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The administration of large Role-Based Access Control (RBAC) systems is a challenging prob-
lem. In order to administer such systems, decentralization of administration tasks by the use of

delegation is an effective approach. While the use of delegation greatly enhances flexibility and
scalability, it may reduce the control that an organization has over its resources, thereby dimin-

ishing a major advantage RBAC has over Discretionary Access Control (DAC). We propose to use
security analysis techniques to maintain desirable security properties while delegating administra-
tive privileges. We give a precise definition of a family of security analysis problems in RBAC,

which is more general than safety analysis that is studied in the literature. We show that two
classes of problems in the family can be reduced to similar analysis in the RT[և,∩] role-based

trust-management language, thereby establishing an interesting relationship between RBAC and
the RT framework. The reduction gives efficient algorithms for answering most kinds of queries
in these two classes and establishes the complexity bounds for the intractable cases.
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and Protection; D.4.6 [Operating Systems]: Security and Protection — Access Controls
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1. INTRODUCTION

The administration of large Role-Based Access Control (RBAC) systems is a challenging
problem. A case study carried out with Dresdner Bank, a majorEuropean bank, resulted
in an RBAC system that has around 40,000 users and 1300 roles [Schaad et al. 2001]. In
systems of such size, it is impossible for a single system security officer (SSO) to admin-
ister the entire system. Several administrative models forRBAC have been proposed in
recent years, e.g., ARBAC97 [Sandhu et al. 1999], ARABCRA02[Oh and Sandhu 2002],
and CL03 (Crampton and Loizou) [Crampton and Loizou 2003]. In all these models, del-
egation is used to decentralize the administration tasks.
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A major advantage that RBAC has over discretionary access control (DAC) is that if an
organization uses RBAC as its access control model, then theorganization (represented
by the SSO in the system) has central control over its resources. This is different from
DAC, in which the creator of a resource determines who can access the resource. In most
organizations, even when a resource is created by an employee, the resource is still owned
by the organization and the organization wants some level ofcontrol over how the resource
is to be shared. In most administrative models for RBAC, the SSO delegates to other users
the authority to assign users to certain roles (thereby granting those users certain access
permissions), to remove users from certain roles (thereby revoking certain permissions
those users have), etc. While the use of delegation in the administration of an RBAC system
greatly enhances flexibility and scalability, it may reducethe control that the organization
has over its resources, thereby diminishing a major advantage RBAC has over DAC. As
delegation gives a certain degree of control to a user that may be only partially trusted,
a natural security concern is whether the organization nonetheless has some guarantees
about who can access its resources. To the best of our knowledge, the effect of delegation
on the persistence of security properties in RBAC has not been considered in the literature
as such.

In this paper, we propose to use security analysis techniques [Li et al. 2005] to maintain
desirable security properties while delegating administrative privileges. In security analy-
sis, one views an access control system as a state-transition system. In an RBAC system,
state changes occur via administrative operations. Security analysis techniques answer
questions such as whether an undesirable state is reachable, and whether every reachable
state satisfies some safety or availability properties. Examples of undesirable states are a
state in which an untrusted user gets access and a state in which a user who is entitled to
an access permission does not get it.

Our contributions in this paper are as follows.

—We give a precise definition of a family of security analysis problems in RBAC. In
this family, we consider queries that are more general than queries that are considered
in safety analysis [Harrison et al. 1976; Koch et al. 2002a; Lipton and Snyder 1977;
Sandhu 1988].

—We show that two classes of the security analysis problems inRBAC can be reduced to
similar ones inRT[և,∩], a role-based trust-management language for which security
analysis has been studied [Li et al. 2005]. The reduction gives efficient algorithms for
answering most kinds of queries in these two classes and establishes the complexity
bounds for the intractable cases.

Our contributions are significant in that our work presents away to capture and represent
a large class of security properties of interest in complex RBAC systems such as the one
discussed by [Schaad et al. 2001]. Our work also shows how several kinds of these security
properties can be efficiently verified. Our establishment ofcomplexity bounds for the in-
tractable cases gives us a clear understanding of the difficulty of the problems so that future
work can develop efficient heuristics. In Section 2.2, we discuss how security analysis is
used in RBAC systems, which further demonstrates the significance of our contributions.

The rest of this paper is organized as follows. In Section 2, we define a family of security
analysis problems in RBAC and summarize our main results. Wegive an overview of the
results for security analysis inRT[և,∩] in Section 3. We present the reduction from
security analysis in RBAC to that inRT[և,∩] in Section 4. Related work is discussed in
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Section 5. We conclude with Section 6. An appendix contains proofs not included in the
main body.

2. PROBLEM DEFINITION AND MAIN RESULTS

In [Li et al. 2005], an abstract version of security analysisis defined in the context of
trust management. In this section we restate the definition in the context of general access
control schemes.

Definition 1. (Access Control Schemes) An access control scheme is modelled as a
state-transition system〈Γ, Q,⊢,Ψ〉, in whichΓ is a set of states,Q is a set of queries,Ψ is
a set of state-change rules, and⊢: Γ×Q→ {true, false} is called the entailment relation,
determining whether aquery is true or not in a given state. Astate, γ ∈ Γ, contains all
the information necessary for making access control decisions at a given time. When a
query,q ∈ Q, arises from an access request,γ ⊢ q means that the access corresponding
to the requestq is granted in the stateγ, andγ 6⊢ q means that the access corresponding
to q is not granted. One may also ask queries other than those corresponding to a specific
request, e.g., whether every principal that has access to a resource is an employee of the
organization. Such queries are useful for understanding the properties of a complex access
control system.

A state-change rule,ψ ∈ Ψ, determines how the access control system changes state.
Given two statesγ andγ1 and a state-change ruleψ, we writeγ 7→ψ γ1 if the change from
γ to γ1 is allowed byψ, andγ

∗
7→ψ γ1 if a sequence of zero or more allowed state changes

leads fromγ to γ1. If γ
∗
7→ψ γ1, we say thatγ1 is ψ-reachablefrom γ, or simplyγ1 is

reachable, whenγ andψ are clear from the context.

An example of an access control scheme is the HRU scheme, thatis derived from the
work by Harrison et al. [Harrison et al. 1976]. The HRU schemeis based on the access
matrix model [Graham and Denning 1972; Lampson 1971]. We assume the existence of
three countably infinite sets:S, O, andA, which are the sets of all possible subjects,
objects, and access rights. We assume further thatS ⊆ O. In the HRU scheme:

—Γ is the set of all possible access matrices. Formally, eachγ ∈ Γ is identified by three
finite sets,Sγ ⊂ S, Oγ ⊂ O, andAγ ⊂ A, and a functionMγ [ ] : Sγ × Oγ →
2Aγ , whereMγ [s, o] gives the set of rightss has overo. An example of a state,γ, is
one in whichSγ = {Admin} , Oγ = {employeeData} ∪ Sγ , Aγ = {own, read}, and
Mγ [Admin,Admin] = ∅, andMγ [Admin, employeeData] = {own, read}. In this state,
two objects exist, of which one is a subject, and the system isassociated with the two
rights,own andread .

—Q is the set of all queries of the form:a ∈ [s, o], wherea ∈ A is a right,s ∈ S is a
subject, ando ∈ O is an object. This query asks whether the righta exists in the cell
corresponding to subjects and objecto.

—The entailment relation is defined as follows:γ ⊢ a ∈ [s, o] if and only if s ∈
Sγ , o ∈ Oγ , and a ∈ Mγ [s, o]. For example, let the queryq1 be read ∈
M [Admin, employeeData]. and the queryq2 be own ∈ M [Admin,Admin] Then, for
the state,γ, discussed above,γ ⊢ q1 andγ 6⊢ q2.

—Each state-transition ruleψ is given by a set of commands. Givenψ, the change fromγ
to γ1 is allowed if there exists command inψ such that the execution of the command in
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the stateγ results in the stateγ1. An example ofψ is the following set of commands.

command createObject(s, o) command grant a(s, s′, o)
create object o if own ∈ [s, o]
enter own into [s, o] enter a into [s′, o]

The set of queries is not explicitly specified in [Harrison etal. 1976]. It is conceivable
to consider other classes of queries, e.g., comparing the set of all subjects that have a given
right over a given object with another set of subjects. In ourframework, HRU with different
classes of queries can be viewed as different schemes.

Definition 2. (Security Analysis in an Abstract Setting) Given an access control scheme
〈Γ, Q,⊢,Ψ〉, a security analysis instance takes the form〈γ, q, ψ,Π〉, whereγ ∈ Γ is a state,
q ∈ Q is a query,ψ ∈ Ψ is a state-change rule, andΠ ∈ {∃,∀} is a quantifier. An instance
〈γ, q, ψ,∃〉 asks whether there existsγ1 such thatγ

∗
7→ψ γ1 andγ1 ⊢ q. When the answer

is affirmative, we sayq is possible(givenγ andψ). An instance〈γ, q, ψ,∀〉 asks whether
for everyγ1 such thatγ

∗
7→ψ γ1, γ1 ⊢ q. If so, we sayq is necessary(givenγ andψ).

For our example HRU scheme from above, adoptγ as the start state. Inγ, there is only
one subject (namely,Admin) and the access matrix is empty. The system is associated
with the two rights,own and r. Let the queryq be r ∈ M [Alice, employeeData] for
Alice ∈ S andemployeeData ∈ O. Let the state-change ruleψ be the set of two commands
createObject andgrant r . Then, the security analysis instance〈γ, q, ψ,∃〉 is true. The
reason is that although in the start stateγ, Alice does not have ther right over the object
employeeData, there exists a reachable state fromγ in which she has such access. The
security analysis instance〈γ, q, ψ,∀〉 is false, as there exists at least one state reachable
from γ (γ itself) that does not entail the query.

Security analysis generalizes safety analysis. As we discuss in the following section,
with security analysis we can study not only safety, but alsoseveral other interesting prop-
erties, such as availability and mutual-exclusion.

2.1 A family of security analysis problems in Role-Based Access Control

We now define a family of security analysis problems in the context of RBAC by specifying
Γ, Q, and⊢, while leavingΨ abstract. By considering different possibilities forΨ, one
obtains different classes of RBAC security analysis problems in this family. We consider
two specific instances ofΨ in sections 2.3 and 2.4.

