
Access Control Policy Combining: Theory Meets Practice

Ninghui Li, Qihua Wang, Wahbeh Qardaji, Elisa Bertino, Prathima Rao
Purdue University, Department of Computer Science

305 N. University Street, West Lafayette, IN 47907,USA
{ninghui, qwang, wqardaji, bertino, prao}@cs.purdue.edu

Jorge Lobo
IBM T.J. Watson Research

Center
Hawthorne, NY, USA
lobo@us.ibm.com

Dan Lin
Missouri University of Science

and Technology
500 West 15th Street, Rolla,

MO 65409
lindan@mst.edu

ABSTRACT
Many access control policy languages, e.g., XACML, allow a pol-
icy to contain multiple sub-policies, and the result of the policy on
a request is determined by combining the results of the sub-policies
according to some policy combining algorithms (PCAs). Existing
access control policy languages, however, do not provide a formal
language for specifying PCAs. As a result, it is difficult to ex-
tend them with new PCAs. While several formal policy combining
algebras have been proposed, they did not address important practi-
cal issues such as policy evaluation errors and obligations; further-
more, they cannot express PCAs that consider all sub-policies as a
whole (e.g., weak majority or strong majority). We propose a pol-
icy combining language PCL, which can succinctly and precisely
express a variety of PCAs. PCL represents an advancement both
in terms of theory and practice. It is based on automata theory and
linear constraints, and is more expressive than existing approaches.
We have implemented PCL and integrated it with SUN’s XACML
implementation. With PCL, a policy evaluation engine only needs
to understand PCL to evaluate any PCA specified in it.

Categories and Subject Descriptors
D.4.6 [Security and protection]: Access controls

General Terms
Security, Language

Keywords
Policy Combination, XACML

1. INTRODUCTION
Many access control policy languages allow a policy to contain

multiple sub-policies, and the effect of the policy on a request is
determined by combining the effects of the sub-policies according

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’09, June 3–5, 2009, Stresa, Italy.
Copyright 2009 ACM 978-1-60558-537-6/09/06 ...$5.00.

to some algorithms. Examples of such policy languages include
XACML [22], XACL [10], EPAL [1], SPL [17], and firewall poli-
cies. Existing languages usually specify a fixed set of policy com-
bining algorithms (PCAs), but none of them provides a formal lan-
guage for specifying new PCAs. For example, firewall policy lan-
guages typically use first-applicable algorithm to combine results
from rules; that is, the decision for a request is decided by the first
rule applicable to the request. Among existing policy languages,
XACML offers the most flexible approach which consists of four
strategies: deny-overrides, permit-overrides, first-applicable, and
only-one-applicable. However, many other desirable strategies ex-
ist. For example, a common strategy for combining two policies
is to permit a request only when both sub-policies permit it. This
simple and intuitive strategy cannot be specified in XACML. In ad-
dition, the following strategies cannot be specified in XACML.

Weak-consensus. Sub-policies should not conflict with each
other: Permit a request if some sub-policies permit a request, and
no sub-policy denies it. Deny a request if some sub-policies deny
a request, and no sub-policy permits it. Yield a value indicating
conflict if some permit and some deny.

Strong-consensus. All sub-policies must agree: Permit a re-
quest if all sub-policies permit a request. Deny a request if all
sub-policies deny a request. Yield conflict otherwise.

This differs from weak-consensus because a sub-policy may nei-
ther permit nor deny a request, i.e., it may not be applicable to the
request. When some sub-policies permit a request and others are
not applicable to it, weak consensus permits the request, but strong
consensus yields conflict.

Weak-majority. A decision (permit or deny) wins if it has more
votes than the opposite. Permit (deny, resp.) a request if the number
of sub-policies permitting (denying, resp.) the request is greater
than the number of sub-policies denying (permitting, resp.).

Strong-majority. Permit a request if over half of all sub-policies
permit it, and deny the request if over half deny it.

Super-majority-permit. Permit a request if over 2/3 of all poli-
cies permit it, and deny the request otherwise.

