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Abstract

TheRT Role-based Trust-management framework pro-
vides policy language, semantics, deduction engine, and
pragmatic features such as application domain specifica-
tion documents that help distributed users maintain con-
sistent use of policy terms. This paper provides a general
overview of the framework, combining some aspects de-
scribed in previous publications with recent improvements
and explanation of motivating applications.

1 Introduction

The Agile Management of Dynamic Collaboration
(AMDC) project develops infrastructure and support for se-
cure, trusted dynamic coalitions, with emphasis on the fol-
lowing areas:

1. Trust management: Support for distributed manage-
ment of trust relations, in a form suitable for determin-
ing the degree of trust associated with a potential peer,
service or coalition.

2. Search and selection of coalitions and partners: Proto-
cols and facilities for authenticated selection and com-
munication with partners and coalitions.

3. Mobile code risks: Security for dynamic installation of
executable code, as required to support dynamic sys-
tem self-configuration.

The focus of this paper is onRT , a Role-based Trust-
management framework [20, 19, 18] developed in the
course of the AMDC project. This work supports ap-
proaches to the other two areas in the project, as outlined in
Section 8.RT aims to address access control and authoriza-
tion problems in large-scale, decentralized systems. Such
problems arise, for example, when independent organiza-
tions enter into coalitions whose membership and very ex-
istence change rapidly. A coalition may be formed by sev-
eral autonomous organizations wishing to share resources.

∗Supported in part by DARPA through SPAWAR contract N66001-00-
C-8015.

While sharing resources, each organization retains ultimate
authority over the resources it controlled prior to entering
the coalition. We call such systemsmulticentric collabora-
tive systems, since they have no single central authority.
RT combines the strengths of Role-Based Access Con-

trol (RBAC) [22] and trust-management (TM) systems.
From RBAC, it takes the notions of role, interposed in
the assignment of permissions to users to aid organizing
those assignments, and of sessions and selective role acti-
vations. From TM,RT takes principles of managing dis-
tributed authority through the use of credentials, as well as
some clear notation denoting relationships between those
authorities, e.g., localized name spaces and linked local
names from SDSI (Simple Distributed Security Infrastruc-
ture) [21, 11]. From Delegation Logic [17],RT takes the
logic-programming-based approach.

In addition, theRT framework makes the following con-
tributions.

• RT has policy concepts such as intersections of roles,
role-product operators, manifold roles, and delegation
of role activations. These concepts can express poli-
cies that are not possible to express in existing systems;
they can also express some other policies in more suc-
cinct or intuitive ways.

• Most logic-based TM systems use DATALOG as the se-
mantic foundation. InRT , we use the more expressive
Constraint DATALOG, which enables one to express
permissions regarding structured resources, while at
the same time preserving the desirable properties of
DATALOG.

• RT supports credential chain discovery when creden-
tial storage is distributed, through a goal-directed chain
discovery algorithm.RT also has a storage typing sys-
tem which guarantees that distributed credential chains
can be discovered and guides efficient discovery.

• RT addresses the issue of vocabulary agreement,
using Application Domain Specification Documents
(ADSDs) which enablesRT to have strongly typed
credentials.
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The design ofRT is driven by the requirements of prac-
tical applications. In order to better understand practical
issues associated with sharing information among different
parties, we have designed and implemented two demonstra-
tion applications, Digital U-STOR-IT, a secure web-based
file sharing application, and August, a distributed schedul-
ing application. Through ongoing development of specific
policies for these applications, we have identified the need
for specific policy features.

Some parts ofRT are the result of collaboration with
the Attribute-Based Access Control (ABAC) project at Net-
work Associates Laboratories.RT is used in the ABAC
project as the underlying policy language [25, 24].

The rest of this paper is organized as follows. We give an
overview of TM and discuss related work in Section 2. We
then give an overview ofRT in Section 3. In Sections 4,
5, 6, and 7, we discuss the language, the semantic foun-
dation, chain discovery issues, and the implementation as
well as applications ofRT . In Section 8, we briefly discuss
TM-related work on service selection and mobile code that
have been conducted in the AMDC project. We conclude in
Section 9.

2 Overview of Trust Management

Traditional access control mechanisms make authoriza-
tion decisions based on the identity of the requester. How-
ever, in decentralized or multicentric environments, the re-
source owner and the requester often are unknown to one
another, and access control based on identity may be in-
effective. Trust management is an approach to distributed
access control and authorization, in which access control
decisions are based onpolicy statementsmade by multiple
principals.

2.1 An Abstract TM Framework

We present an abstract framework for trust-management
systems, which consists of three aspects: language, deduc-
tion, and infrastructure.

Language

A TM language has a mechanism for identifying principals,
a syntax for specifying policy statements and queries, and
a semantic relation that determines whether a query is true
given a set of policy statements.

Principals can issue policy statements, make requests,
and be authorized to perform actions. Policy statements de-
scribe the properties of principals and how to derive one
property from other properties. Example properties include
membership in a group, being a student, having a birthday
that is a certain date, membership in a role within an orga-
nization, receiving delegation of a permission or role, etc.

In decentralized environments, authenticity and integrity of
policy statements need to be protected. In many TM sys-
tems, principals are identified with public keys, and non-
local policy statements are digitally signed. Signed policy
statements are calledcredentials.

When a query corresponds to an access request, the se-
mantic relation of a TM language defines a notion com-
monly known asproof-of-compliance: “Does a set of policy
statements prove that a request should be authorized?” It is
also helpful for a TM language to support more advanced
queries such as finding out all principals that are authorized
to access a resource, finding out what access permissions a
specific principal has, etc.