We assume a basic level of familiarity with RBAC; readers arereferred to [Ferraiolo
et al. 2001; Sandhu et al. 1996] for an introduction to RBAC. We assume that there are three
countable sets:U (the set of all possible users),R (the set of all possible roles), andP (the
set of all possible permissions). The family of analysis problems is given by specializing
the analysis problem defined in Definition 2 to consider access control schemes that have
Γ,Q, and⊢ specified as follows.

States (Γ): Γ is the set of all RBAC states. An RBAC state,γ, is a 3-tuple〈UA,PA,RH 〉,
in which the user assignment relationUA ⊆ U × R associates users with roles, the per-
mission assignment relationPA ⊆ P ×R associates permissions with roles, and the role
hierarchy relationRH ⊆ R×R is a partial order among roles inR. We denote the partial
order by�. r1 � r2 means that every user who is a member ofr1 is also a member ofr2
and every permission that is associated withr2 is also associated withr1.
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RH = { (Engineer, Employee) , (FullTime, Employee),
(PartTime, Employee) , (ProjectLead, Engineer),

(Manager, FullTime) }.
PA = { (Access, Employee) , (View, HumanResource),

(Edit, Engineer) }.
UA = { (Alice, PartTime) , (Alice, Engineer),

(Bob, Manager) , (Carol, HumanResource) }.

Fig. 1. An example RBAC state with a role hierarchy, users and permissions. Roles are shown in
solid boxes, permissions in dashed boxes and users in ovals. A line segment represents a role-role
relationship, the assignment of a permission to a role or the assignment ofa user to a role.

EXAMPLE 1. Figure 1 is an example of an RBAC state. It reflects an organization that
has engineers, and whose human-resource needs are outsourced (i.e., human-resource per-
sonnel are not employees). Everyone in the organization is an employee, and therefore a
member of the roleEmployee. Some of the employees are full-time (members of the role
FullTime), and the others are part-time (members of the rolePartTime). All managers are
full-time employees. All employees have access to the office, and therefore have the per-
missionAccess. Engineers may edit code (have the permissionEdit), and human resource
personnel may view employee-details (have the permissionView).

We now discuss some example members ofUA, PA andRH . The userAlice is an en-
gineer who is a part-time employee. Therefore,(Alice,Engineer) and(Alice,PartTime)
are members ofUA. All employees have access to the office, and therefore,
(Access,Employee) is a member ofPA. Project leads are engineers, and therefore
(ProjectLead,Engineer) is a member ofRH (i.e.,ProjectLead � Engineer).

Given a stateγ = 〈UA, PA, RH 〉, every role has a set of users who are members of that
role and every permission is associated with a set of users who have that permission. We
formalize this by having every stateγ define a functionusersγ : R∪ P → 2U , as follows.
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For anyr ∈ R andu ∈ U , u ∈ usersγ [r] if and only if either(u, r) ∈ UA or there exists
r1 such thatr1 � r and(u, r1) ∈ UA. For anyp ∈ P andu ∈ U , u ∈ usersγ [p] if and
only if there existsr1 such that(p, r1) ∈ PA andu ∈ usersγ [r1]. Note that the effect of
permission propagation through the role hierarchy is already taken into consideration by
the definition ofusersγ [r1].

EXAMPLE 2. Let the RBAC state shown in Figure 1 beγ. Then, for the roleEngineer,
usersγ [Engineer] = {Alice}. Similarly, for the permissionAccess, usersγ [Access] =
{Alice,Bob}.

Queries (Q): The purpose of a query is to encode some property of a state that is of
interest. For this, we introduce the notion ofuser setsby extending our definition of the
functionusersγ . The intuition is as follows. Given a state, a user set evaluates to a set of
users. A query encodes a comparison of user sets, which evaluates (in the entailment of a
query) to a comparison of two sets of users. As we demonstrate, such a representation for
a query is quite powerful; indeed, we are able to capture several properties of interest. The
reason is that properties regarding users, roles and permissions can all be captured using
user sets.

A query q has the forms1 ⊒ s2, wheres1, s2 ∈ S, andS is the set of alluser sets,
defined to be the least set satisfying the following conditions: (1)R ∪ P ⊆ S, i.e., every
role r and every permissionp is a user set; (2){u1, u2, · · · , uk} ∈ S, wherek ≥ 0 and
ui ∈ U for 1 ≤ i ≤ k, i.e., a finite set of users is a user set; and (3)s1∪s2, s1∩s2, (s1) ∈ S,
wheres1, s2 ∈ S, i.e., the set of all user sets is closed with respect to union, intersection
and paranthesization. We extend the functionusersγ in a straightforward way to give a
valuation for all user sets. The extended functionusersγ : S → 2U is defined as follows:
usersγ [{u1, u2, · · · , uk}] = {u1, u2, · · · , uk}, usersγ [(s)] = usersγ [s], usersγ [s1 ∪ s2] =
usersγ [s1] ∪ usersγ [s2], andusersγ [s1 ∩ s2] = usersγ [s1] ∩ usersγ [s2]. We say a query
s1 ⊒ s2 is semi-staticif one of s1, s2 can be evaluated independent of the state, i.e., no
role or permission appears in it. The reason we distinguish semi-static queries is that (as
we assert in Sections 4.1 and 4.2) a security analysis instance involving only such queries
can be solved efficiently.

Entailment (⊢): Given a stateγ and a querys1 ⊒ s2, γ ⊢ s1 ⊒ s2 if and only if
usersγ [s1] ⊇ usersγ [s2].

EXAMPLE 3. Continuing from the previous examples, an example of a query, q, is
FullTime ∩ Access ⊒ {Alice}, for the roleFullTime, the permissionAccess and the user
Alice. This query is semi-static; the user set{Alice} can be evaluated (to itself) independent
of the state.

The queryq asks whetherAlice is a full-time employee that has access to the office. To
find out whetherγ entailsq or not, we evaluateq as follows. We evaluate the user set
FullTime to the set of users{Bob}. We evaluate the user setAccess to the set of users
{Alice,Bob}. We intersect the two sets of users to obtain the set of users{Bob}. The user
set{Alice} does not need further evaluation; it is already a set of users. We now check
whether the set of users{Alice} is a subset of the set of users{Bob} and determine that
γ 6⊢ q. If another queryq′ is Edit ⊒ ProjectLead (i.e., whether project leads can edit code),
thenγ ⊢ q′.

The state of an RBAC system changes when a modification is madeto a component of
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〈UA,PA,RH 〉. For example, a user may be assigned to a role, or a role hierarchy re-
lationship may be added. In existing RBAC models, both constraints and administrative
models affect state changes in an RBAC system. For example, aconstraint may declare
that rolesr1 andr2 are mutually exclusive, meaning that no user can be a member of both
roles. If a useru is a member ofr1 in a state, then the state is not allowed to change to a
state in whichu is a member ofr2 as well. Anadministrative modelincludes administra-
tive relations that dictates who has the authority to changethe various components of an
RBAC state and what are the requirements these changes have to satisfy. Thus, in RBAC
security analysis, a state-change rule may include constraints, administrative relations, and
possibly other information.

In this section, we leave the state-change rule abstract forthe following reasons.
First, there are several competing proposals for constraint languages [Ahn and Sandhu
2000; Jaeger and Tidswell 2001; Crampton 2003] and for administrative models in
RBAC [Sandhu et al. 1999; Oh and Sandhu 2002; Crampton and Loizou 2003; Ferraiolo
et al. 2003]; a consensus has not been reached within the community. Furthermore, RBAC
is used in diverse applications. It is conceivable that different applications would use dif-
ferent classes of constraints and/or administrative models; therefore different classes of
problems in this family are of interest.

Given a stateγ and a state-change ruleψ, one can ask the following questions using
security analysis.

—Simple Safety: is s ⊒ {u} possible? This asks whether there exists a reachable state in
which the user sets includes the (presumably untrusted) useru. A ‘no’ answer means
that the system is safe.

—Simple Availability: is s ⊒ {u} necessary? This asks whether in every reachable state,
the (presumably trusted) useru is always included in the user sets. A ‘yes’ answer
means that the resources associated with the user sets are always available to the user
u.

—Bounded Safety: is {u1, u2, . . . , un} ⊒ s necessary? This asks whether in every reach-
able state, the user sets is bounded by the set of users{u1, u2, . . . , un}. A ‘yes’ answer
means that the system is safe. A special case of bounded safety is Mutual Exclusion,
which asks: is∅ ⊒ (s1 ∩ s2) necessary? This asks whether in every reachable state, no
user is a member of both user setss1 ands2. A ‘yes’ answer means that the two user
sets are mutually exclusive.

—Liveness: is ∅ ⊒ s possible? This asks whether the user sets always has at least one
user. A ‘no’ answer means that the liveness of the resources associated withs holds in
the system.

—Containment: is s1 ⊒ s2 necessary? This asks whether in every reachable state, every
user in the user sets2 is in the user sets1. Containment can be used to express a
safety property, in which case, a ‘yes’ answer means that thesafety property holds. An
example of containment for the RBAC state in Figure 1 and somestate-change rule is:
“is Employee ⊒ Access necessary?”, for the roleEmployee and the permissionAccess.
This asks whether in every reachable state, every user who has the permissionAccess

(i.e., has access to the office) is a member of the roleEmployee (i.e., is an employee). A
‘yes’ answer means that our desired safety property holds.
Containment can express availability properties also. E.g., “is Access ⊒ Employee

necessary?” asks whether the permissionAccess (i.e., access to the office) is always
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available to members of the roleEmployee (i.e., employees). A ‘yes’ answer means that
the availability property holds.

We point out that that all the above properties (except for containment) use semi-static
queries, and therefore, as we mention in the context of queries in this section, we can
efficiently determine whether those properties are satisfied.

2.2 Usage of RBAC security analysis

In an RBAC security analysis instance〈γ, q, ψ,Π〉, the stateγ fully determines who can
access which resources. In addition to administrative policy information, the state-change
rule ψ also contains information about which users are trusted. Inany access control
system there aretrusted users; these are users who have the authority to take the system
to a state that violates security requirements but are trusted not to do so. An SSO is an
example of a trusted user.

Security analysis provides a means to ensure that security requirements (such as safety
and availability) are always met, as long as users identifiedas trusted behave according to
the usage patterns discussed in this section. In other words, security analysis helps ensure
that the security of the system does not depend on users otherthan those that are trusted.

