to
project constraints onto variables of interest. It is shown in [10] that existential quanti-
fier elimination can be done efficiently in the three constraint domains mentioned in
Section 4 and that the evaluation of constraint datalog programs such as SP(P) is
tractable when using these domains. However, the algorithm in [10] is a bottom-up
algorithm that computes all logical implications of a semantic program. The algorithm
is not goal-directed; thus, it is inefficient in practice and cannot deal with distributed
storage of credentials.

5 Description of the Algorithms

Given a set of RTC
1 credentials, the goal of our algorithms is to answer the next three

common kinds of queries:

1. Given a constrained role A.r(x); ψ(x), determine the set of principals that are
members of the given constrained role and the associated constraints. More pre-
cisely, this query asks for a set of principal/constraint pairs Θ such that

(a) 〈D,ϕ(x)〉 ∈ Θ implies ϕ(x) ⇒ ψ(x) and,
(b) for each principal D and each tuple of constants t such that ψ(t) is satisfied,

SP(P) |= r(A,D, t) if and only if there exists 〈D,ϕ(x)〉 ∈ Θ such that ϕ(t)
is satisfied.

2. Given a principal D, determine a set of constrained roles that D is a member of.
This query asks for a set Λ of constrained roles such that
(a) A.r(x); ϕ(x) ∈ Λ implies ϕ(x) ⇒ ψ(x), and
(b) for each tuple of constants t , SP(P) |= r(A,D, t) if and only if there exists

A.r(x); ϕ(x) ∈ Λ such that ϕ(t) is satisfied.
3. Given a constrained role A.r(x); ψ(x) and a principal D, determine the set of

constraints under which D is a member of A.r(x); ψ(x). More precisely, this query
asks for a set of constraints Ω such that
(a) ϕ(x) ∈ Ω implies ϕ(x) ⇒ ψ(x), and
(b) for each tuple of constants t such that ψ(t) is satisfied, SP(P) |= r(A,D, t)

if and only if there exists ϕ(x) ∈ Ω such that ϕ(t) is satisfied.

To answer queries of the first form, we can apply a backward search algorithm
starting from the constrained role A.r(x); ψ(x). For queries of the second form, we
can apply a forward search algorithm starting from the principal D. For queries of the
third form, we can use either a backward search or a forward search. For queries of the
third form, we also have the alternative of using a bidirectional search algorithm, which
simultaneously searches backwards from A.r(x); ψ(x) and forwards from D.

When credential storage is distributed, the bidirectional search algorithm can find
some chains that cannot be found by either forward or backward search alone.

5.1 The Backward Search Algorithm

The backward search algorithm constructs a proof graph, each node of which is given
by (and represents) a constrained role A.r(x); ψ(x). (The nodes in this proof graph are
called role nodes. This is the only kind of node constructed by the backwards search
algorithm; the forward search algorithm also uses “principal nodes,” which, as their
name suggests, represent principals.)

Role nodes Each role node stores a set of solutions. A solution comprises a prin-
cipal and a constraint. The algorithm maintains the following invariant. If the
node A.r(x); ψ(x) has a solution 〈D, ϕ(x)〉, then ϕ(x) ⇒ ψ(x) and SP(P) |=
r(A,D, t) for each t such that ϕ(t) is satisfied. When the algorithm terminates,
it will also be the case that for each t such that SP(P) |= r(A,D, t), the node
A.r(x); ψ(x) has a solution 〈D, ϕ(x)〉 such that ϕ(t) is satisfied. Thus, queries
of type 1 can be answered by taking Θ to be the set of solutions associated with
A.r(x); ψ(x). Similarly, queries of type 3 can be answered by taking Ω to be the set
of constraints ϕ(x) such that 〈D, ϕ(x)〉 is a solution associated with A.r(x); ψ(x).
When there are certain kinds of edges between nodes, solutions can be propagated
through the edges. Whenever a solution is about to be added to a node, we first
check whether the solution is implied by a solution that already exists. A solution
〈D,ϕ1(x)〉 is implied by a solution 〈D, ϕ2(x)〉 if and only if ϕ1(x) ⇒ ϕ2(x). If
so, then we do not add the new solution. Otherwise, the new solution is added, and
the solution is propagated through outgoing edges.