Deduction

Deduction implements the semantic of the language. A
TM system may have the following deduction engines (al-
gorithms). Aproof checking enginetakes a set of policy
statements, a query, and an answer as input, and verifies
that the answer is true. The answer may be equipped with
proofs (or proof hints) to make proof checking simpler. A
proof construction engine(also known as achain discov-
ery engine) takes a set of policy statements and a query as
input, and finds an answer, optionally constructing proofs
(or proof hints). In systems that may have a large num-
ber of (e.g., millions of) policy statements stored in a de-
centralized manner, a chain discovery engine does not have
the complete set of policy statements as input, and should
be able to start evaluation with a query and an incomplete
set of policy statements and to interleave retrieving policy
statements and inferencing.

Infrastructure

The infrastructure aspect of a TM system includes support
for policy statement creation, storage, distribution, revoca-
tion, etc. These issues are less coupled with language and
deduction. They are similar to those in public key infras-
tructure and have been extensively studied.

2.2 Usage Scenarios of TM

We now describe several scenarios in which TM systems
could be useful. These are for illustration purposes and are
not intended to be exhaustive or a rigid classification.

More flexible control in centralized environments

Trust-management systems can be used to achieve more
flexible control in centralized environments such as operat-
ing systems, web-based file sharing systems, etc. In UNIX,
the owner of a file can grant the permission to access a file
to the group that the owner is in. However, when an ordi-
nary user wants to share a file with, say, a group of collab-
orators working on a paper, the user cannot do this without
the involvement of an administrator. It would be useful for
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each user to define groups according to their own needs and
assign permissions to access a file more flexibly. In some
applications, it would also be useful to delegate the ability
to administrate a file’s permission to other users.

Multicentric collaboration systems

In multicentric collaboration systems, users belonging to
one organization need to access resources controlled by
other organizations in a coalition. Trust management al-
lows resource controllers to delegate certain forms of pol-
icy setting to users in other organizations. This may be done
in a controlled manner, without delegating arbitrary access
control. For example, access decisions may be based on
both the resource controllers’ local policy statements that
encode the relationship between the two collaborating or-
ganizations and the credentials that encode the requesters’
roles/positions in their organizations.

Loosely-coupled decentralized systems

A TM system can provide a more expressive global-scale
public-key infrastructure, by having digital credentials for
driver licenses, student IDs, credit cards, organization mem-
berships, trusting relationships regarding these digital cre-
dentials, and so on. In these cases, online transaction may
require the combination of these credentials.

Distributed computing environments

In addition to access requests from individuals, trust man-
agement can also be used to control access by processes
within a distributed computing environment. Suppose a
user starts a session, activating some of his eligible roles,
and then issues a request. To fulfill this request, the session
process starts a second process on behalf of the user, which
invokes a third process, which is running on a different host,
so as to access back-end services needed to complete the re-
quested task. Each of these processes must be delegated the
authority to act on the user’s behalf, and the first two must
pass that authority to the processes they initiate.

2.3 Related Work

The term “trust management” was coined in [6], in which
the PolicyMaker system was introduced. The second gener-
ation of PolicyMaker is KeyNote [5]. KeyNote and version
1 of Simple Public Key Infrastructure (SPKI) can be called
permission-based TM systems, since they use policy state-
ments only to delegate permissions. Each statement dele-
gates certain permissions from its issuer to its subject. A
chain of one or more statements acts as a capability, grant-
ing certain permissions to the subject of the last statement
in the chain.1 However, in these permission-based systems,

1Because KeyNote and SPKI have thresholds, a capability could be a
directed graph of credentials. This does not affect our discussion of their
limitations below.

one cannot express the fact that the issuer grants permis-
sions to all principals that have a certain property. As a
result, the delegation relationships in such system are quite
limited. See [19, 17] for more detailed discussions of this
limitation.

The ABLP Logic [1, 16] is a propositional modal logic
designed mainly for authentication in distributed systems.
The logic can be used to determine, e.g., in a tightly coupled
distributed systems, who originally made a request that has
gone through multiple encrypted channels and processes on
multiple hosts. The core concept in ABLP logic is a “speaks
for” relation among principals; thatA speaks forB means
that, if principalA makes a statement, then we can believe
that principalB makes it, too. It was pointed out in [2] that
the modal operators in ABLP Logic can be defined using a
general higher-order propositional logic. In the framework
described in [2], specific systems can define their own op-
erators, clients are responsible to construct the proof that
they can access certain resources, and the server only needs
a generic verifier for the general logic to verify the proof.
A system based on this concept is implemented in [4]. The
logics in [1, 16, 2] are based on propositional logic; they
cannot describe permissions about structured resources. In
these logics, a principal cannot delegate e.g., the permission
to access all directories and files under a certain directory,
the authority to issue student certificates but only when the
name of the school is a certain value, or the permission to
approve purchase orders whose value is below a threshold.

Among previous TM systems, the ones closest toRT are
Delegation Logic [17] and SPKI/SDSI [11]. The four new
contributions ofRT have been listed in Section 1 and will
be elaborated in the coming sections.

3 An Overview of theRT framework

In this section, we give an overview ofRT .

Principals and Roles

In RT , principals can be uniquely identified individuals,
processes, public keys, etc.

A central organizing concept inRT is the notion ofroles.
EachRT principal has its own name space for roles, similar
to localized name spaces in SDSI. A role is named by a prin-
cipal and arole term. For example, ifKA is a principal and
R is a role term, thenKA.R is the roleR defined by princi-
palKA and can be read asKA’sR role. A role term consists
of a role name and zero or more parameters. OnlyKA can
issue policy statements defining the roleKA.R; these state-
ments determine members ofKA.R. For example,KA can
defineKA.R to include another principalKB ’s role, effec-
tively delegating some control over the roleKA.R to KB .
WhenKA issues multiple statements defining a role, the
role contains the union of all the resulting principals.
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RT hassingle-element rolesandmanifold roles. The se-
mantics of a single-element role is a set of principals. The
notion of single-element roles unifies several concepts in
access control and trust-management literature, including
groups in many systems, identity in identity certification
systems such as X.509, roles and permissions in RBAC,
names in SDSI, authorization tags in SPKI [11], and at-
tributes in attribute certificates. It is possible to unify these
concepts because the common mathematical underpinning
of the semantics of these concepts is a set of principals. A
group is clearly a set of principals. An identity is a set of
principals corresponding to one physical user; some sys-
tems require the set to contain just one principal. A role in
RBAC can be viewed as a set of principals who are mem-
bers of this role. The role hierarchy relationship thatKB .R
is more powerful thanKA.R can be viewed a definition that
all members ofKB .R are also members ofKA.R. A per-
mission corresponds to a set of principals who have the per-
mission. Granting a permission to a principal amounts to
making the principal a member of the set corresponding to
the permission. Granting a permission to a role amounts
to asserting that the set corresponding to the permission in-
cludes as a subset the set corresponding to the role. A name
in SDSI is also resolved to a set of principals. An attribute
may be identified with the set of principals who have the
attribute.