Each security requirement is formalized as a security analysis instance, together with an
answer that is acceptable for secure operation. For example, in the context of the RBAC
system whose state in shown in Figure 1, a security requirement may be that only employ-
ees may access the office. This can be formalized as an instance〈γ, q, ψ,∀〉, whereγ is the
current state,q is Employee ⊒ Access, andψ specifies administrative policy information.
The ruleψ should precisely capture the capabilities of users that arenot trusted. In other
words, any change that could be made by such users should be allowed byψ. The rule
ψ could restrict the changes that trusted users can make, because these are trusted not to
make a change without verifying that desirable security properties are maintained subse-
quent to the change. For the example discussed above, the acceptable answer is “yes”, as
we want to ensure that everyone who has the permissionAccess is an employee. The goal
is to ensure that such a security requirement is always satisfied.

Suppose that the system starts in a stateγ such that the answer to〈γ, q, ψ,∀〉 is “yes”.
Further, suppose a trusted user (such as the SSO) attempts tomake a change that is not
allowed byψ, e.g., the SSO decides to grant certain administrative privileges to a user
u. Before making the change, SSO performs security analysis〈γ′, q, ψ′,∀〉, whereγ′ and
ψ′ are resulted from the prospective change. Only if the answeris “yes”, does the SSO
actually make the change. The fact thatψ limits the SSO from making changes does not
mean that we require that the SSO never make such changes. It reflects the requirement
that the SSO perform security analysis and make only those changes that do not violate
security properties.

This way, as long as trusted users are cooperating, the security of an access control
system is preserved. One can delegate administrative privileges to partially trusted users
with the assurance that desirable security properties always hold. By using differentψ’s,
one can evaluate which sets of users are trusted for a given security property. In general, it
is impossible to completely eliminate the need to trust people. However, security analysis
enables one to ensure that the extent of this trust is well understood.
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2.3 Assignment and trusted users (AATU)

In this paper, we present solutions to two classes of security analysis problems in RBAC.
Both classes use variants of the URA97 component of the ARBAC97 administrative model
for RBAC [Sandhu et al. 1999]. URA97 specifies how theUA relation may change.

The first class is called Assignment And Trusted Users (AATU), in which a state-change
ruleψ has the form〈can assign, T 〉. The relationcan assign ⊆ R× C × 2R determines
who can assign users to roles and the preconditions these users have to satisfy.C is the set
of conditions, which are expressions formed using roles, the two operators∩ and∪, and
parentheses.〈ra, c, rset〉 ∈ can assign means that members of the rolera can assign any
user whose role memberships satisfy the conditionc, to any roler ∈ rset . For example,
〈r0, (r1 ∪ r2) ∩ r3, {r4, r5}〉 ∈ can assign means that a user that is a member of the role
r0 is allowed to assign a user that is a member of at least one ofr1 andr2, and is also a
member ofr3, to be a member ofr4 or r5. T ⊆ U is a set of trusted users; these users are
assumed not to initiate any role assignment operation for the purpose of security analysis.
The setT is allowed to be empty.

Definition 3. (Assignment And Trusted Users – AATU) The class AATU is given by
parameterizing the family of RBAC analysis problems in Section 2.1 with the following
set of state-change rules. Each state-change ruleψ has the form〈can assign, T 〉 such
that a state change fromγ = 〈UA,PA,RH 〉 to γ1 = 〈UA1,PA1,RH 1〉 is allowed by
ψ = 〈can assign, T 〉 if PA = PA1, RH = RH 1, UA1 = UA ∪ {(u, r)}, where(u, r) 6∈
UA and there exists(ra, c, rset) ∈ can assign such thatr ∈ rset , u satisfiesc, and
usersγ [ra] 6⊆ T (i.e., there exists at least one user who is a member of the rolera and is not
in T , so that such a user can perform the assignment operation).

EXAMPLE 4. In this example, we consider the question of whether a particular user,
Alice, can become aProjectLead given a system in AATU. In our example, we do not
wantAlice to become aProjectLead unless the trusted administratorCarol is involved. We
encode this question as a security analysis instance.

For the state,γ, shown in Figure 1 and discussed in the previous examples, a state-
change rule,ψ, in the class AATU is〈can assign, T 〉, where

can assign = {〈Manager,Engineer ∧ FullTime, {ProjectLead}〉,
〈HumanResource, true, {FullTime,PartTime}〉}

T = {Carol}

That is,ψ authorizes managers to assign a user to the roleProjectLead provided that the
user is a member of the rolesEngineer andFullTime. In addition,ψ authorizes anyone
that is a member of the roleHumanResource to assign users to the rolesFullTime and
PartTime. SettingT to {Carol} implies that we wish to analyze what kinds of states can
be reached via changes made by users other thanCarol.

Let q be the queryProjectLead ⊒ {Alice}. Then, γ 6⊢ q. The analysis instance
〈γ, q, ψ,∃〉 asks whether there exists a reachable state in whichAlice is a project lead.
The instance is false. This is because forAlice to become a member ofProjectLead, she
would first need to be a full-time employee, and onlyCarol can grant anyone membership
to FullTime. As Carol is in T , she cannot initiate any operation. If we consider, instead,
the state-change ruleψ′, with the samecan assign asψ from above, but withT = ∅, then
the analysis instance〈γ, q, ψ′,∃〉 is true.
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Main results for AATU

—If q is semi-static (see Section 2.1), then an AATU instance〈γ, q, ψ,Π〉 can be answered
efficiently, i.e., in time polynomial in the size of the instance.

—Answering general AATU instances〈γ, q, ψ,∀〉 is decidable but intractable (coNP-
complete).

2.4 Assignment and revocation (AAR)

In this class, a state-change ruleψ has the form〈can assign, can revoke〉, where
can assign is the same as in AATU, andcan revoke ⊆ R × 2R determines who can
remove users from roles. That〈ra, rset〉 ∈ can revoke means that the members of role
ra can remove a user from a roler ∈ rset. No explicit set of trusted users is specified
in AAR, unlike AATU. In AATU and AAR, the relationscan assign andcan revoke are
fixed inψ. This means that we are assuming that changes to these two relations are made
only by trusted users.

Definition 4. (Assignment And Revocation – AAR) The class AAR is given by para-
meterizing the family of RBAC analysis problems in Section 2.1 with the following set
of state-change rules. Each state-change ruleψ has the form〈can assign, can revoke〉
such that a state-change fromγ = 〈UA,PA,RH 〉 to γ1 = 〈UA1,PA1,RH 1〉 is al-
lowed byψ = 〈can assign, can revoke〉 if PA = PA1, RH = RH 1, and either (1)
UA1 = UA ∪ {(u, r)} where(u, r) 6∈ UA and there exists(ra, c, rset) ∈ can assign

such thatr ∈ rset , u satisfiesc, andusersγ [ra] 6= ∅, i.e., the useru being assigned to
r is not already a member ofr and satisfies the preconditionc, and there is at least one
user that is a member of the rolera that can perform the assignment operation; or (2)
UA1 ∪ (u, r) = UA where(u, r) 6∈ UA1, and there exists(ra, rset) ∈ can revoke such
thatr ∈ rset andusersγ [ra] 6= ∅, i.e., there exists at least one user in the rolera that can
revoke the useru’s membership in the roler.

We assume that an AAR instance satisfies the following three properties. (1) The admin-
istrative roles are not affected bycan assign andcan revoke. The administrative roles are
given by those that appear in the first component of anycan assign or can revoke tuple.
These roles should not appear in the last component of anycan assign or can revoke

tuple. This condition is easily satisfied in URA97, as it assumes the existence of a set of
administrative roles that is disjoint from the set of normalroles. (2) If a role is an adminis-
trative role (i.e., appears as the first component of acan assign or can revoke tuple), then
it has at least one user assigned to it. This is reasonable, asan administrative role with no
members has no effect on the system’s protection state. (3) If a can assign tuple exists for
a role, then acan revoke tuple also exists for that role.

EXAMPLE 5. In this example, we ask whether it is possible that only project leads have
access to the office, and whetherAlice can ever edit code, both in the same AAR system.
The former is an example of an availability question while the latter is an example of a
safety question. We encode both questions as security analysis instances.

For the state,γ, from Figure 1, an example of a state-change rule in AAR isψ =
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〈can assign, can revoke〉, where

can assign = {〈Manager,Engineer ∧ FullTime, {ProjectLead}〉,
〈HumanResource, true, {FullTime,PartTime}〉}

can revoke = {〈Manager, {ProjectLead,Engineer}〉,
〈HumanResource, {FullTime,PartTime}〉}

We point out that thecan assign we use in this example is the same as thecan assign we
use in Example 4. Then, ifq is the queryProjectLead ⊒ Access (i.e., only project leads
have access to the office), the AAR analysis instance〈γ, q, ψ,∃〉 is true. Ifq′ is the query
Edit ⊒ {Alice} (i.e.,Alice can edit code), then the analysis instance〈γ, q′, ψ,∀〉 is false.

Main results for AAR

—If q is semi-static (see Section 2.1), then an AAR instance〈γ, q, ψ,Π〉 can be answered
efficiently, i.e., in time polynomial in the size of the instance.

—Answering general AAR instances〈γ, q, ψ,∀〉 is coNP-complete.

2.5 Discussion of the definitions

Our specifications ofcan assign andcan revoke are from URA97, which is one of the
three components of ARBAC97 [Sandhu et al. 1999]. The state-change rules considered
in AAR are similar to those in URA97, but they differ in the following two ways. One,
URA97 allows negation of roles to be used in a precondition; AAR does not allow this.
Two, URA97 has separate administrative roles; AAR does not require the complete sep-
aration of administrative roles from ordinary roles. AATU differs from URA97 in two
additional ways. One, AATU does not have revocation rules. Two, AATU has a set of
trusted users, which does not exist in URA97.

The other components of ARBAC97 are PRA97 and RRA97, for administering
permission-role assignment/revocation, and the role hierarchy, respectively. In this paper,
we study the effect of decentralizing user-role assignmentand revocation, and assume that
changes to the permission-role assignment relation and therole hierarchy are centralized,
i.e, made only by trusted users. In other words, whoever is allowed to make changes to
permission-role assignment and the role hierarchy will runthe security analysis and only
make changes that do not violate the security properties. The administration of the user-
role relation is most likely to be delegated, as that is the component of an RBAC state that
changes most frequently.

AATU and AAR represent two basic cases of security analysis in RBAC. Although
we believe that they are useful cases, they are only the starting point. Many other more
sophisticated cases of security analysis in RBAC remain open. For example, it is not
clear how to deal with negative preconditions in role assignment, and how to deal with
constraints such as mutually exclusive roles.