The backward search algorithm maintains a queue of nodes that require further
consideration, called the backward processing queue. The algorithm removes nodes
from the queue one by one and processes them, repeating this until the queue is empty.
Both the proof graph and the queue initially contain just one node, which corresponds to
the query role. The algorithm also maintains a set of backward expanded nodes, which
is initially empty.

To process a node η1 = A.r(x); ψ1(x), the algorithm does the following:

1. For each backward expanded node in the graph that has the form η2 =
A.r(x); ψ2(x), it checks whether ψ1(x) ⇒ ψ2(x). If so, we know that all solu-
tions for η1 are also solutions to η2, in which case we say that the node η2 subsumes
η1. The algorithm adds a specialization edge from η2 to η1.
The effect of this edge is that each solution 〈D,ϕ2(x)〉 that is currently as-
sociated with or subsequently added to η2 is propagated to η1 as follows: let
ϕ1(x) = ψ1(x) ∧ ϕ2(x); if ϕ1(x) is satisfiable, then add the solution 〈D, ϕ1(x)〉
to η1.

2. If no backward expanded node subsumes η1 = A.r(x); ψ1(x), then the algorithm
adds η1 to the set of backward expanded nodes, and examines all credentials defin-
ing A.r(x). For each such credential, there are four cases.

– Case-1: The credential takes the form
A.r(x)←−B; ψ2(x)

Let ϕ(x) = ψ1(x) ∧ ψ2(x); if ϕ(x) is satisfiable, then add the solution
〈B, ϕ(x)〉 to the node η1.

– Case-2: The credential takes the form
A.r(x)←−B.r2(y); ψ2(x, y)

Let ψ3(y) = ∃x [ψ1(x) ∧ ψ2(x, y)]. If ψ3(y) is satisfiable (which can be
determined by the existential quantifier elimination procedures of the constraint
domains used in ψ3), create a node η2 = B.r2(y); ψ3(y), add it to the queue,
and add an implication edge from η2 to η1.
The effect of this edge is that each solution [D, ϕ2(y)] currently associated
with or subsequently added to the node η2 is propagated to η1 as follows. Let
ϕ1(x) = ∃y [ψ1(x)∧ψ2(x, y)∧ϕ2(y)]. If ϕ1(x) is satisfiable, then add the
solution 〈D,ϕ1(x)〉 to the node η1.

– Case-3: The credential takes the form
A.r(x)←−A.r1(y).r2(z); ψ2(x, y , z)

Let ψ3(y) = ∃x∃z [ψ1(x) ∧ ψ2(x,y , z)]. If ψ3(y) is satisfiable, then cre-
ate a node η2 = A.r1(y); ψ3(y), add it to the queue, and create a backward
monitoring edge from η2 to η1.
The effect of the backward monitoring edge is that for each solution
〈B, ϕ1(y)〉 currently associated with or subsequently added to the node η2,
the algorithm does the following. Let ψ4(z) = ∃x∃y [ψ1(x)∧ψ2(x,y ,z)∧
ϕ1(y)]. If ψ4(z) is satisfiable, create a node η3 = B.r2(z); ψ4(z), add it
to the queue, and create a linked implication edge from η3 to η1 with ϕ1(y)
attached to it.

The linked implication edge from η3 to η1 does the following. Whenever a
solution 〈D, ϕ3(z))〉 is added to the node η3, it is propagate to η1 as follows.
Let ϕ5(x) = ∃y ∃z [ψ1(x) ∧ ψ2(x,y , z) ∧ ϕ3(z) ∧ ϕ1(y)]. If ϕ5(z) is
satisfiable, then add the solution 〈D, ϕ5(x)〉 to the node η1.