The notion of manifold roles generalizes that of single-
element roles to allow each member of a role to be a prin-
cipal set, instead of a principal. That the principal set
{K1,K2} is a member of the manifold roleKA.R means
thatK1 andK2 together have the privileges associated with
KA.R, but neither of them acting alone has that privilege.
The semantics of a manifold role is a set of principal sets.
Manifold roles are introduced to support separation-of-duty
(SoD) policies in a more expressive way than threshold
structures.

In many scenarios, a user prefers not to exercise all his
rights. An administrator often logs in as an ordinary user
to perform ordinary tasks. In another example, a user is
temporarily delegated certain access rights by his manager
during his manager’s absence. The user will often want
to exercise only his customary rights, wishing to use his
temporary rights only when explicitly working on his man-
ager’s behalf. This notion is related to the least privilege
principle and is supported by many systems. In RBAC, it is
supported by the notion of sessions. A user can selectively
activate some of his eligible roles in a session. This can
be viewed as a delegation of role activations from the user
to the session. A natural generalization of user-to-session
delegation of role activations is process-to-process delega-
tion of those role activations. The need for this is particu-
larly acute in distributed computing environments. TheRT
framework has delegation of role activations, which can be

used to express selective role activations, delegation of role
activations, and access requests supported by a subset of the
requesting principal’s roles.

Semantic foundation

In [19], DATALOG was used as the semantic foundation for
the RT framework. Policy statements inRT are trans-
lated into DATALOG rules. This guarantees that the seman-
tics is precise, monotonic, and algorithmically tractable. In
[18], Constraint DATALOG was introduced as a more ex-
pressive foundation for TM languages, while preserving the
advantages of DATALOG. The requirement thatRT policy
statements can be translated into rules in DATALOG with
tractable constraints is the main design constraint on expres-
sivity in the design of theRT framework.

Support for distributed chain discovery

Most previous work addressing the credential chain discov-
ery problem assumes that one has already gathered all the
potentially relevant credentials in one place and does not
consider how to gather these credentials. The assumption
that all credentials are stored in one place does not hold in
many applications that use trust management for decentral-
ized control. In these systems, credentials are issued and
stored in a distributed manner.

Distributed discovery requires an evaluation procedure
that is goal-directed, expending effort only on chains that
involve the requester and the access mediator, or its trusted
authorities, and considering credentials in a demand-driven
manner. Goal-directed algorithms can be contrasted with
bottom-up algorithms, which require collecting all creden-
tials before commencing evaluation. In the Internet, with
distributed storage of millions of credentials, most of them
unrelated to one another, goal-directed techniques will be
crucial. Distributed credential chain discovery also requires
a procedure that can begin evaluation with an incomplete
set of credentials, then suspend evaluation, issue a request
for credentials that could extend partial chains, then resume
evaluation when additional credentials are obtained, and it-
erate these steps as needed.

In [20], goal-directed credential chain discovery algo-
rithms for RT0, the basic component ofRT , were pre-
sented. These algorithms work when credentials are stored
in a distributed manner. Issues related to distributed creden-
tial storage are also addressed.

Support for vocabulary agreement

One distinguishing feature of theRT framework is that it
directly addresses the issue of vocabulary agreement. When
credential chains delegate access permissions of resources,
all the principals involved in the chain need to use consistent
terminology to specify resource permissions and delegation
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conditions. When different credential issuers use incom-
patible schemes, their credentials cannot be meaningfully
combined. Some intended permissions may not be granted,
or, when schemes intended for different purposes acciden-
tally interact, unintended authorization may follow. Some
systems do not address this issue at all; others try to come
up with one vocabulary for all applications. Our philosophy
is that, although different applications often share common
policy concepts, they need to be able to use different vo-
cabularies. InRT , we address this issue through a scheme
inspired by XML namespaces [7].

We introduceapplication domain specification docu-
ments (ADSDs). Each ADSD is globally uniquely identi-
fied. One way to uniquely identify an ADSD is to use an
URI pointing to the document together with a collision-free
hash of the document. An ADSD declares a suite of re-
lated data types and role names, called avocabulary. Cre-
dentials, when using a role name, refer to the ADSD in
which the role name is declared. This enablesRT to have
strongly typed credentials and policies. This feature helps
ensure interoperability and reduce the possibility of errors
in writing policies and credentials and unintended interac-
tion of credentials. One can think of ADSDs as.h files
in C programs and credentials as.c files. Data types and
role names are declared in ADSDs, and credentials must use
these role names in a type-consistent way.

The notion of vocabularies is complimentary to the no-
tion of localized name spaces for roles. Each addresses
a distinct name space issue. For example, an accrediting
board might issue an ADSD that declares the role name
“student”. This defines the names and data types of the
role’s parameters. Such parameters may include university
name, student name, program enrolled in, etc. The ADSD
may also contain description of the conditions under which
a principal should be made a member of the student role,
e.g., it may require a principal be registered in a degree pro-
gram. Then a university StateU can use this ADSD to is-
sue credentials defining StateU.student. Although using a
vocabulary created by another principal, StateU is still the
authority over who is a member of the role StateU.student.