3. OVERVIEW OF SECURITY ANALYSIS IN RT[և,∩]

In [Li et al. 2005], Li et al. study security analysis in the context of theRT family of Role-
based Trust-management languages [Li et al. 2002; Li et al. 2003]. In particular, security
analysis inRT[և,∩] and its sub-languages is studied.RT[և,∩] is a slightly simplified
(yet expressively equivalent) version of theRT0 language introduced in [Li et al. 2003]
(RT[և,∩] is calledSRTin [Li et al. 2005]). In this section we summarize the resultsfor

ACM Journal Name, Vol. V, No. N, Month 20YY.



12 ·

Simple Member
syntax: K.r ←− K1

meaning: members(K.r) ⊇ {K1}
LP clause: m(K, r,K1)

Simple Inclusion
syntax: K.r ←− K1.r1
meaning: members(K.r) ⊇ members(K1.r1)
LP clause: m(K, r, ?Z) :− m(K1, r1, ?Z)

Linking Inclusion
syntax: K.r ←− K.r1.r2
meaning: members(K.r) ⊇

⋃

K1∈K.r1
members(K1.r2)

LP clause: m(K, r, ?Z) :− m(K, r1, ?Y ), m(?Y, r2, ?Z)
Intersection Inclusion

syntax: K.r ←− K1.r1 ∩K2.r2
meaning: members(K.r) ⊇ members(K1.r1) ∩members(K2.r2)
LP clause: m(K, r, ?Z) :− m(K1, r1, ?Z), m(K2, r2, ?Z)

Fig. 2. Statements inRT[և,∩]. There are four types of statements. For each type, we
give the syntax, the intuitive meaning of the statement, andthe LP (Logic-Programming)
clause corresponding to the statement. The clause uses one ternary predicatem, where
m(K, r,K1) means thatK1 is a member of the roleK.r Symbols that start with “?” rep-
resent logical variables.

security analysis inRT[և,∩]. We summarize the concepts from and results forRT[և,∩]
so that we can leverage those results in the security analysis of the RBAC schemes we
consider in this paper (AATU and AAR). In Section 4 we reduce security analysis in AATU
and AAR to that inRT[և,∩].

3.0.0.1 Syntax ofRT[և,∩] . The most important concept in theRT languages is also
that of roles. A role in RT[և,∩] is denoted by a principal (corresponding to a user in
RBAC) followed by a role name, separated by a dot. For example, whenK is a principal
andr is a role name,K.r is a role. Each principal has its own name space for roles. For
example, the ‘employee’ role of one company is different from the ‘employee’ role of
another company. Arole has a value which is a set of principals that are members of the
role.

Each principalK has the authority to designate the members of a role of the form
K.r. Roles are defined bystatements. Figure 2 shows the four types of statements in
RT[և,∩]; each corresponds to a way of defining role membership. A simple-member
statementK.r ←− K1 means thatK1 is a member ofK ’s r role. This is similar to a
user assignment in RBAC. A simple inclusion statementK.r ←− K1.r1 means thatK ’s
r role includes (all members of)K1’s r1 role. This is similar to a role-role dominance re-
lationshipK1.r1 � K.r. A linking inclusion statementK.r ←− K.r1.r2 means thatK.r
includesK1.r2 for everyK1 that is a member ofK.r1. An intersection inclusion state-
mentK.r ←− K1.r1∩K2.r2 means thatK.r includes every principal who is a member of
bothK1.r1 andK2.r2. Linking and intersection inclusion statements do not directly cor-
respond to constructs in RBAC, but they are useful in expressing memberships in roles that
result from administrative operations. Our reduction algorithms in Sections 4.1 and 4.2 use
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linking and intersection inclusion statements to capture user-role memberships affected by
administrative operations.

3.0.0.2 States.An RT[և,∩] stateγT consists of a set ofRT[և,∩] statements. The
semantics ofRT[և,∩] is given by translating each statement into a datalog clause. (Dat-
alog is a restricted form of logic programming (LP) with variables, predicates, and con-
stants, but without function symbols.) See Figure 2 for the datalog clauses corresponding
to RT[և,∩] statements. We call the datalog program resulting from translating each state-
ment inγT into a clause that is thesemantic programof γT , denoted bySP(γT ).

Given a datalog program,DP, its semantics can be defined through several equivalent
approaches. The model-theoretic approach viewsDP as a set of first-order sentences and
uses the minimal Herbrand model as the semantics. We writeSP(γT ) |= m(K, r,K ′)
whenm(K, r,K ′) is in the minimal Herbrand model ofSP(γT ).

3.0.0.3 State-change Rules.A state-change rule is of the formψT = (G,S), whereG
andS are finite sets of roles.

—Roles inG are calledgrowth-restricted(or g-restricted); no statements defining these
roles can be added. (A statement defines a role if it has the role to the left of ‘←−’.)
Roles not inG are calledgrowth-unrestricted(or g-unrestricted).

—Roles inS are calledshrink-restricted(or s-restricted); statements defining these roles
cannot be removed. Roles not inS are calledshrink-unrestricted(or s-unrestricted).

3.0.0.4 Queries.Li et al. [Li et al. 2005] consider the following three forms of queries:

— Membership: A.r ⊒ {D1, . . . ,Dn}
Intuitively, this means that all the principalsD1, . . . ,Dn are mem-
bers of A.r. Formally, γT ⊢ A.r ⊒ {D1, . . . ,Dn} if and only if
{Z | SP(γT ) |= m(A, r, Z)} ⊇ {D1, . . . ,Dn}.

— Boundedness: {D1, . . . ,Dn} ⊒ A.r
Intuitively, this means that the member set ofA.r is bounded by the given set of prin-
cipals. Formally,γT ⊢ {D1, . . . ,Dn} ⊒ A.r if and only if {D1, . . . ,Dn} ⊇ {Z |
SP(γT ) |= m(A, r, Z)}.

— Inclusion: X.u ⊒ A.r
Intuitively, this means that all the members ofA.r are also members ofX.u. Formally,
γT ⊢ X.u ⊒ A.r if and only if {Z | SP(γT ) |= m(X,u, Z)} ⊇ {Z | SP(γT ) |=
m(A, r, Z)}.

Each form of query can be generalized to allow compound role expressions that use
linking and intersection. These generalized queries can bereduced to the forms above by
adding new roles and statements to the state. For instance,{} ⊒ A.r ∩ A1.r1.r2 can be
answered by addingB.u1 ←− A.r ∩ B.u2, B.u2 ←− B.u3.r2, andB.u3 ←− A1.r1 to
γT , in whichB.u1, B.u2, andB.u3 are new g/s-restricted roles, and by posing the query
{} ⊒ B.u1.

Main results for security analysis in RT[և,∩]

Membership and boundedness queries (both whether a query ispossible and whether
a query is necessary) can be answered in time polynomial in the size of the input. The
approach taken in [Li et al. 2005] uses logic programs to derive answers to those security
analysis problems. This approach exploits the fact thatRT[և,∩] is monotonic in the sense
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that more statements will derive more role membership facts. This follows from the fact
that the semantic program is a positive logic program.

Inclusion queries are more complicated than the other two kinds. In [Li et al. 2005],
only the∀ case (i.e., whether an inclusion query is necessary) is studied. It is not clear
what the security intuition is of an∃ inclusion query (whether an inclusion query is pos-
sible); therefore, it is not studied in [Li et al. 2005]. The problem of deciding whether an
inclusion query is necessary, i.e., whether the set of members of one role is always a super-
set of the set of members of another role is calledcontainment analysis. It turns out that
the computational complexity of containment analysis depends on the language features.
In RT[ ], the language that allows only simple member and simple inclusion statements,
containment analysis is inP. It becomes more complex when additional policy language
features are used. Containment analysis iscoNP-complete forRT[∩] (RT[ ] plus intersec-
tion inclusion statements),PSPACE-complete forRT[և] (RT[ ] plus linking inclusion
statements), and decidable incoNEXP for RT[և,∩].

4. SOLVING AATU AND AAR BY REDUCTIONS TO SECURITY ANALYSIS IN
RT[և,∩]

In this section, we solve AATU (Definition 3) and AAR (Definition 4). Our approach is
to reduce each of them to security analysis inRT[և,∩]. Each reduction is an efficiently
computable mapping from an instance of AATU/AAR to a security analysis instance in
RT[և,∩]. We precisely articulate the properties of the reductions in Propositions 1 and 4
respectively. Intuitively, the reductions preserve the results of security analysis across the
mapping.

4.1 Reduction for AATU

The reduction algorithmAATU Reduce is given in Figure 4; it uses the subroutines
defined in Figure 3. Given an AATU instance〈γ = 〈UA,PA,RH 〉, q = s1 ⊒ s2,
ψ = 〈can assign, T 〉, Π ∈ {∃,∀}〉, AATU Reduce takes 〈γ, q, ψ〉 and outputs
〈γT , qT , ψT 〉 such that theRT[և,∩] analysis instance〈γT , qT , ψT ,Π〉 has the same
answer as the original AATU instance.

In the reduction, we use one principal for every user that appears inγ, and the spe-
cial principalSys to represent the RBAC system. TheRT[և,∩] role names used in the
reduction include the RBAC roles and permissions inγ and some additional temporary
role names. TheRT[և,∩] role Sys.r represents the RBAC roler and theRT[և,∩]
role Sys.p represents the RBAC permissionp. Each(u, r) ∈ UA is translated into the
RT[և,∩] statementSys.r ←− u. Eachr1 � r2 is translated into theRT[և,∩] state-
mentSys.r2←− Sys.r1 (asr1 is senior tor2, any member ofr1 is also a member ofr2.)
Each(p, r) ∈ PA is translated intoSys.p←− Sys.r (each member of the roler has the
permissionp.)

The translation of thecan assign relation is less straightforward. Each〈ra, rc, r〉 ∈
can assign is translated into theRT[և,∩] statementSys.r←− Sys.ra.r ∩ Sys.rc. The
intuition is that a userua who is a member of the rolera assigning the useru to be a
member of ther role is represented as adding theRT[և,∩] statementua.r←−u. Asua is
a member of theSys.ra role, the useru is added as a member to theSys.r role if and only
if the useru is also a member of therc role.