– Case-4: The credential takes the form
A.r(x)←−B1.r1(y) ∩B2.r2(z); ψ2(x, y , z)

Let ψ3(y) = ∃x ∃z [ψ1(x) ∧ ψ2(x,y , z)], ψ4(z) = ∃x ∃y [ψ1(x) ∧
ψ2(x, y ,z)]. If both ψ3(y) and ψ4(z) are satisfiable, then create two nodes
η2 = B1.r1(y); ψ3(y) and η3 = B2.r2(z); ψ4(z), add them to the queue,
create an intersection edge from η2 to η1 with η3 attached to it, and create an
intersection edge from η3 to η1 with η2 attached to it.
The effect of the intersection edge from η2 to η1 is that for each solution
〈D,ϕ1(y)〉 currently associated with or subsequently added to the node η2,
the algorithm does the following. It examines the solutions of the node η3. For
each solution of η3 taking the form 〈D, ϕ2(z)〉, let ϕ5(x) = ∃y ∃z [ψ1(x) ∧
ψ2(x, y ,z) ∧ ϕ1(y) ∧ ϕ2(z)]. If ϕ5(x) is satisfiable, the algorithm adds the
solution 〈D,ϕ5(x)〉 to the node η1.

5.2 The Forward Search Algorithm

The forward search algorithm constructs a proof graph that contains the following two
kinds of nodes.

Principal nodes Each principal node corresponds to a principal; there is only one prin-
cipal node for each principal.
Each principal node has a set of solutions. Each solution in a principal node is
a constrained role. The invariant is that when the principal D has the solution
A.r(x); ϕ(x), then we have SP(P) |= r(A,D, t) for all t such that ϕ(x) is satis-
fied.
Furthermore, when the algorithm terminates, it is also true that for each t such
that SP(P) |= r(A,D, t), the node D has a solution 〈A.r(x); ϕ(x)〉 such that
ϕ(t) is satisfied. Thus, queries of type 2 can be answered by taking Λ to be the
set of solutions associated with D. Similarly, queries of type 3 can be answered by
taking Ω to be the set of constraints ϕ(x) such that 〈A.r(x); ϕ(x)〉 is a solution
associated with D.

Role nodes In the forward search algorithm, a role node is similar to that in the back-
ward search algorithm. Each such node represents a constrained role A.r(x); ψ(x)
and contains a list of solutions of the form 〈D, ϕ(x)〉. The invariant here is as fol-
lows: if the node A.r(x); ψ(x) has a solution 〈D, ϕ(x)〉, then ϕ(x) ⇒ ψ(x) and
SP(P) |= r(A,D, t) for each t such that ϕ(t) is satisfied.
Whenever a solution 〈D,ϕ(x)〉 is added to a role node A.r(x); ψ(x); it will find
the principal node for D (and create one if one does not already exist), and add
A.r(x); ϕ(x) as a solution to D. Notice that the invariant on the latter solution
follows from the invariant on the former.

The forward search algorithm maintains a forward processing queue and proceeds
by removing nodes from the queue and processing them one by one until the queue
is empty. Initially, both the proof graph and the queue contain just a principal node.
The forward search algorithm also maintains a set of forward expanded nodes, which is
initially empty. Nodes are process as follows:

Forward processing a principal node D

1. Consider all Type-1 credentials with the principal D in their bodies. For each such
A.r(x)←−D; ψ(x), the algorithm creates a role node η1 = A.r(x); ψ(x), adds
η1 to the forward processing queue, and adds the solution 〈D, ψ(x)〉 to η1.

2. Each time a principal node D receives a new solution, the algorithm examines all
credentials of Type-4. For each such A.r(x)←−B1.r1(y)∩B2.r2(z); ψ1(x, y , z),
if the node D has two forward solutions taking the forms {B1.r1(y); ϕ1(y)} and
{B2.r2(z); ϕ2(z)}, respectively, and one of these is the new solution received by
D, then the algorithm proceeds as follows. Let ψ2(x) = ∃y ∃z [ψ1(x, y , z) ∧
ϕ1(y) ∧ ϕ2(z)]. If ψ2(x) is satisfiable, the algorithm creates the node η =
A.r(x); ψ2(x), adds η to the forward processing queue, and adds the solution
〈D,ψ2(x)〉 to the node η.