4 TheRT family of TM languages

The most basic language in theRT family of TM lan-
guages isRT0, which was presented in [20]. InRT0, role
terms are simply role names and do not take any parame-
ters. In [19], several additional components of RT were in-
troduced.RT1 adds toRT0 parameterized roles.RTT pro-
vides manifold roles and role-product operators, which can
express threshold and separation-of-duty policies.RTD

provides delegation of role activations, which can express
selective use of capacities and delegation of these capaci-
ties.RTT andRTD can be used, together or independently

with RT0 orRT1.

4.1 RT0: Defining Roles

In RT0, policy statements take the form ofrole defini-
tions. A role definition has a head and a body. Thehead
of a role definition has the formKA.R, in whichKA is a
principal,R is a role term, which is simply a role name in
RT0.

Simple Member KA.R←− KD

The body consists of one principalKD. This defines the
principalKD to be the member of the roleKA.R.

Simple Containment KA.R←− KB .R1

The body consists of one role. This defines the roleKA.R
to contain (every principal that is a member of) the role
KB .R1.

Linking Containment KA.R←− KA.R1.R2

We callKA.R1.R2 a linked role. This definesKA.R to
containKB .R2 for everyKB that is a member of the role
KA.R1. Note that the body also starts withKA and has
only two role terms, this limitation does not affect the ex-
pressive power, as one can use intermediate roles and addi-
tional statements to express long linked roles. See [20] for
the rationale of this limitation.

Intersection Containment

KA.R←− KB1 .R1 ∩ · · · ∩KBk
.Rk

This definesKA.R to contain the intersection of all the roles
KB1 .R1, · · · ,KBk

.Rk.

Simple Delegation KA.R⇐= KB : KC .R2

The part after the colon (i.e.,KC .R2) is optional. This
means thatKA delegates its authority overR to KB . In
other words,KA trustsKB ’s judgement on assigning mem-
bers toR. WhenKC .R2 is present,KA wants to con-
trol its delegation such thatKB can only assign mem-
bers ofKC .R2 to be members ofKA.R. In RT0, this
can be viewed as a convenient shorthand for “KA.R ←−
KB .R ∩KC .R2”.

Linking Delegation KA.R⇐= KA.R1 : KC .R2

The part after the colon (i.e.,KC .R2) is optional. This
means thatKA delegates its authority overR to members
of KA.R1, and the delegation is restricted to members of
KC .R2. This impliesKA.R←− KA.R1.R ∩KC .R2.

Simple delegation and linked delegation are definable us-
ing the other four forms of definitions. (Intermediate roles
are needed for linking delegation.) These two forms of del-
egation become necessary when roles can take parameters
and can be extended to have additional parameters.
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Example 1 A fictitious Web publishing service, EPub, of-
fers a discount to anyone who is both a preferred cus-
tomer of its parent organization, EOrg, and an IEEE mem-
ber. EOrg considers university students to be preferred cus-
tomers. EOrg delegates the authority over the identification
of students to principals that are accredited universities. To
identify such universities, EOrg accepts accrediting creden-
tials issued by the fictitious Accrediting Board for Univer-
sities (ABU). The following credentials prove that Alice is
eligible for the discount:

EPub.discount←− EOrg.preferred∩ IEEE.member
EOrg.preferred←− EOrg.university.student
EOrg.university←− ABU.accredited
ABU.accredited←− StateU
StateU.student←− Alice
IEEE.member←− Alice

4.2 RT1: Adding Parameters

RT1 adds toRT0 parameterized roles. Role definitions
in RT1 have the same format as those inRT0. In RT1, a
role term takes the formr(p1, . . . , pn), in whichr is a role
name, and eachpj takes one of the following three forms:
name = c, name =?X[∈ S] (the∈ S part is optional),
andname ∈ S, wherename is the name of a parameter of
r, c is a constant of the appropriate type,?X is a variable,
andS is a value setof the appropriate type. Variables are
used to make two parameters in one role definition equal.
A value set can be viewed as a (typically constraint-based)
representation of a set of values.

Example 2 A firewall administrator usesKFW, the key of
the firewall to issue a credential that gives a system adminis-
trator, SA, the authority to grant to anyone who has a Stan-
ford ID the permission to connect to any host in the domain
“stanford.edu”. Later, SA grants to Alice the permission to
connect to the host “cs.stanford.edu” at any port between
8000 and 8443.

KFW.perm(host∈ descendants(‘stanford.edu’))
⇐= KSA : KStanford.stanfordID()

KSA.perm(host = ‘cs.stanford.edu’, port∈ [8000..8443])
←−KAlice

If Alice has a Stanford ID, then when she requests to con-
nect to the host “cs.stanford.edu” at port 8443, FW should
allow this connection.

In these credentials, “descendants” is special value set
constructor for tree domains (see Section 5). In the first cre-
dential, the port parameter does not appear in the role term
KFW.perm(host∈ · · · ); this means that the port parameter
is not constrained in this delegation. Similarly, the role term
KStanford.stanfordID() in the first credential has no param-
eters, since no constraint is required.

4.3 RTT : Supporting Separation of Duty

The separation-of-duty (SoD) security principle [9, 23]
requires that two or more different persons together be re-
sponsible for the completion of a sensitive task. SoD can
be used to discourage fraud by requiring collusion among
principals to commit fraud.

Both SPKI and KeyNote allow delegation to k-out-of-
n threshold structures, in which one explicitly lists the n
principals. It has been argued before that such threshold
structures are inconvenient. For example, to express a pol-
icy that requires two different cashiers, a SPKI or KeyNote
policy statement needs to explicitly list all the cashiers, and
this statement needs to be changed each time members in
the cashier role change. Delegation Logic has the more ex-
pressive dynamic threshold structures, which are satisfied
by the agreement ofk out of a set of principals that satisfy
a specified condition.

In RBAC, SoD is often achieved by using constraints
such as mutual exclusion among roles [22, 23] and requiring
cooperation of mutually exclusive roles to complete sensi-
tive tasks. Because no principal is allowed to simultane-
ously occupy two mutually exclusive roles, sensitive tasks
can be completed only by cooperation of principals.