In the reduction, all theSys roles (i.e.,Sys.x) are fixed (i.e., both g-restricted and s-
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1 Subroutine Trans(s, γT) {
2 /* Trans(s,γT) returns an RT[և,∩] role corresponding
3 to the user set s*/
4 if s is an RBAC role then return Sys.s;
5 else if s is an RBAC permission then return Sys.s;
6 else if s is a set of users then {
7 name=newName(); foreach u ∈ s {
8 γT+= Sys.name←−u;}
9 return Sys.name; }

10 else if (s = s1 ∪ s2) then {
11 name=newName(); γT+=Sys.name←−Trans(s1, γ

T );
12 γT+= Sys.name←−Trans(s2, γ

T );
13 return Sys.name; }
14 else if (s = s1 ∩ s2) then {
15 name=newName();
16 γT+=Sys.name←−Trans(s1, γ

T ) ∩ Trans(s2, γ
T );

17 return Sys.name; }
18 } /* End Trans */
19
20 Subroutine QTrans(s, γT) {
21 /* Translation for users sets that are used at top
22 level in a query */
23 if s is a set of users then return s;
24 else return Trans(s,γT);
25 } /* End QTrans */
26
27 Subroutine HTrans(s, γT) {
28 if s is an RBAC role then return HSys.s;
29 else if (s = s1 ∪ s2) then {
30 name=newName(); γT+= Sys.name←−HTrans(s1, γ

T );
31 γT+= Sys.name←−HTrans(s2, γ

T ); return Sys.name; }
32 else if (s = s1 ∩ s2) then {
33 name=newName();
34 γT+=Sys.name←−HTrans(s1, γ

T ) ∩ HTrans(s2, γ
T );

35 return Sys.name; }
36 } /* End HTrans */

Fig. 3. SubroutinesTrans, QTrans, andHTrans are used by the two reduction algorithms. We assume call-by-
reference for the parameterγT .

restricted). In addition, for each trusted useru in T , all the roles starting withu is also
g-restricted; this is because we assume that trusted users will not perform operations to
change the state (i.e., user-role assignment operations).We may also make roles starting
with trusted users s-restricted; however, this has no effect as no statement defining these
roles exists in the initial state.

EXAMPLE 6. Consider the state-change ruleψ we discuss in Example 4, in which
can assign consists of the two tuples〈Manager,Engineer ∧ FullTime,ProjectLead〉 and
〈HumanResource, true, {FullTime,PartTime}〉, andT = {Carol}. Let γ be the RBAC
state shown in Figure 1, and letq be the queryProjectLead ⊒ Alice. Then, we represent the
output ofAATU Reduce (〈γ, q, ψ〉) as〈γT , qT , ψT 〉. qT is Sys.ProjectLead ⊒ {Alice}.
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37 AATU Reduce (〈 γ = 〈UA,PA,RH 〉, q = s1 ⊒ s2, ψ = 〈can assign, T 〉 〉)
38 {
39 /* Reduction algorithm for AATU */
40
41 γT = ∅; qT = QTrans(s1,γ

T)⊒QTrans(s2,γ
T);

42 foreach (ui, rj) ∈ UA { γT+= Sys.rj←−ui; }
43 foreach (ri, rj) ∈ RH { γT+= Sys.rj←−Sys.ri; }
44 foreach (pi, rj) ∈ PA { γT+= Sys.pi←−Sys.rj; }
45 foreach (ai, s, rset) ∈ can assign {
46 if (s==true) { foreach r ∈ rset {
47 γT+= Sys.r←−Sys.ai.r; } }
48 else { tmpRole=Trans(s,γT);
49 foreach r ∈ rset { name=newName();
50 γT+= Sys.name←−Sys.ai.r;
51 γT+= Sys.r←−Sys.name ∩ tmpRole

52 } } }
53 foreach RT role name x appearing in γT {
54 G+=Sys.x; S+=Sys.x; foreach user u ∈ T { G+=u.x; } }
54 return 〈γT , qT , (G,S)〉;
55 } /* End AATU Reduce */

Fig. 4. Reduction Algorithm for AATU

The following RT statements inγT result fromUA:

Sys.Engineer←− Alice Sys.PartTime←− Alice

Sys.Manager←− Bob Sys.HumanResource←− Carol

The following statements inγT result fromRH :

Sys.Employee←− Sys.Engineer Sys.Employee←− Sys.FullTime

Sys.Employee←− Sys.PartTime Sys.Engineer←− Sys.ProjectLead

Sys.FullTime←− Sys.Manager

The following statements inγT result fromPA:

Sys.View←− Sys.HumanResource Sys.Access←− Sys.Employee

Sys.Edit←− Sys.Engineer

The following statements inγT result fromcan assign. The first two statements reflect
the ability of a member ofHumanResource to assign users toFullTime andPartTime with
no precondition, and the remaining statements reflect the ability of a member ofManager

to assign users toProjectLead provided that they are already members ofFullTime and
Engineer.

Sys.FullTime←− Sys.HumanResource.FullTime

Sys.PartTime←− Sys.HumanResource.PartTime

Sys.NewRole1 ←− Sys.Engineer ∩ Sys.FullTime

Sys.NewRole2 ←− Sys.Manager.ProjectLead

Sys.ProjectLead←− Sys.NewRole1 ∩ Sys.NewRole2

γT = 〈G,S〉, whereG is the growth-restricted set of roles, andS is the shrink-restricted
set of roles.G consists of every role of the formSys.x and every role of the formCarol.x.
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The latter is included inG becauseCarol is in the set of trusted usersT . S consists of every
role of the formSys.x. It is clear that the security analysis instance〈γT , qT , ψT ,∃〉 is false,
asAlice can never become a member ofSys.ProjectLead. If we adopt as the state-change
ruleψT1 , that is the same asψT except thatT = ∅, then roles of the formCarol.x would be
growth-unrestricted. And there exists a stateγT1 that is reachable fromγT which has the
following statements in addition to all the statements inγT .

Carol.FullTime←− Alice Bob.ProjectLead←− Alice

These statements are necessary and sufficient forSys.ProjectLead←− Alice to be inferred
in γT1 . Thus, the security analysis instance〈γT , qT , ψT1 ,∃〉 is true.

The following proposition asserts that the reduction is sound, meaning that one can use
RT security analysis techniques to answer RBAC security analysis problems.

PROPOSITION 1. Given an AATU instance〈γ, q, ψ,Π〉, let 〈γT , qT , ψT 〉 =
AATU Reduce(〈γ, q, ψ〉), then:

—Assertion 1:For every RBAC stateγ′ such thatγ
∗
7→ψ γ

′, there exists anRT[և,∩] state

γT ′ such thatγT
∗
7→ψT γT ′ andγ′ ⊢ q if and only ifγT ′ ⊢ qT .

—Assertion 2:For everyRT[և,∩] stateγT ′ such thatγT
∗
7→ψT γT ′, there exists an RBAC

stateγ′ such thatγ
∗
7→ψ γ

′ andγ′ ⊢ q if and only ifγT ′ ⊢ qT .

See Appendix A.1 for the proof. As we discuss in detail in [Tripunitara and Li 2004],
the above proposition asserts thatAATU Reduce is security-preserving in the sense that an
AATU analysis instance is true if and only if theRT[և,∩] analysis instance that is the out-
put ofAATU Reduce is true. That is,AATU Reduce preserves the answer to every security
analysis instance. We argue the need for assertion 1 in the proposition by considering the
case that there exists a reachable stateγ′ in the RBAC system, but no corresponding reach-
able stateγT ′ in theRT[և,∩] system produced byAATU Reduce. Let the corresponding
query beq. If γ′ ⊢ q, then letΠ be∃, and ifγ′ 6⊢ q, then letΠ be∀. In the former case, the
security analysis instance in RBAC is true, but the instancein theRT[և,∩] system that is
the output ofAATU Reduce is false. In the latter case, the analysis instance in RBAC is
false, but the instance inRT[և,∩] is true. Therefore, forAATU Reduce to preserve the
answer to every analysis instance, we need assertion 1.

Similarly, we argue the need for assertion 2 by considering the contrary situation. Let
γT ′ be a reachable state inRT[և,∩] for which there exists no corresponding state in
RBAC. Let the corresponding query inRT[և,∩] beqT . If γT ′ ⊢ qT , then letΠ be∃, and
let Π be∀ otherwise. Again,AATU Reduce would not preserve the answer to a security
analysis instance, and we would not be able to use the answer to an analysis instance in
RT[և,∩] as the answer to the corresponding instance in RBAC.

THEOREM 2. An AATU instance〈γ, q, ψ,Π〉 can be solved efficiently, i.e., in time poly-
nomial in the size of the instance, ifq is semi-static.

PROOF. Let the output ofAATU Reduce corresponding to the input〈γ, q, ψ〉 be
〈γT , qT , ψT 〉. If q is semi-static, we observe thatqT is semi-static as well. Furthermore,
AATU Reduce runs in time polynomial in its input. We know from Li et al. [Liet al. 2005]
that inRT[և,∩], a security analysis instance with a semi-static query can be answered in
time polynomial in the size ofγT . Therefore, in conjunction with Proposition 1, we can
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conclude that a security analysis instance with a semi-static query in the RBAC system can
be answered in time polynomial in the size of the system (i.e., the size of〈γ, q, ψ〉).

THEOREM 3. An AATU instance〈γ, q, ψ,Π〉 is coNP-complete.

PROOF. We show that the general AATU problem iscoNP-hard by reducing the
monotone 3SAT problem to the complement of the AATU problem.Monotone 3SAT is
the problem of determining whether a boolean expression in conjunctive normal form with
at most three literals in each clause such that the literals in a clause are either all positive
or all negative, is satisfiable. Monotone 3SAT is known to beNP-complete [Garey and
Johnson 1979].

Let φ be an instance of monotone 3SAT. Thenφ = c1 ∧ . . . cl ∧ cl+1 ∧ . . . ∧ cn where
c1, . . . , cl are the clauses with positive literals, andcl+1, . . . , cn are the clauses with
negative literals. Letp1, . . . , ps be all the propositional variables inφ. For each clause with
negative literalsck = (¬ pk1 ∨ ¬ pk2 ∨ ¬ pk3), definedk = ¬ ck = (pk1 ∧ pk2 ∧ pk3).
Then,φ is satisfiable if and only ifc1 ∧ . . . cl ∧ ¬ (dl+1 ∨ . . . ∨ dn) is satisfiable. Let
η = (c1 ∧ . . . ∧ cl) → (dl+1 ∨ . . . ∨ dn) where→ is logical implication. Then,c1 ∧
. . . cl ∧ ¬ (dl+1 ∨ . . . ∨ dn) = ¬ η. Therefore,φ is satisfiable if and only ifη is not valid.
We now constructγ, ψ andq in an AATU instance such thatq = z1 ⊒ z2 is true for user
setsz1 andz2 in all states reachable fromγ if and only if η is valid.