XACML has become the de facto standard for specifying access
control policies for various applications, especially web services.
Extensibility and flexibility of policy combining are thus desirable
to meet the needs of these applications. XACML explicitly allows
additional user-defined combining algorithms. However, it does
not provide a standard approach (or a specification language) for

doing so. Before any PCA can be used, one needs to make sure that
existing policy evaluation engines can handle the PCA. Without a
formal specification language, automated processing is impossible,
and each new PCA must be hard-coded by programmers in every
policy evaluation engine. This makes wide deployment of user-
defined PCAs infeasible in practice.

In the mean time, there have been a number of theoretical studies
in formal approaches for specifying policy combining behaviors [6,
8, 3, 11, 20, 21]. All these studies take an algebraic approach,
where unary and binary algebraic operators are defined to combine
sub-policies. These theoretical studies, however, do not address
several important issues that are encountered in practice. First, one
issue that significantly complicates policy combining is policy eval-
uation errors. This is exemplified by XACML, as we will show in
Section 2. Evaluating a policy on a request may result in errors due
to invalid or missing information for example.These issues are not
considered in existing theoretical studies, yet a real system (such
as XACML) does not have the luxury to ignore them. Second,
when policies also have obligations, policy combining must con-
sider their effects. As we will show, combining decisions is inti-
mately connected with the combining of obligations and they need
to be considered together. With the exception of [3], all existing
algebras do not consider combining obligations. Third, a policy
combining algebra defines unary and binary operators. This has
two limitations. One is that it does not specify a combining be-
havior that can be applied to an unbounded (but finite) number of
sub-policies (such as the XACML combination strategies do). This
can be solved by introducing a notion of closure to a binary oper-
ator, which we use in this paper. The second limitation is that the
operators provide only a local view, and cannot specify strategies
such as weak-majority or strong-majority.

Motivated by the gap in both theory and practice of access con-
trol policy combining, we propose the Policy Combining Language
(PCL), which can succinctly and precisely express a variety of
PCAs. PCL uses two novel approaches for specifying PCAs, a
local-view approach that extends a binary policy combining opera-
tor to combine an unbounded number of sub-policies, and a global-
view approach that uses linear constraints on the number of sub-
policies that permit or deny a request. Using PCL, one can specify
all the standard combining algorithms in XACML as well as the
combining algorithms described earlier. PCL handles policy er-
rors by viewing them as uncertainties about evaluation outcomes,
and tries to resolve these uncertainties whenever possible. PCL
also allows flexible specification of obligation combining behav-
iors. With PCL, the policy evaluation engine now only needs to
understand one language and can then evaluate policies using any
PCA specified in this language. We have implemented PCL and
were able to integrate it with SUN’s XACML implementation [19].
Our contributions are summarized as follows:

• PCL advances the theory of access control policy combin-
ing in several ways. It is more expressive than previous al-
gebras. It systematically treats policy evaluation errors as
uncertainty over a set of possible values. It also considers
combining obligations as well as decisions. Though PCL is
primarily motivated by XACML, the underlying formalism
and approaches can be applied to other languages.

• On the practice side, we provide a detailed and principled
analysis of policy combining in XACML and identify sev-
eral problems. We also show that PCL can be implemented
and integrated with XACML, demonstrating the feasibility
of being included in future XACML standard.

The rest of this paper is organized as follows. In Section 2, we
analyze PCAs in XACML. In Sections 3 and 4, we introduce the

language PCL. Discussions of implementations and other issues
are in Section 5. Finally, we discuss related work in Section 6 and
conclude in Section 7.

2. POLICY COMBINATION IN XACML
XACML [22] is the OASIS standard language for the specifi-

cation of access control policies. In this section, we describe and
analyze how XACML handles policy combining. Our descriptions
are based on XACML 2.0 [22]. The purposes of this section are
multiple. First, we want to illustrate the complexity and subtleties
of dealing with practical issues such as policy evaluation errors and
obligations (which XACML does). Second, we want to come up
with principles that can explain why XACML does things in certain
ways. These principles will guide the design of our PCL. Third,
we will discuss some of XACML’s decisions that we consider to be
anomalies. These decisions are counter to the principles underlying
other decisions in XACML.