Forward processing a role node η2 = B.r2(y); ψ(y).
In the following the effects of specialization, implication, and linked implication

edges are to propagate solutions from one role node to another just as they do in the
backward search algorithm.

1. If there exists a forward expanded node η1 = B.r2(y); ψ′(y) such that ψ(y) ⇒
ψ′(y), then add a specialization edge from η2 to η1. The node η2 is removed from
the queue.

2. If the node η2 is still in the queue, add it to the set of forward expanded nodes, and
examine all Type-2 credentials with B.r2 in the bodies. For each such credential
A.r(x)←− B.r2(y); ψ2(x, y), let ψ1(x) = ∃y [ψ(y) ∧ ψ2(x, y)]. If ψ1(x) is
satisfiable, create a role node η1 = A.r1(x); ψ1(x), add it to the forward processing
queue, and add an implication edge from η2 to η1.

3. Create a principal node η1 = B. Add a forward monitoring edge from η2 to η1.
The effect of the forward monitoring edge is such that whenever the node η1

receives a forward solution A.r1(x); ϕ1(x), the algorithm examines all creden-
tials of Type-3 with A.r1(·).r2(·) in their bodies. For each such A.r(z) ←−
A.r1(x).r2(y); ψ1(x,y , z), the algorithm proceeds as follows. Let ψ2(z) =
∃x ∃y [ϕ1(x) ∧ ψ(y) ∧ ψ1(x, y ,z)]. If ψ2(z) is satisfiable, then create a node
η3 = A.r(z); ψ2(z), add it to the forward processing queue, and add a linked
implication edge from η2 to η3 with ϕ1(x) attached to it.

5.3 Bidirectional Search Algorithm

The bidirectional search algorithm integrates the backward and forward searches. The
backward search algorithm and the forward search algorithm are executed simultane-
ously, starting with the query role and the query principal, respectively. As these two

searches progress, they typically construct some identical or related nodes. When this
occurs, the bidirectional search transfers solutions between the backward proof graph
and the forward proof graph. We transfer the solutions as follows:

– Transfer solutions from the backward proof graph to the forward proof graph:
Whenever the role node η1 = A.r(x); ψ(x) in the backward proof graph receives
a solution, say 〈D, ϕ(x)〉, the algorithm creates the principal node η2 = D in the
forward search graph, and adds the forward solution A.r(x); ϕ(x) to the node η2.

– Transfer solutions from the forward proof graph to the backward proof graph
For each pair of role nodes η1 = A.r(x); ψ1(x) in the forward graph and η2 =
A.r(x); ψ2(x) in the backward graph, if ψ3(x) = ψ1(x) ∧ ψ2(x) is satisfiable,
then add a bidirectional monitoring edge from η1 to η2.
The effect of the bidirectional monitoring edge is that whenever the node η1 re-
ceives a solution 〈D,ϕ1(x)〉, let ϕ2(x) = ϕ1(x) ∧ ψ2(x). If ϕ2(x) is satisfiable,
then add the solution 〈D, ϕ2(x)〉 to the node η2.

Besides transferring the solutions between the backward proof graph and forward
proof graph, we need to handle the role intersection specially.

– In the backward proof graph, if there is an intersection edge from η2 to η1, whenever
the node η2 receives a solution, say 〈D, ϕ(x)〉, the algorithm adds the principal
node η3 = D to the forward processing queue.