In γ, we have a rolea (which is for administrators) andUA contains(A, a) whereA is
a user (i.e., the rolea is not empty in terms of user-membership). With each propositional
variablepi in η, we associate a roleri. For eachri, we add〈a, true, ri〉 to can assign.
That is, anyone can be assigned to the roleri. We letT (the set of trusted users) be empty.
For eachj such that1 ≤ j ≤ l, we associate the clausecj = (pj1 ∨ pj2 ∨ pj3), with a user
setsj = (rj1 ∪ rj2 ∪ rj3). For eachk such that(l + 1) ≤ k ≤ n, we associate the clause
dk = (pk1 ∧ pk2 ∧ pk3), with a user setsk = (rk1 ∩ rk2 ∩ rk3). In our queryq = z1 ⊒ z2,
we letz1 = sl+1 ∪ . . . ∪ sn andz2 = s1 ∩ . . . ∩ sl. We now need to show thatz1 ⊒ z2 in
every state reachable fromγ if and only if η is valid. We show thatz1 ⊒ z2 is not true in
every state reachable fromγ if and only if η is not valid.

For the “only if” part, we assume that there exists a stateγ′ that is reachable fromγ
such that inγ′ there exists a useru that is a member of the user setz2, but notz1. Consider
a truth-assignmentI for the propositional variables inη as follows: ifu is a member of
the roleri in γ′, thenI(pi) = true. Otherwise,I(pi) = false. UnderI, η is not true, as
(c1 ∧ . . . ∧ cl) is true, but(dl+1 ∨ . . . ∨ dn) is false. Therefore,η is not valid.

For the “if” part, we assume thatη is not valid. Therefore, there exists a truth-assignment
I such that(c1 ∧ . . . ∧ cl) is true, but(dl+1 ∨ . . . ∨ dn) is false. Consider a stateγ′ that
has the following members inUA in addition to the ones inγ: for eachpi that is true under
I, (u, ri) ∈ UA. Otherwise,(u, ri) 6∈ UA. γ′ is reachable fromγ, and inγ′, z1 ⊒ z2 is
not true.

To prove that the problem is incoNP, we need to show that when an instance is false,
there exists evidence of size polynomial in the input that can be verified efficiently. The
evidence is a useru and a sequence ofn state-changes from the start-state to some stateγ′

such that inγ′, u is a member of the user setz2 but not ofz1. We know thatn is bounded
by the number of roles in the system as there can be only as manyuser-to-role assignment
operations for a particular user as the number of roles. The verification of this evidence is
certainly efficient. Therefore the problem is incoNP.
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56 AAR Reduce (〈 γ = 〈UA,PA,RH 〉, q = s1 ⊒ s2,
57 ψ = 〈can assign, can revoke〉 〉)
58 { /* Reduction algorithm for AAR */
59 γT = ∅; qT = QTrans(s1,γ

T)⊒QTrans(s2,γ
T);

60 foreach (ui, rj) ∈ UA {
61 γT+= HSys.rj←−ui; γT+= RSys.rj←−ui;
62 γT+= Sys.rj←−RSys.rj; }
63 foreach (ri, rj) ∈ RH {
64 γT+= Sys.rj←−Sys.ri; γT+= HSys.rj←−HSys.ri; }
65 foreach (pi, rj) ∈ PA { γT+= Sys.pi←−Sys.rj; }
66 foreach (ai, s, rset) ∈ can assign {
67 if (s==true) {
68 foreach r ∈ rset {
69 γT+= HSys.r←−BSys.r; γT+= Sys.r←−ASys.r; }
70 } else { tmpRole = HTrans(s,γT); /* precondition */
71 foreach r ∈ rset {
72 γT+= HSys.r←−BSys.r ∩ tmpRole;
73 γT+= Sys.r←−ASys.r ∩ tmpRole; }
74 } }
75 foreach RT role name x appearing in γT {
76 G+=Sys.x; S+=Sys.x; G+=HSys.x; S+=HSys.x; G+=RSys.x;
77 S+=BSys.x; S+=RSys.x; S+=ASys.x;
78 } /* when a can_revoke rule exists for r, ASys.r and
79 RSys.r can shrink */
80 foreach (ai, rset) ∈ can revoke {
81 foreach r in rset { S-=RSys.r; S-=ASys.r; } }
82 return 〈γT , qT , (G,S)〉;
83 } /* End AAR Reduce */

Fig. 5. AAR Reduce: the reduction algorithm for AAR

We observe from the above proof that the AATU problem remainscoNP-complete even
when every precondition that occurs incan assign is specified astrue; the expressive
power of the queries is sufficient for reducing the monotone 3SAT problem to the general
AATU problem.

4.2 Reduction for AAR

The reduction algorithm for AAR is given in Figure 5. The reduction algorithm includes in
the set of principals a principal for every user inU and five special principals:Sys, RSys,
HSys, ASys, andBSys. Again, theSys roles simulate RBAC roles and permissions. In this
reduction, we do not distinguish whether a role assignment operation is effected by one
user or another, and use only one principal,ASys, to represent every user that exercises
the user-role assignment operation. The roles of the principal RSys contain all the initial
role memberships inUA; these may be revoked in state changes.HSys.r maintains the
history of the RBAC roler; its necessity is argued using the following scenario. A user is
a member ofr1, which is the precondition for being added to another roler2. After one
assigns the user tor2 and revokes the user fromr1. The user’s membership inr2 should
maintain, even though the precondition is no longer satisfied (a similar justification for this
approach is provided in the context of ARBAC97 [Sandhu et al.1999] as well).BSys is
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similar toASys, but it is used to construct theHSys roles. An administrative operation to
try to add a userui to the rolerj is represented by adding the statementASys.rj ←− ui
andBSys.rj←− ui to γT . An administrative operation to revoke a userui from the role
rj is represented by removing the statementsRSys.rj←− ui andASys.rj←− ui if either
exists inγT .

EXAMPLE 7. Consider the state-change ruleψ we discuss in Example 5, in which
can assign consists of the two tuples〈Manager,Engineer ∧ FullTime,ProjectLead〉 and
〈HumanResource, true, {FullTime,PartTime}〉, andcan revoke consists of the two tu-
ples〈Manager, {Engineer,ProjectLead}〉 and〈HumanResource, {FullTime,PartTime}〉.
Let γ be the RBAC state shown in Figure 1, and letq be the queryProjectLead ⊒
Alice. Then, we represent the output ofAATU Reduce (〈γ, q, ψ〉) as 〈γT , qT , ψT 〉. qT

is Sys.ProjectLead ⊒ {Alice}. The following RT statements inγT result fromUA:

HSys.Engineer←− Alice RSys.Engineer←− Alice

HSys.PartTime←− Alice RSys.PartTime←− Alice

HSys.Manager←− Bob RSys.Manager←− Bob

HSys.HumanResource←− Carol RSys.HumanResource←− Carol

Sys.Engineer←− RSys.Engineer Sys.FullTime←− RSys.FullTime

Sys.HumanResource←− RSys.HumanResource

Sys.PartTime←− RSys.PartTime

The following statements inγT result fromRH :

Sys.Employee←− Sys.Engineer HSys.Employee←− HSys.Engineer

Sys.Employee←− Sys.FullTime HSys.Employee←− HSys.FullTime

Sys.Employee←− Sys.PartTime HSys.Employee←− HSys.PartTime

Sys.Engineer←− Sys.ProjectLead HSys.Engineer←− HSys.ProjectLead

Sys.FullTime←− Sys.Manager HSys.FullTime←− HSys.Manager

The following statements inγT result fromPA:

Sys.View←− Sys.HumanResource Sys.Access←− Sys.Employee

Sys.Edit←− Sys.Engineer

The following statements inγT result fromcan assign:

HSys.FullTime←− BSys.FullTime Sys.FullTime←− ASys.FullTime

HSys.PartTime←− BSys.PartTime Sys.PartTime←− ASys.PartTime

Sys.NewRole1 ←− HSys.Engineer ∩ HSys.FullTime

HSys.ProjectLead←− BSys.ProjectLead ∩ Sys.NewRole1

Sys.ProjectLead←− ASys.ProjectLead ∩ Sys.NewRole1

ψT = 〈G,S〉, whereG is the growth-restricted set of roles, andS is the shrink-restricted
set of roles. Unlikecan assign, can revoke results only in some roles not being added to
S. G is comprised of all roles of the formSys.x, HSys.x andRSys.x (but notBSys.x or
ASys.x). S is comprised of all roles of the formSys.x, HSys.x, RSys.x andASys.x, except
the rolesRSys.Manager, ASys.Manager, RSys.Engineer, ASys.Engineer, RSys.FullTime,
ASys.FullTime, RSys.PartTime, andASys.PartTime. This is because those roles appear
in can revoke rules, and therefore may shrink.
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There exists a stateγT1 that is reachable fromγT that has the following statements in
addition to the ones inγT .

BSys.FullTime←− Alice ASys.ProjectLead←− Alice

We can now infer that in γT1 , HSys.FullTime ←− Alice, and therefore,
HSys.NewRole1 ←− Alice, and so,Sys.ProjectLead ←− Alice. Thus, the security
analysis instance〈γT , qT , ψT ,∃〉 is true. If we consider, instead, the queryqT1 which is
Sys.PartTime ⊒ Alice, then asRSys.PartTime is a shrink-unrestricted role, there exists
a stateγT2 that is reachable fromγT in which the statementRSys.PartTime ←− Alice is
absent. Therefore, we would conclude thatSys.ProjectLead does not includeAlice. Con-
sequently, the analysis instance〈ψT , qT1 , γ

T ,∀〉 is false.
We are able to also demonstrate the need for the roles associated with the principalsHSys

andBSys. Consider the state,γT2 that can be reached fromγT1 by removing the statement
RSys.FullTime ←− Alice. Now, Sys.FullTime does not includeAlice. This is equivalent
to Carol revoking the membership of the userAlice to the roleFullTime. This affects
the precondition that one can be assigned to the roleProjectLead only if one is already
a member of the rolesEngineer andFullTime. Nonetheless, we observe thatγT2 ⊢ q

T ,
as indeed it should. That is,Alice should continue to be a member ofProjectLead even
if subsequent to her becoming a member ofProjectLead, her membership is removed
from FullTime. We observe that this is the case because the roleBSys.FullTime is shrink-
restricted, and therefore one cannot remove the statementBSys.FullTime ←− Alice once
it has been added, and consequently,HSys.FullTime←− Alice is true, and thereforeAlice

continues to be a member of the roleProjectLead (i.e., is included inSys.ProjectLead). Of
course,Alice can later have her membership revoked from the roleProjectLead (by Bob),
and this is equivalent to the statementASys.ProjectLead←− Alice being removed.