Threshold structures require agreement of different prin-
cipals drawn from a single set. Mutually exclusive roles
require agreement among several disjoint sets (one out of
each set). Each of the two mechanisms has limitation, as it
cannot achieve what the other mechanism achieves.
RTT introduces the notion ofmanifold rolesto achieve

both agreement of multiple principals from one set and from
disjoint sets. Similar to a role, which defines a set of prin-
cipals, a manifold role defines a set ofprincipal sets, each
of which is a set of principals whose cooperation satisfies
the manifold role. Manifold roles are defined by role ex-
pressions constructed using either of the tworole-product
operators: � and⊗.

Product Containment

KA.R←− KB1 .R1 � · · · �KBk
.Rk

This defines the roleKA.R to contain every principal setp
such thatp = p1 ∪ · · · ∪ pk and for each1 ≤ j ≤ k, pj is a
member ofKBj

.Rj .

Exclusive Product Containment

KA.R←− KB1 .R1 ⊗ · · · ⊗KBk
.Rk

This defines the roleKA.R to contain every principal setp
that satisfies the following condition:p = p1 ∪ · · · ∪ pk,
pi ∩ pj = ∅ for 1 ≤ i 6= j ≤ k, (pi and pj are non-
intersecting), andpj is a member ofKBj

.Rj for each1 ≤
j ≤ k.

Example 3 A bank FB has three roles: manager, cashier,
and auditor. FB’s policy requires that a certain transaction

6



be approved by a manager, two cashiers, and an auditor.
The two cashiers must be different. A manager who is also a
cashier can serve as one of the two cashiers. And the auditor
must be different from the other parties in the transaction.

FB.twoCashiers←− FB.cashier⊗ FB.cashier
FB.mgrCashiers←− FB.manager� FB.twoCashiers
FB.approval←− FB.auditor⊗ FB.mgrCashiers

4.4 RTD: Delegation of Role Activations

We introduceRTD to handle delegation of the capac-
ity to exercise role memberships.RTD adds the notion of
delegation of role activations to theRT framework. That
a principalD activates the roleA.R to use in a sessionB0

can be represented by adelegation credentialissued byD,

“D
D asA.R−−−−−−→ B0”. We call “D asA.R” a role activation.

B0 can further delegate this role activation toB1 by issuing

the credential, “B0
D asA.R−−−−−−→ B1”. A principal can issue

multiple delegation credentials to another principal. Also,
several role activations can be delegated in one delegation
credential. This is viewed as a shorthand for multiple dele-
gation credentials.

A delegation credential can also contains a keyword

“all”. For example, “B0
all−−→ B1” means thatB0 is delegat-

ing all role activations it has toB1; and “B0
D asall−−−−−→ B1”

means thatB0 is delegating toB1 those ofB0’s role activa-
tions in whichD is activating the roles.

A request inRTD is represented by a delegation cre-
dential that delegates from the requester to the request. For
example, thatB1 requests to read fileA in the capacity of

“D asA.R” can be represented by:B1
D asA.R−−−−−−→ fileAc-

cess(read, fileA). This request should be authorized ifD is
a member of the roleA.R, the roleA.R has read access to
fileA, and there is a chain of delegation fromD toB1 about
the role activationA.R. Note that fileAccess(read, fileA) is
not a principal. This delegation should be interpreted as be-
ing fromB1 to a dummy principal representing the request
fileAccess(read, fileA). AnRTD system assigns a unique
dummy principal to each request.

ThatB1 is making the requestreq using all its capac-

ities is represented byB1
all−−→ req . Delegation of role

activations is delegation of the capacity to act in a role.
It is a different kind of delegation from delegation of au-
thority to define a role, as in a role-definition credential
“A.R←− B.R”.

4.5 Examples UsingRTDT
1

Example 4 In an organization SOrg, any purchasing order
has to be submitted and approved before it is placed. Any
employee can submit a purchasing order. A manager can
approve an order. A manager is also an employee; however,

a manager cannot approve his own order. This can be rep-
resented as follows:

SOrg.place←− SOrg.submit⊗ SOrg.approve
SOrg.submit←− SOrg.employee
SOrg.approve←− SOrg.manager
SOrg.employee←− SOrg.manager

Suppose that both Alice and Bob and managers:
SOrg.manager←− Alice
SOrg.manager←− Bob

Alice can submit an order by issuing:

Alice
Alice as SOrg.employee−−−−−−−−−−−−−−−−−→ order(orderID)

And Bob can approve it by issuing:

Bob
Bob as SOrg.approve−−−−−−−−−−−−−−→ order(orderID)

Then the order should be approved.

The scenario described in the following example is orig-
inally from [1].

Example 5 A server S authorizes fileA to be deleted if it is
requested from a good workstation on behalf of a user. S
knows that alice is a user and trusts CA in certifying public
keys for users. S knows that ws1 is a good workstation and
trusts CA in certifying public keys for workstations. These
are expressed in the following credentials:

S.del(fileA)←− S.user⊗ S.goodWS
S.user←−KCA.userCert(alice)
S.goodWS←−KCA.machineCert(ws1)

The following are credentials issued by CA:

KCA.userCert(alice)←− K alice
KCA.machineCert(ws1)←− K ws1

A work station stores its private key in tamper-resistant
firmware. When it boots, it generates a key pair for the
operating system and issues a credential to delegate the ac-
tivation of S.goodWS to the new key. When the user alice
logs into a workstation ws1, a new process p1 is set up and
a new key pair is generated. Through p1, alice then makes
a request to the server S to delete fileA. The process p1 sets
up a secure channel Ch to the server, and then sends the
request through the channel. The following are delegation
credentials that are needed.