– In the forward proof graph, whenever the principal node η1 = D receives a
forward solution, say B1.r1(y); ϕ(y), the algorithm examines all credentials of
Type-4. For each credential having either the form A.r(x) ←− B1.r1(y) ∩
B2.r2(z); ψ1(x, y ,z) or the form A.r(x)←−B2.r2(z) ∩B1.r1(y); ψ1(x, y , z),
the algorithm proceeds as follows. Let ψ2(z) = ∃x ∃y [ψ1(x, y ,z) ∧ ϕ(y)]. If
ψ2(x) is satisfiable, the algorithm creates the role node η2 = B.r2(z); ψ2(z) in
the backward proof graph and adds η2 to the backward processing queue.

6 Conclusions

RTC
1 is a language in the RT family of Role-based Trust-management languages. It

features rich delegation structures, parameterized roles, and constraints. In this paper
we present a goal-directed distributed credential chain discovery algorithm for RTC

1 .
We describe this algorithm in detail and illustrate this algorithm with an example.

Comparing it with existing work on logic programming and deductive databases,
our algorithm is a combination of the logic-programming style top-down query evalua-
tion with tabling [3] (corresponding to our backward search) and the deductive database
style bottom-up evaluation (corresponding to our forward search). Our algorithm uses
hints provided through the storage types to determine which directions to use for a par-
ticular part of the proof; this enables the algorithm to touch only those credentials that
are related to the query, which are likely to be a small fraction of all the credentials in
the system.

Acknowledgement

Portions of this work were supported by NSF CCR-0325951, NSF CNS-0448204, NSF
CCF-0524010, and sponsors of CERIAS. We thank the anonymous reviewers for their
helpful comments.

References

1. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Proceedings of
the 1996 IEEE Symposium on Security and Privacy, pages 164–173. IEEE Computer Society
Press, May 1996.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Appli-
cation to model-checking. In Proceedings of CONCUR’97, number 1256 in Lecture Notes
in Computer Science, pages 135–150. Springer, 1997.

3. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs.
Journal of the ACM, 43(1):20–74, Jan. 1996.

4. D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. Certificate chain
discovery in SPKI/SDSI. Journal of Computer Security, 9(4):285–322, 2001.

5. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI certificate
theory. IETF RFC 2693, Sept. 1999.

6. C. A. Gunter and T. Jim. Policy-directed certificate retrieval. Software: Practice & Experi-
ence, 30(15):1609–1640, Sept. 2000.

7. S. Jha and T. Reps. Analysis of SPKI/SDSI certificates using model checking. In Proceedings
of the 15th IEEE Computer Security Foundations Workshop, pages 129–144. IEEE Computer
Society Press, June 2002.

8. T. Jim. SD3: A trust management system with certified evaluation. In Proceedings of the
2001 IEEE Symposium on Security and Privacy, pages 106–115. IEEE Computer Society
Press, May 2001.

9. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages. Journal of
Computer and System Sciences, 51(1):26–52, Aug. 1995.

10. N. Li and J. C. Mitchell. Datalog with constraints: A foundation for trust management
languages. In Proceedings of the Fifth International Symposium on Practical Aspects of
Declarative Languages (PADL 2003), number 2562 in LNCS, pages 58–73. Springer, Jan.
2003.

11. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust management
framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy, pages
114–130. IEEE Computer Society Press, May 2002.

12. N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed credential chain discovery in trust
management. Journal of Computer Security, 11(1):35–86, Feb. 2003.

13. R. Ramakrishnan. Magic templates: a spellbinding approach to logic programs. Journal of
Logic Programming, 11(3-4):189–216, 1991.

14. P. Z. Revesz. Constraint databases: A survey. In L. Libkin and B. Thalheim, editors, Seman-
tics in Databases, number 1358 in LNCS, pages 209–246. Springer, 1998.

15. R. L. Rivest and B. Lampson. SDSI — a simple distributed security infrastructure, Oct.
1996. Available at http://theory.lcs.mit.edu/∼rivest/sdsi11.html.

16. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, February 1996.

17. D. Toman. Memoing evaluation for constraint extensions of Datalog. Constraints: An Inter-
national Journal, 2:337–359, 1997.