The following proposition asserts that the reduction is sound.

PROPOSITION 4. Given an AAR instance〈γ, q, ψ,Π〉, let 〈γT , qT , ψT 〉 =
AAR Reduce(〈γ, q, ψ〉), then:

—Assertion 1:For every RBAC stateγ′ such thatγ
∗
7→ψ γ

′, there exists anRT[և,∩] state

γT ′ such thatγT
∗
7→ψT γT ′ andγ′ ⊢ q if and only ifγT ′ ⊢ qT .

—Assertion 2:For everyRT[և,∩] stateγT ′ such thatγT
∗
7→ψT γT ′, there exists an RBAC

stateγ′ such thatγ
∗
7→ψ γ

′ andγ′ ⊢ q if and only ifγT ′ ⊢ qT .

The proof is in Appendix A.2. Our comments regarding the needfor assertions 1 and 2 to
preserve answers to security analysis instances, that we make in the previous section in the
context ofAATU Reduce, apply to the above proposition in the context ofAAR Reduce

as well. If either of the assertions does not hold, then we cannot use the answer to the
RT[և,∩] analysis instance as the answer to the corresponding RBAC instance.

THEOREM 5. An AAR instance〈γ, q, ψ,Π〉 can be solved efficiently, i.e., in time poly-
nomial in the size of the instance, ifq is semi-static.

PROOF. Let the output ofAAR Reduce for the input〈γ, q, ψ〉 be 〈γT , qT , ψT 〉. If q is
semi-static, so isqT . As AAR Reduce runs in time polynomial in its input andqT can be
answered in time polynomial in the size ofγT (which is shown by Li et al. [Li et al. 2005]),
q can be answered in time polynomial in the size of the system (i.e., the size of〈γ, q, ψ〉).
Thus, an AAR instance with a semi-static query can be solved efficiently.
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THEOREM 6. An AAR instance〈γ, q, ψ,Π〉 is coNP-complete.

PROOF. We deduce that an AAR instance is incoNP from the fact thatAAR Reduce

runs in time polynomial in the size of the system, and the corresponding security analy-
sis problem in theRT[∩] system that is the output ofAAR Reduce is coNP-complete.
(RT[∩] is a sub-language ofRT[և,∩] that allows only the first, second and fourth kinds
of statements from Figure 2.) That is, ifq is not true in every state reachable fromγ, then
we offer as counterproof the algorithmAAR Reduce and the counterproof in theRT[և,∩]
system thatqT is not true in every state reachable fromγT .

We can show that the general AAR problem iscoNP-hard in almost exactly the same
way that we show the result for the AATU problem in the proof for Theorem 3. The only
difference is that for every roleri that is associated with a propositional variablepi, apart
from a rule incan assign, we add the rule〈a, ri〉 to can revoke. We construct the query
q the same way as in that proof, and show in the same way thatq is true in every state
reachable fromγ if and only if η is valid.

5. RELATED WORK

Simple safety analysis, i.e., determining whether an access control system can reach a
state in which an unsafe access is allowed, was first formalized by Harrison et al. [Harrison
et al. 1976] in the context of the well-known access matrix model [Lampson 1971; Graham
and Denning 1972], and was shown to be undecidable in the HRU model [Harrison et al.
1976]. There are special cases for which safety is decidablefor the HRU model; safety is
decidable if (1) no subjects or objects are allowed to be created, (2) at most one condition
is used in a command but subjects or objects cannot be destroyed, or (3) only one operation
is allowed in a command.

Following that, there have been various efforts in designing access control systems
in which simple safety analysis is decidable or efficiently decidable, e.g., the take-grant
model [Lipton and Snyder 1977], the schematic protection model [Sandhu 1988], and the
typed access matrix model [Sandhu 1992].

One may be tempted to reduce the security analysis problem defined in this paper to a
problem in one of the other models such as HRU and use existingresults. However, this
approach has several difficulties. First, we consider different kinds of queries, while only
safety is considered in other models. It is not clear, for instance, how one would reduce
containment in RBAC to safety in HRU. Second, even when we restrict our attention to
simple safety, the reduction of either AATU or AAR into HRU results in a set of command
schemas that does not fall into any known decidable special case of HRU. (1) New users
are implicitly created when being assigned to roles. (2) Because of preconditions in AATU
and AAR, an assignment operation requires checking both thecommand initiator’s privi-
leges and the user’s role memberships. The resulting HRU command schema would not be
mono-conditional. (3) Adding a user to a role results in the user attaining several permis-
sions simultaneously. The resulting command in HRU is unlikely to be mono-operational.
Last but not least, even if some further restricted subcasesof RBAC security analysis can
be reduced to decidable subcases of HRU, no efficient algorithm exists for those cases. For
example, even in the subcase where no subjects or objects areallowed to be created, safety
analysis in HRU remainsPSPACE-complete (which implies that it isNP-hard).

Recently, Li et al. [Li et al. 2005] proposed the notion of security analysis, and studied
security analysis in the context ofRT[և,∩], a role-based trust management language.
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They showed that a security analysis instance inRT[և,∩] involving only semi-static
queries can be solved efficiently (in time polynomial in the size of the start-state in the
analysis), and for more general queries, they showed that the analysis is decidable, but
intractable.

Crampton and Loizou [Crampton and Loizou 2003] claim that “if administrative (or con-
trol) permissions are assigned to subjects, then the safetyproblem is undecidable. Indeed,
Munawer and Sandhu [Munawer and Sandhu 1999] and Crampton [Crampton 2002] have
shown independently that the safety problem for RBAC96 is undecidable.” We disagree
with this claim, and we show in this paper that simple safety (and even more sophisticated
analysis) can be decidable when administrative permissions are given to subjects. The
simulation by Munawer and Sandhu [Munawer and Sandhu 1999] suggests only that when
an overly complicated administrative model is added to RBAC96, safety analysis may be
undecidable.

The work by Koch et al. [Koch et al. 2002a] considers safety inRBAC with the RBAC
state and state-change rules posed as a graph formalism [Koch et al. 2002b]. They show
that safety (defined as whether a given graph can become a sub-graph of another graph)
is decidable provided that a state-change rule does not bothremove and add components
to the graph that represents the protection state. It is not clear what import the property
of safety, as defined in the context of the graph-based formalism, has in the context of
an RBAC system. In particular, it is not clear whether the notion of safety as defined in
that work captures the notions of simple or bounded safety, or containment that we discuss
in Section 2.1. Also, specific complexity bounds for deciding safety are not provided in
that work, and therefore it is not clear how useful the decidability result for safety is. In
particular, we do not know whether safety can be decided efficiently. Furthermore, the
administrative model (set of state-change rules) considered in that work is limited in that
all roles are considered to be of the same type, and thereforeroles correspond to nodes in
the graph each of which has the same label as another. Consequently, we cannot express
preconditions to user-role assignment as we can with ARBAC97 and the administrative
models considered in this paper. Such preconditions, as we discuss in Section 2.3, are
expressions formed using roles. Recently, the graph-basedformalism [Koch et al. 2002b]
has been extended to consider a more realistic and flexible administrative model [Koch
et al. 2004]. This new administrative model considers state-change rules that consist of
commands such asaddEdge anddeleteEdge. The commands do not satisfy a criterion
for the decidability of the safety property that was shown in[Koch et al. 2002a]; some of
the commands remove and add components to the graph. Whether safety (as defined for
the graph-based formalism) is indeed decidable or not giventhe new state-change rules is
not known. Our work differs from that work in that we considera general class of queries,
and provide specific algorithms and complexity bounds. In addition, our state-change rules
are based on ARBAC97, whose usefulness has been argued in theliterature [Sandhu et al.
1999].

Previous work on ensuring security properties in RBAC takesthe approach of using
constraints [Ahn and Sandhu 2000; Crampton 2003; Jaeger andTidswell 2001]. In this ap-
proach, a set of desirable properties are explicitly specified as constraints on the relations
in an RBAC state. Each time the state of an access control system is about to change, these
constraints are checked. A change is allowed only when theseconstraints are satisfied.
We believe that security analysis and constraints are complementary. Constraints directly

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 ·

specify desirable properties on the state of an RBAC system.Security analysis uses con-
ditions specified on what kinds of state changes are allowed and infer security properties
on all reachable states. An advantage of using constraints is that sophisticated conditions
can be specified and enforced efficiently. In the security analysis approach, fewer security
properties can be analyzed efficiently, because of the need to analyze potentially infinitely
many reachable states. On the other hand, the constraint approach requires that the system
controls all changes to the RBAC state, because of the need toperform constraint check-
ing. Security analysis can handle decentralized control byallowing the parts of a state that
are not controlled by the system to change freely. It can be used to help enforce security
properties even when the RBAC system itself is maintained ina decentralized manner and
one cannot ensure that constraints are checked when some part of the RBAC state changes.
Another advantage of security analysis is that it can be performed less often than checking
constraints. Analysis only needs to be performed when changes not allowed by the state-
transition rule are made, while constraints need to evaluated each time a state changes.

6. CONCLUSION AND FUTURE WORK

We have proposed the use of security analysis techniques to maintain desirable security
properties while delegating administrative privileges. More specifically, we have defined a
family of security analysis problems in RBAC and two classesof problems in this family,
namely AATU and AAR, based on the URA97 component of the ARBAC97 administra-
tive model for RBAC. We have also shown that AATU and AAR can bereduced to similar
analysis problems in theRT[և,∩] trust-management language, establishing an interest-
ing relationship between RBAC and theRT (Role-based Trust-management) framework.
The reduction gives efficient algorithms for answering mostkinds of queries in these two
classes and helps establish the complexity bounds for the intractable cases.