Rules, policies, and policy-sets. XACML defines three policy
elements: rules, policies, and policy-sets. A rule is the most basic
policy element; it has three main components: a target, a condition,
and an effect. The target defines a set of subjects, resources and
actions that the rule applies to; the condition specifies restrictions
on the attributes in the target and refines the applicability of the
rule; the effect is either Permit, in which case we call the rule
a permit rule, or Deny, in which case we call it a deny rule. If a
request satisfies both the rule target and rule condition, the rule is
applicable to the request and yields the decision specified by the
effect element; otherwise, the rule is not applicable to the request
and yields the decision NotApplicable.

A policy consists of four main components: a target, a rule-
combining algorithm (RCA), a set of rules, and obligations. The
policy target decides whether a request is applicable to the policy
and it has similar a structure as the rule target. The RCA specifies
how the decisions from the rules are combined to yield one deci-
sion. The obligations represent functions to be executed in con-
junction with the enforcement of an authorization decision.

A policy-set also has four main components: a target, a policy-
combining algorithm (PCA), a set of sub-policies, and obligations.
A sub-policy can be either a policy or a policy-set. The PCA spec-
ifies how the results of evaluating the sub-policies are combined to
yield one decision.

PDP, PEP, and PIP. In XACML there are the Policy Enforcement
Point (PEP), the Policy Decision Point (PDP), and the Policy Infor-
mation Point (PIP). When an access request is received, the PEP
sends the request to the PDP. To handle the request, the PDP may
need additional information about subjects, resources, actions and
environment attributes from the PIP. Once the PDP receives the
required information from the PIP, it makes a decision according
to the policies and returns the result to the PEP.

In XACML, a rule, a policy, or a policy-set returns one of the
following four decisions for each request: P (Permit), D (Deny),
NA (NotApplicable), and IN (Indeterminate). The value
IN occurs when there is a policy evaluation error. Several kinds
of errors may occur during policy evaluation. Some are due to net-
work communication and database querying. For example, the PIP
may be down and thus unable to answer queries from the PDP.
Some are due to erroneous policies. For example, the condition
of a rule may perform a division by 0. Others are due to missing
attributes. For example, evaluating a policy that denies a request
if the subject’s income level is below a threshold yields an error
if the income information is not provided. When this policy is a
sub-policy of a policy-set that permits a request if the subject is a

member of a particular club, the income information is not neces-
sary for the overall policy to permit the request. Hence, a requestor
may provide only proof of his club membership but no informa-
tion about his income, resulting in an evaluation error. In all the
above cases, the PDP does not have enough information to deter-
mine whether a policy applies to the access request. It is the re-
sponsibility of the PCA to handle such errors.

The PDP returns a value in {P, D, NA, IN} to the PEP, and the
PEP decides whether to permit or deny a request. XACML defines
three types of PEPs: Base PEP , Deny-based PEP , and Permit-
based PEP . All PEPs yield the permit (or deny) decision if the
value returned by the PDP is P (or D). The difference among these
PEPs lies in the way they handle NA and IN. The Base PEP’s
behavior is undefined when receiving NA or IN. The Deny-based
PEP treats NA and IN as Deny, while the Permit-based PEP treats
NA and IN as Permit.

2.1 Rule and Policy Combining Algorithms
XACML has five standard RCAs and six standard PCAs.

They are “Deny-overrides”, “Ordered-deny-overrides”, “Permit-
overrides”, “Ordered-permit-overrides”, “First-applicable” and
“Only-one-applicable” (“Only-one-applicable’ is only defined as
a PCA). Ordered-deny-overrides and ordered-permit-overrides are
the same as deny-overrides and permit-overrides, respectively, ex-
cept that rules and policies have to be evaluated in the order they
appear. While the intuition of these combining algorithms are easy
to understand and formalize, they have subtle details which are of-
ten ignored by existing attempts to formalize them.

Permit-overrides RCA. The “Permit-overrides” RCA prefers P
to D to NA. That is, if any rule evaluates to P, the result is P;
otherwise if no rule evaluates to P, and some rule evaluates to D,
the result is D; finally if all rules evaluate to NA, the result is NA.
We write this as P>D>NA.

When the evaluation of a rule encounters an error, this rule’s
result is IN. The treatment of IN, however, depends on whether IN
is from a permit rule or a deny rule. When IN is from a permit rule,
the RCA uses P> IN>D>NA, and when IN is from a deny rule,
the RCA uses P > D > IN > NA. The reason for this difference is
not explained in the official XACML standard specifications. We
believe that it is due to the following implicit principle in XACML.