K ws1
K ws1 as S.goodWS−−−−−−−−−−−−−→ K os1

K os1
K ws1 as S.goodWS−−−−−−−−−−−−−→ K p1

K alice
K alice as S.user−−−−−−−−−−−−−→ K p1

K p1
K ws1 as S.goodWS, K alice as S.user−−−−−−−−−−−−−−−−−−−−−−−−−−−→ K Ch

The request sent by KCh to delete fileA on behalf of
user alice working on a good workstation is represented as:

K Ch
K ws1 as S.goodWS, K alice as S.user−−−−−−−−−−−−−−−−−−−−−−−−−−−→ del(fileA).

And this request should be authorized.
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5 The Semantic Foundation ofRT : Con-
straint Datalog

The original design of the RT framework, as presented
in [19], was based on DATALOG. DATALOG is a restricted
form of logic programming with variables, predicates, and
constants, but without function symbols. Several previous
TM languages are based on DATALOG, e.g., Delegation
Logic [17], SD3 [13], and Binder [10]. DATALOG is at-
tractive because of the following reasons.

1. DATALOG is declarative and is a subset of first-order
logic; therefore, the semantics of a DATALOG-based
TM language is declarative, unambiguous, and widely
understood.

2. DATALOG has been extensively studied both in
logic programming, and in the context of relational
databases as a query language that supports recursion.
TM languages based on DATALOG can benefit from
past results and future advancements in those fields.

3. The function-symbol-free property of DATALOG en-
sures its tractability. For a safe DATALOG program
with a fixed upper bound on the number of variables
per rule, construction of its minimal model takes time
polynomial in the size of the program.

4. There are efficient goal-directed evaluation procedures
for answering queries.

However, DATALOG has limitations as a foundation of
TM languages. One significant limitation is the inability to
describe structured resources. For example, one may want
to grant permission to read the entire document tree under a
given URI, assign responsibility for associating public keys
with all DNS names in a given domain, restrict network
connections to port numbers in a limited range, or approve
routine transactions with value below an upper limit. The
permission to access all files and subdirectories under a di-
rectory “/pub/rt” represents permissions to access a (poten-
tially infinite) set of resources that seems most naturally ex-
pressed using a logic programming language with function
symbols. However, the tractability of DATALOG is a direct
consequence of the absence of function symbols. Previous
TM languages that can express certain structured resources,
e.g., SPKI, have not had a formal foundation; some stud-
ies suggest that SPKI may be ambiguously specified and
intractable [12, 3].

In [18], we showed that DATALOG extended with con-
straints (denoted by DATALOGC) can define access permis-
sions over structured resources without compromising the
properties of DATALOG that make it attractive for trust man-
agement, thus establishing a suitable logical foundation for
a wider class of TM languages. DATALOGC allows first-
order formulas in one or more constraint domains, which

may describe file hierarchies, time intervals, and so on, to be
used in the body of a rule, thus representing access permis-
sions over structured resources in a declarative language.

In the rest of this section, we give a brief overview of
DATALOGC . See [18] for details.

Constraint DATALOG is a restricted form of Constraint
Logic Programming (CLP), and is also a class of query lan-
guages for Constraint Databases (CDB) [14, 15]. The no-
tion of constraint database was introduced in [14], and grew
out of the research on DATALOG and CLP. It generalizes
the relational model of data by allowing infinite relations
that are finitely representable using constraints.

Intuitively, a constraint domain is a domain of objects,
such as numbers, points in a plane, or files in a file hier-
archy, together with a language for speaking about these
objects. The language is typically defined by a set of first-
order constants, function symbols, and relation symbols.

Definition 1 A constraint domainΦ is a 3-tuple(Σ,D,L).
HereΣ is a signature; it consists of a set of constants and
a collection of predicate and function symbols, each with
an associated “arity”, indicating the number of arguments
to the symbol.D is aΣ-structure; it consists of the follow-
ing: a setD called the universe of the structure, a mapping
from each constant to an element inD, a mapping from
each predicate symbol inΣ of degreek to ak-ary relation
overD, and a mapping from each function symbol inΣ
of degreek to a function fromDk into D. L is a class of
quantifier-free first-order formulas overΣ, called theprim-
itive constraintsof this domain.

Following common conventions, we assume that the bi-
nary predicate symbol “=” is contained inΣ and is inter-
preted as identity inD. We also assume that> (true) and⊥
(false) are inL, and thatL is closed under variable renam-
ing.

The following are some examples of commonly-used
constraint domains.

Equality constraint domains The signatureΣ consists of
a set of constants and one predicate=. A primitive
constraint has the formx = y or x = c, wherex and
y are variables, andc is a constant. DATALOG can be
viewed as one specific instance of DATALOGC with an
equality constraint domain.

Order constraint domains The signatureΣ has two pred-
icates:= and<. TheΣ-structure is linearly ordered.
A primitive constraint has the formxθy, xθc, or cθx
whereθ is one of=, <. The structures in order con-
straint domains can be integers, rational numbers, real
numbers, or some subset of them.

Linear constraint domains The signatureΣ has function
symbols+ and∗ and predicates{=, 6=, <,>,≥,≤}.
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A primitive constraint has the formc1x1 + · · · +
ckxkθb, whereci is a constant andxi is a variable for
each1 ≤ i ≤ k, θ is any predicate inΣ, andb is a
constant. Linear constraints may be interpreted over
integers, rational numbers, or real numbers.

Range domainsRange domains are syntactically sugared
order domains. A primitive constraint has the form
x = y, x = c or x ∈ (c1, c2), in which c is a con-
stant, each ofc1 andc2 is either a constant or a special
symbol “∗”, meaning unbounded. And whenc1 is not
∗, “(” can also be “[”; similarly, “ )” can be “]” whenc2
is not∗.