While security analysis is especially effective in cases that the associated problems are
tractable, as we have demonstrated in this paper, several security analysis problems can be
intractable or even undecidable. Consequently, administrators may be constrained in the
kinds of queries they can pose or the states in which they can allow the RBAC system to be.
In any case, unless efficient heuristics can be developed forthe intractable cases, security
analysis may not be effective or usable.

Much work remains to be done for understanding security analysis in RBAC. The family
of RBAC security analysis defined in this paper can be parameterized with more sophisti-
cated administrative models, e.g., those that allow negative preconditions, those that allow
changes to the role hierarchy or role-permission assignments, and those that allow the
specification of constraints such as mutually exclusive roles.

Commercial products such as database management systems include support for RBAC
and for decentralized administration. We believe that security analysis will be effective
in such contexts; a detailed discussion those RBAC schemes and security analysis in their
context is part of future work. Security analysis is also applicable in several other access
control schemes, including UCON [Park and Sandhu 2004; Zhang et al. 2004; Zhang et al.
2005], which extends RBAC. The use of security analysis in such schemes is also part of
future work.
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A.1 Proof for Proposition 1

PROOF. For Assertion 1: A state change in AATU occurs when a user assignment
operation is successfully performed. For every RBAC stateγ′ such thatγ

∗
7→ψ γ′, let

γ0, γ1, · · · , γm be RBAC states such thatγ = γ0 7→ψ γ1 7→ψ · · · 7→ψ γm = γ′. We
construct a sequence ofRT[և,∩] statesγT0 , γ

T
1 , · · · , γ

T
m as follows:γT0 = γT ; for each

i = [0..m − 1], consider the assignment operation that changesγi to γi+1, let it be the
operation in which a useru1 adds(u, r) to the user-role assignment relation; the stateγTi+1

is obtained by addingu1.r←−u to γTi . Let γT ′ beγTm.
Step one:Prove that ifγ′ ⊢ q thenγT ′ ⊢ qT . It is sufficient to prove the following:

for eachi ∈ [0..m], if γi implies that a certain useru is a member of a roler (or has
the permissionp), thenγTi implies thatu is a member of theRT[և,∩] role Sys.r (or
Sys.p). We use induction oni to prove this. The base case (i=0) follows directly from the
AATU Reduce algorithm; lines 42–44 reproducesUA, RH , PA in theRT[և,∩] stateγT0 .
For the step, assumes that the induction hypothesis holds for γ0, · · · , γi, considerγi+1.
Let the operation leading toγi+1 be one in whichu1 assignsu to a roler. Since both
sequences of states are increasing, we only need to considerrole memberships implied by
γi+1 but notγi; these are caused (directly or indirectly) by this assignment. There must
exists a〈ra, c, r〉 ∈ can assign to enable this assignment; thus inγi, u1 is a member of
the rolera andu satisfies the conditionc. By induction hypothesis, inγTi , u1 is a member
of Sys.ra andu satisfies the conditionc. From the translation and the construction of
γTi+1, γTi+1 has the following statements:u1.r←− u, Sys.r←− Sys.ra.r, andSys.r←−
Sys.name ∩ tmpRole (wheretmpRole corresponds to the preconditionc). Furthermore,
in γTi+1, u1 is a member of the rolera andu satisfies the conditionc. Therefore,u is a
member of theSys.r role inγTi+1.

Step two:Prove that ifγT ′ ⊢ qT thenγ′ ⊢ q. It is sufficient to show that if anRT[և,∩]
role membership is implied byγT ′, then the corresponding RBAC role membership (or
permission possession) is also implied. A detailed proof uses induction on the number of
rounds in which a bottom-up datalog evaluation algorithm outputs a ground fact. Here, we
only point out the key observations. (For details of similarproofs, see the Appendix in [Li
et al. 2005].) ART[և,∩] role membership is proved by statements generated on lines
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42–52. The first three cases correspond to theUA, RH , PA. For the last case, there must
exist a statementu1.r←− u in γT ′, and it implies thatu is a member of the roleSys.r.
By the construction ofγT ′, the useru has been assigned to the roler during the changes
leading toγ′.

For Assertion 2:Given anRT[և,∩] stateγT ′ such thatγT
∗
7→ψT γT ′, we can assume

without loss of generality thatγT ′ adds toγT only simple member statements. Also, we
only need to consider statements definingui.rj , whereui is a user inγ andrj is a role in
γ. Consider the set of all statements inγT ′ having the formui.rj←− uk. For each such
statement, we perform the following operation on the RBAC state, starting fromγ, have
ui assignuk to the rolerj . Such an operation may not succeed either becauseui is not
in the right administrative role or becauseuk does not satisfy the required precondition.
We repeat to perform all operations that could be performed.That is, we loop through
all such statements and repeat the loop whenever the last loop results in a new successful
assignment. Letγ′ be the resulting RBAC state. It is not difficult to see thatγ′ implies the
same role memberships asγT ′; using arguments similar to those used above.

A.2 Proof for Proposition 4

PROOF. For Assertion 1:A state change in AAR occurs when a user assignment or a
revocation operation is successfully performed. Given anyRBAC stateγ′ such thatγ

∗
7→ψ

γ′, let γ0, γ1, · · · , γm be RBAC states such thatγ = γ0 7→ψ γ1 7→ψ · · · 7→ψ γm = γ′.
We construct a sequence ofRT[և,∩] statesγT0 , γ

T
1 , · · · , γ

T
m as follows: γT0 = γT ; for

eachi = [0..m− 1], consider the operation that changesγi to γi+1. If it is an assignment
operation in which a useru1 adds(u, r) to the user-role assignment relation; the stateγTi+1

is obtained by addingSys.r←−u andBSys.r←−u toγTi . For each revocation that revokes
a useru from a roler, we remove (if they exist) from theRT[և,∩] state the statements
ASys.r←−u andRSys.r←−u. Let γT ′ beγTm.

Step 1: Prove that ifγ′ ⊢ q thenγT ′ ⊢ qT . Step 1a:We prove that inγT ′, HSys.r

captures all users that are ever a member of the roler at some time, i.e., for each
i ∈ [0..m], if u ∈ usersγi

[r], thenu is a member of theRT[և,∩] role HSys.r in γTm
(

SP(γT

m
) |= m(HSys, r, u)

)

. We prove this by induction oni. The basis (i = 0) is true,
since inγT we reproduceUA andRH in the definition of theHSys roles (see lines 60–
64 in Figure 5); furthermore, theHSys roles never shrink. For the step, we show that if
(u, r) ∈ UAi+1, thenu is a member of theRT[և,∩] roleHSys.r in γTm. This is sufficient
for proving the induction hypothesis because the effect of propagation through role hierar-
chy is captured by the definition ofHSys roles. If(u, r) ∈ UAi+1, then either(u, r) ∈ UA

(in which caseHSys.r←−u ∈ γT ′), or there is an assignment operation that assignsu to
r (in which caseBSys.r←− u ∈ γT ′). Let (ra, c, r) ∈ can assign be an administrative
rule used for this assignment, then inγi, the useru satisfiesc. By induction hypothesisu’s
role memberships inγi is captured inu’s role memberships inHSys.r; thereforeu would
satisfy the translated preconditiontmpRole. Thereforeu is a member of the roleHSys.r

in γTm (because of the statementHSys.u←−BSys.r ∩ tmpRole).
Step 1b: We prove that inγT ′ the Sys roles capture all the role memberships inγ′.

It is sufficient to prove the following: letUA′ be the user assignment relation inγ′, if
(u, r) ∈ UA′, thenu is a member of the roleSys.r in γT ′. If (u, r) ∈ UA, then either
(u, r) ∈ UA and this is never revoked (in which caseRSys.r←−u ∈ γT and this statement
is never removed, thereforeRSys.r←−u ∈ γT ′); or there is an assignment operation inC,
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and this assignment is not revoked after it (in which caseASys.r←−u ∈ γT ′).
Step two:Prove that ifγT ′ ⊢ qT thenγ′ ⊢ q. It is sufficient to show that if anRT[և,∩]

role membership is implied byγT ′, then the corresponding RBAC role membership (or
permission possession) is also implied. A detailed proof uses induction on the number of
rounds in which a bottom-up datalog evaluation algorithm outputs a ground fact. Here, we
only point out the key observation. ART[և,∩] role membership is proved by statements
generated on lines 60–65 or 71–74. The first three cases correspond to theUA, RH , PA.
For the last case, there must exist a statementASys.r←−u in γT ′, and it implies thatu is
a member of the roleSys.r. By the construction ofγT ′, the useru has been assigned to the
role r during the changes leading toγ′ and the assignment is not revoked after that.

Also, we only need to consider statements definingui.rj , whereui is a user inγ andrj
is a role inγ. Consider the set of all statements inγT ′ having the formui.rj←−uk. For
each such statement, we perform the following operation on the RBAC state, starting from
γ, haveui assignuk to the rolerj . Such an operation may not succeed either becauseui is
not in the right administrative role or becauseuk does not satisfy the required precondition.
We repeat to perform all operations that could be performed.That is, we loop through all
such statements and repeat the loop whenever the last loop results in a new successful
assignment. Letγ′ be the resulting RBAC state. It is not difficult to see thatγ′ implies the
same role memberships asγT ′; using arguments similar to those used above.

For Assertion 2:Among theRT[և,∩] roles,Sys roles andHSys roles are fixed;ASys

roles can grow or shrink;RSys roles can shrink but not grow; andBSys roles can grow but
not shrink. Given anRT[և,∩] stateγT ′ such thatγT

∗
7→ψT γT ′, we can assume without

loss of generality thatγT ′ adds toγT only simple member statements. Consider the set of
all statements inγT ′ definingASys, BSys, andRSys roles. We construct the RBAC state
γ′ as follows. (1) For every statementBSys.r←− u in γT ′, assign the useru to the role
r. Repeat through all such statements until no new assignmentsucceeds. Using arguments
similar to those used for proving assertion 1, it can be shownthat now the RBAC roles have
the same memberships as theHSys roles. (2) Do the same thing for all theASys.r←− u
statements. At this point, all the role memberships for theSys roles inγT ′ are replicated in
the RBAC roles, because all theHSys memberships have been added. (3) Remove the extra
role membership in the RBAC state, i.e., those not in theSys roles. The ability to carry out
this step depends upon the requirement (in Definition 4) thatif there is acan assign rule
for a role, then there is also revoke rule for the role.
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