PRINCIPLE 1. When a permit rule gives IN, this is treated as
an uncertainty over {P, NA}. When combining an uncertain value
{P, NA} with x ∈ {P, D, NA}, use the following approach: if
combining P with x and combining NA and x both give x, the
combining outcome is x; otherwise, the outcome is IN.

The rationale is that when a rule evaluates to an error, then either
this rule is applicable or it is not. These should be treated as two
possible worlds. If the same decision is reached in both worlds,
then the combining outcome is that decision; otherwise, the out-
come should be IN. The approach for handling a deny rule is sim-
ilar. Any existing attempt on using multi-valued algebra or logic
to formalize XACML will have difficulty dealing with the situation
that the same value IN behaves differently in different contexts.

Permit-overrides PCA. XACML “Permit-overrides” PCA com-
bines outcomes from policies. When combining policies (rather
than rules), PDP does not know the source of an error and hence
XACML chooses P > D > IN > NA, one of the two order-
ings used in Permit-overrides RCA. However, one could argue that
P > IN > D > NA is a more natural choice. Recall that the cause
of an IN could be uncertainty over {P, NA}, preferring D over IN
goes against what the name “Permit-overrides” suggests.

Deny-overrides RCA. The “Deny-overrides” RCA is similar to
the “Permit-overrides” RCA, except that the preference is D>P>
NA. The IN is also treated similarly as uncertainty. That is, if IN is
from a permit rule, we have D>P> IN>NA, and if IN is from a
deny rule, we have D> IN>P>NA.

Deny-overrides PCA. The “Deny-overrides” PCA also uses D>
P > NA; however, it treats IN very differently. The PCA treats IN
as always equivalent to D.

There are a number of issues with this design. First, this is very
different from how Permit-overrides PCA treats IN. In all other
aspects, Permit-overrides and Deny-overrides are symmetric. We
believe that this asymmetry will be unexpected for many policy
authors. Second, as we will discuss in Section 2.2, this design is
incompatible with the rationale for obligation propagation. Third,
the following example illustrates cases that one logically expects a
request to be permitted, but will be denied.

Example 1. Consider a request q and the following policy-set:
S = Deny-PCA(P1 =Deny-RCA(R1, R2), P2),

where S consists of two policies P1 and P2, and P1 consists of
two rules R1 and R2. Suppose that R1 is a deny rule that does
not apply to q, R2 is a permit rule the evaluation of which on
q encounters an error, and P2 is a policy that permits q. The
policy-set S denies the request via the following evaluation:

S = Deny-PCA(Deny-RCA(NA, {P, NA}), P)
= Deny-PCA(IN, P)
= D

However, this is undesirable for the following reasons. Among
R1, R2, and P2, the only deny rule (R1) does not apply to q, and
there is a policy (P2) that permits q. There is no reason for denying
the request! This becomes clearer if we consider the facts that (1)
the cause of the value IN is the uncertainty of whether R2 is ap-
plicable or not, and (2) in either case S should permits the request.
When R2 is applicable, R2 permits the request, and so does P1.
Since both P1 and P2 permit the request, so should S. When R2

is not applicable, the policy P1 is not applicable. Since P2 permits
the request, S should permit the request.

First-applicable. The “First-applicable” RCA returns the effect
of the first applicable rule as the result if no errors occur. Whenever
an error occurs during rule evaluation, the RCA returns IN.

One could argue that the “First-applicable” RCA should be de-
fined in a different way. Following the spirit that an error occurring
in a permit rule means uncertainty over {P, NA}, if the next rule
permits the request (i.e. it has a permit effect and is applicable),
the policy should return P (rather than IN), as the request will be
permitted whether the first rule applies or not.

The above argument should not be used with the “First-
applicable” PCA, because the first sub-policy, which results in IN,
may have obligations different from the second sub-policy. In this
case, returning IN appears to be the simplest decision. This issue
does not exist for RCA, because a rule does not have obligations.