Tree domains Each constant of a tree domain takes the
form 〈a1, . . . , ak〉. Imagine a tree in which every
node is labelled with a string value. The constant
〈a1, . . . , ak〉 represents the node for whicha1, . . . , ak

are the strings on the path from root to this node.
A primitive constraint is of the formx = y or
xθ〈a1, . . . , ak〉, in which θ ∈ {=, <,≤,≺,�}, x <
〈a1, . . . , ak〉 means thatx is a child of the node
〈a1, . . . , ak〉, andx ≺ 〈a1, . . . , ak〉 means thatx is
a descendant of〈a1, . . . , ak〉.

Tree domains can be used to represent hierarchical re-
sources such as file systems, DNS names, etc. Example 2
uses tree domains and range domains to represent network
permissions. There, instead of using≺, we use the value set
constructor “descendants” as a syntactic sugar.

Definition 2 Let Φ be a constraint domain.

• A constraint k-tuple, or a constraint, (in variables
x1, . . . , xk) is a finite conjunctionφ1∧· · ·∧φN , where
eachφi, 1 ≤ i ≤ N , is a primitive constraint inΦ.
Furthermore, the variables in eachφi are all free and
amongx1, . . . , xk.

• A constraint(DATALOG) rule has the form:

R0(x0,1, . . . , x0,k0) :− R1(x1,1, . . . , x1,k1), . . . ,
Rn(xn,1, . . . , xn,kn), ψ0

whereψ0 is a constraint in the set of all variables in
the rule. Whenn = 0, the constraint rule is called a
constraint fact.

Under certain conditions, a constraint rule withn hy-
potheses can be applied ton constraint facts to produce
some new constraint facts, somewhat similar to applying a
DATALOG rule to DATALOG facts. The process of applying
a rule to a set of facts requires a form of quantifier elimina-
tion. The least fixpoint of a DATALOGC program over any
constraint domain that admits quantifier elimination may be
computed by iterated rule application. We say a constraint
domain is tractable if it roughly has the same complexity

as the equality constraint domain, which is the one used in
DATALOG.

In TM languages, it is useful to appeal to constraints
from several domains. It is straightforward to define multi-
sorted DATALOGC , following the standard definition of
multi-sorted first-order logic. In order to keep each con-
straint domain separate from the others, we assume that
when constraint domains are combined, each domain is
given a separate sort, all predicate symbols are only ap-
plicable to arguments from the appropriate constraint do-
main, and each variable belongs to only one sort. A multi-
sorted DATALOGC program with constraints in several do-
mains can be evaluated in time polynomial in the size of the
program if all involved constraint domains are tractable.

The translation fromRT credentials to DATALOG, as
presented in [19], can be used to translateRT credentials
that use constraint-based value sets to DATALOGC .

6 Distributed Credential Chain Discovery

In [20], goal-directed credential chain discovery algo-
rithms forRT0 was presented. These algorithms also work
when credential storage is distributed. In [25], a trust nego-
tiation protocol that useRT0 and the chain discovery mech-
anism in [20] was presented. This protocol enables two par-
ties to do joint chain discovery in an interactive manner; it
also enables the parties to use policies to protect sensitive
credentials and the attribute information contained in the
credentials.

Distributed storage of credentials raises some nontrivial
questions for chain discovery. When trying to construct a
credential chain to answer an access-control query, where
should one look for credentials? Often, one cannot look
everywhere; in that case, when a chain cannot be found,
how can one be sure that none exists? Distributed creden-
tial chain discovery requires a scheme to address these ques-
tions.

Example 6 Consider the following credentials from Exam-
ple 1.

EOrg.preferred←− EOrg.university.student (1)
EOrg.university←− ABU.accredited (2)
ABU.accredited←− StateU (3)
StateU.student←− Alice (4)

These four credentials prove that Alice is a member of
EOrg.preferred. When these credentials are stored in a dis-
tributed manner, it is non-trivial to guarantee that this chain
can always be discovered. For example, when both (2) and
(3) are stored by ABU, then just knowing (1) and (4), one
does not know where to look for credentials. Also, one
wants to avoid having to go to every university one by one
to determine whether Alice is a university student.
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In [20], a storage type system and a notion of well-typed
credentials were presented to address these problems. They
guarantee that credential chains can be discovered even
when credentials are stored in a distributed manner. The
types also guide search in the right direction, avoiding huge
fan-outs.

We now give an summary of the storage type system.
Each credential is assumed to be stored by its issuer (an
issuer-storedcredential) or by its subjects (asubject-stored
credential), where subject and issuer are defined as fol-
lows. For a credential,A.r ←− e, we call A the is-
suer, and each principal inbase(e) a subjectof this cre-
dential, wherebase(e) is defined as follows:base(D) =
{D}, base(B.r2) = {B}, base(A.r1.r2) = {A},
base(A1.r1 ∩ · · · ∩Ak.rk) = {A1, A2, . . . , Ak}. Each
role name has two types: an issuer-side type and a subject-
side type. On the issuer side, the possible types are issuer-
(traces-)none, issuer-(traces-)def, and issuer-(traces-)all, in
order of increasing strength. Ifr is issuer-def or issuer-all,
each credential of the formA.r ←− e is required to be
issuer-stored. Ifr is issuer-all, the well-typing rule for cre-
dentials additionally requirese to be issuer-all. (The types
for role expressions are determined from role names.) This
means that fromA, one can retrieve the credential and dis-
cover its subject, allowing one to find all issuer stored cre-
dentials issued by that subject, and to repeat the process to
discover all members ofA.r. On the subject side, the possi-
ble types are subject-(traces-)none and subject-(traces-)all.
If r is subject-all, each credential of the formA.r ←− e′ is
required to be subject-stored, ande′ must also be subject-
all. To ensure that credentials are either issuer-stored or
subject-stored, the well-typing rule also requires that no role
expression is both issuer-none and subject-none. A linked
roleA.r1.r2 is issuer-all when bothr1 andr2 are; same is
true for subject-all.A.r1.r2 is issuer-def ifr1 is issuer-def
andr2 is subject-all, orr1 is issuer-all andr2 is issuer-def.

For example, a typing for credentials in Example 6 is to
make preferred and university issuer-def and subject-none,
and to make accredited and student issuer-none and subject-
all. To make these credentials well-typed, credentials (1)
and (2) should be stored by their issuer, EOrg, (3) should be
stored by its subject StateU, and (4) stored by Alice. This
arrangement enables our search algorithm to find all the cre-
dentials starting from EOrg and Alice, without touching cre-
dentials about other students and other universities.

7 Implementation and Applications

A Java-basedRT0 inference engine is implemented.
This engine is used in two demonstration applications to
be described below. It is also used in the implementation of
the Trust Target Graph trust negotiation protocol developed
under the Attribute-Based Access Control project. We are

in the process of implementing an inferencing engine for
RT1, which will provide a more expressive basis for these
and other applications.

7.1 August: Secure Distributed Calendar

August is a distributed calendar program. In August,
each user has a calendar and can specify policy that de-
termines who is allowed to view each part of the user’s
calendar and who is allowed to add an activity of certain
kinds at a certain time. In effect, August is a simple dis-
tributed database, where the data is in a special format used
for scheduling information.

Each August user declares different roles (or groups),
e.g., friends, family members, colleagues, etc., and defines
the members of these roles. Users may use delegation in
defining role members. For example a user may specify that
“friends←−my family members’ friends”. This avoids the
need to explicitly list all the eligible users and decentralizes
the assignment of roles to appropriate authorities.

Each calendar consists of activities. Each activity has a
category, a time period, an importance level, and a creator,
in addition to other information about the specific activity.
A user can define calendar categories and the time peri-
ods in which activity of each category can be scheduled.
A user can assign read and write permissions to roles. A
read permission is parameterized by a category. A write per-
mission is parameterized by a category and an importance
level, which limits the maximum important level someone
who possesses this permission can schedule. An August
user sets policy using dialog boxes, with policy preferences
translated intoRT . TheseRT policy statements associated
with August thus determines who can read or write to an-
other user’s calendar entry.

7.2 U-STOR-IT: Secure Web-based File Sharing

The Digital U-STOR-IT distributed file-sharing applica-
tion is a web-based file sharing system formulated to pro-
vide a useful service and to allow us to experiment with
policy development and policy requirements.

A U-STOR-IT user connects to the service using a
browser, with user authentication done using client-side
certificates generated by the U-STOR-IT certificate author-
ity. Access is controlled by policy; access to an individual
locker or file within a locker is determined by policy state-
ments specified by several users. The policy language also
allows one user to refer to the policy of another user when
specifying his policy.

In addition to storing files, U-STOR-IT has message
processing and version control facilities, providing a se-
cure collaboration tool centered around policy concepts ex-
pressed inRT .
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8 Service Selection and Mobile Code

The Stanford architecture for mobile code security is
based on enhancements to the Jini primitives and conven-
tions for calling library services. When clients want to ac-
cess services, they lookup proxies in directories and then
use proxies in ways similar to a local service. This is more
flexible than traditional client/service architecture in that
it is not just data that are transferred between clients and
servers. However, this approach involves mobile code risks
and the need to manage trust in code obtained from services
not previously know to the client.RT provides a natural
way of expressing trust policies in this environment.

The four security goals of the mobile code architecture
are: (1) Restrict the ability of proxy code to access to the
client virtual machine on which it executes, (2) Secure the
proxy-service network communication, (3) Allow the client
to authenticate the proxy and make sure that it comes from
the right service, (4) Allow the service to authenticate and
authorize a requesting client. Goal (1) is addressed by
Java security mechanisms. In addition, a bytecode filter-
ing mechanism can be used to enhance the protection. A
Jini client manages mobile code risks by invoking a Java
bytecode filter that screens Java bytecode for security risks.
The filter may be customized to enforce coding restrictions
or software conventions established by a coalition and de-
signed to prevent mobile code attacks. Further informa-
tion about the Java bytecode filtering mechanisms used by a
client to examine a service proxy before it is installed in
the virtual machine may be found in [8]. Goal (2) may
be achieved by consistent use of a communication protocol
such as SSL (Secure Sockets Layer; standard implemen-
tations of Java RMI over SSL may be used). Our focus is
therefore to provide additional security mechanisms to meet
goals (3) and (4). For goal (3), we need to authenticate code
and data. For goal (4), we wish to enable single authentica-
tion per session, multiple authentication mechanisms, and
authorization based on the arguments of calls.

The main mechanisms for meeting this goals are a new
form of signed service proxy that includes both signed code
and signed object state, and a form of authenticated service
session. Signed service proxies with state (such as the IP
address used to obtain the service) allow client programs to
verify a signature on a proxy before making any call on the
proxy. When a client gets a proxy from the directory, it first
verifies that the proxy is signed by a public key, and then
consults a trust-management engine to ensure that the sign-
ing public key is trusted. In an authenticated client session,
when a client program makes the first call to the service, the
service consults a TM engine (on the service side) to com-
pute a set of permissions to grant the client. The service
generates a dedicated service session, associates the set of
permissions with this session, generates a proxy for the ded-

icated service session, and returns the proxy to the client.
Since the service session and the session proxy are dynam-
ically generated and transmitted through a secure channel,
they can use secret-key based secure communication chan-
nel. The dedicated service session provides performance
optimization and controls clients’ use of services in a flexi-
ble, policy-driven manner.

9 Conclusions

We have presented an overview ofRT , a Role-based
Trust-management framework. Our presentation summa-
rizes main aspects ofRT described in previous publica-
tions, together with recent improvements and explanation
of motivating applications. TheRT framework provides
policy language, semantics, deduction engine, and prag-
matic features such as application domain specification doc-
uments that help distributed users maintain consistent use of
policy terms. In comparison with systems like SPKI/SDSI
and KeyNote, the advantages ofRT include: a declarative,
logic-based semantic foundation, support for distributed
chain discovery and vocabulary agreement, strongly-typed
credentials and policies, more flexible delegation structures,
and more expressive support for Separation-of-Duty poli-
cies.
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