Only-one-applicable. The “Only-one-applicable” PCA returns
the effect of the unique policy in the policy-set that applies to the
request. If there are more than one applicable policies, the PCA
reports the conflict by returning IN. Furthermore, if an error occurs
during evaluation of any policy, the PCA also returns IN.

Empty policies. When a policy or a policy-set is empty, the com-
bining result is always NA, according to the pseudo-code of the
combining algorithms in XACML.

2.2 Obligations in XACML
When combining sub-policies, one also needs to determine how

the obligations with these sub-policies are combined. XACML
handles obligations as follows [22]

If the PDP’s evaluation is viewed as a tree of policy-
sets and policies, each of which returns “Permit” or
“Deny”, then the set of obligations returned by the
PDP to the PEP will include only the obligations as-
sociated with those paths where the effect at each level
of evaluation is the same as the effect being returned
by the PDP.

We point out that XACML’s PCAs may not evaluate all sub-
policies. For example, a Permit-overrides PCA will return P as
soon as one sub-policy gives P. The evaluation tree in the above
quotation refers to such an incomplete tree.

Obligations on some branches are not propagated, intuitively be-
cause they are overruled by other branches. This approach can be
explained using the following principle.

PRINCIPLE 2. Only when a policy (or policy-set) returns P or
D, will it carry obligations. When a policy returns P or D, it de-
pends upon all evaluated sub-policies that have the same decisions.
Obligations from these dependent sub-policies are propagated up.

For the above rationale to hold, the implicit assumption is that
when a policy returns P or D, it is due to some of its sub-policies
that return the same decision. (Otherwise, this policy-set is making
a decision sort of “out of the blue”, as reflected by the fact that no
obligation from any sub-policy is propagated up.) This assumption,
however, is violated by “Deny-overrides” PCA, which will return
D when encountering IN and will propagate no obligations. As a
result, a policy-set could return D even when all the rules contained
in sub-policies are permit rules.

We argue that XACML’s “Deny-overrides” PCA causes too
much anomaly that it should be changed to D> IN>P>NA. We
doubt that this change would adversely affect any existing policy,
as it seems unlikely that policy authors would rely on the abnormal
behavior in expressing their policies.

3. PCL WITHOUT OBLIGATIONS
Our design requirements for the Policy Combining Language

PCL are as follows.

1. One should be able to specify the exact behavior of current
XACML PCAs and RCAs, for backward compatibility pur-
pose, which we believe is critical for ease of deployment and
adoption of PCL in XACML. PCL achieves compatibility
with the exception of “Deny-overrides” PCA, which we have
argued to be problematic in several ways. Deny-overrides in-
terpreted as D > IN > P > NA or D > P > IN > NA can be
specified in PCL.

2. One should be able to specify some of the alternatives to
XACML’s PCAs that we argue to be more natural (e.g.,
P > IN > D > NA for permit-overrides PCA). And one
should be able to specify PCAs that consider the root cause
of IN and resolve it accordingly. For example, one should be
able to specify deny-overrides in a way to permit the request
as shown in Example 1.

3. One should be able to specify other natural PCAs, such as
the ones presented in the beginning of Section 1.

4. The specification should be concise, precise, and user-
friendly. It should be based on sound theory, with their ex-
pressive power clearly understood.

In the rest of this section, we present the part of PCL that does
not deal with obligations. How obligations are handled in PCL
will be presented in Section 4. Some policy combining situations
do not involve obligations, in which case the approach described in
this section can be applied. In the rest of this section, we use PCA
to refer to both RCA and PCA, which are specified in the same way
when not considering obligations.

3.1 Overview of PCL
PCL also uses Σ = {P, D, NA, IN}. In PCL evaluation errors

can be represented as uncertainty denoted by non-singleton subsets
of Σ. For example, if an error occurs when evaluating a permit rule,
the result will be {P, NA} which means that it is uncertain whether
this permit rule is applicable or not to the request. Similarly, a deny
rule evaluates to {D, NA} when an error occurs.

The value IN is used for two purposes. In one purpose, IN repre-
sents a conflict between two policies (or rules) that a PCA chooses
not to resolve but to expose to a higher level. Some examples are:
(1) when the only-one-applicable PCA is used, there will be a con-
flict if more than one policies are applicable; (2) when the weak-
consensus PCA is used, there will be a conflict if one policy permits
while another denies; (3) when the strong-consensus PCA is used,
there will be a conflict if one policy permits while another is not ap-
plicable. In the second purpose, IN represents a policy evaluation
error that one does not want to expose the uncertainty to a higher
level.

Intuitively, a PCA combines a sequence of results from sub-
policies into one of the four outcomes. Ignoring the issue of policy
evaluation errors for now, a PCA is a function Σ∗ → Σ, where

Σ∗ = {ε}
⋃

Σ
⋃

Σ× Σ
⋃

Σ× Σ× Σ
⋃

· · ·
where ε is the empty string. Many approaches exist for specify-
ing such functions. PCL uses two approaches with complementary
strengths: a PCA either extends a binary Policy Combining Oper-
ator, or uses linear constraints on the numbers of sub-policies that
return P, D, IN, NA, respectively. The former can specify all strate-
gies in XACML as well as weak-consensus and strong-consensus,
but cannot specify counting-based strategies such as weak-majority
or strong-majority. The latter can specify all the strategies we have
discussed so far, except for first-applicable.

3.2 Using Policy Combining Operators
Most standard PCAs in XACML are easily explained when com-

bining just two sub-policies. We call a PCA that combines only
two sub-policies a policy combining operator (PCO). A PCO g
can be represented as a binary operator g over the four values
Σ = {P, D, NA, IN}, i.e., g : Σ× Σ → Σ. Such a binary operator
can be expressed using a matrix. Examples of the four standard
PCAs in XACML are shown in Figure 1. (For deny-overrides, we
choose a variant; the exact XACML version can be encoded using
a matrix as well.)

While a matrix has 16 cells, in practice one does not need to give
16 pieces of information to specify a PCO. More compact repre-
sentations are possible. One can specify some matrices using an
ordering, e.g., P>D> IN>NA for permit overrides. Or, one can
exploit the fact that some matrices are symmetric. One can also ex-
ploit the fact that all cells in some row or column of a matrix have
the same value. Our proposed XML encoding of PCL uses these
approaches to enable more succinct specifications of PCOs. (See
Figure 5 on Page for the BNF representation of the XML encoding

�� � �� � � �� ��� � � � ��� � � � ��� � � �� ���� �� � �� ��� ��� �����	��
 �� �� ���� ���������������� �
 ��
 ����
�� � �� � � �� ��� � � � �� � � � ��� � � �� ���� � � �� ��� �� ����� ��� ����	
 �� �� �� ��� ����

�� ����������������
�� � �� � � �� ��� � � � �� � � � ��� � � �� ���� �� �� �� ��

�	
 ����������	����� ��� ��������� � �� �� ���
�� � �� � � �� ��� �� �� � ��� �� �� � ���� � � �� ���� �� �� �� ��� ��� ������� � �� �� ��	�
 �
 �� �
 �
 ��

�� ����� ���� ����������
Figure 1: Figure of several PCOs in matrix and the corresponding general PCAs in the form of DFA.

of PCL. We use BNF rather than the actual XML schema because
BNF is more compact.)

From PCO to PCA. In general, the number of policies a PCA
needs to combine cannot be bounded at the time when the PCA is
specified. Therefore, we propose the following approach to con-
struct a general PCA from a PCO.

DEFINITION 1. Let Σ = {P, D, NA, IN}. Given a PCO g :
Σ×Σ → Σ, its recursive PCA is the function f : Σ∗ → Σ defined
as follows:

• f(ε) = NA

• f(x) = x

• f(x1, x2) = g(x1, x2)

• f(x1, . . . , xn) = g(f(x1, . . . , xn−1), xn), for n > 2.

According to the above definition, combining a sequence of sub-
policies proceeds from the first to the last. The results of the first
two are combined, the outcome of the combination is then com-
bined with the third, and so on.

One can view the evaluation of a policy with such a PCA for
a request q as a deterministic finite automaton (DFA). The DFA
has Σ as its set of input symbols, and Σ ∪ {S} as its set of states,
where S denotes the start state. The transitions out of S are fixed
for all PCAs; on symbol x ∈ Σ, it will go to the state x. After at
least one input symbol, the current state is in Σ and represents the
result of combining so far. The next input symbol is the result of
the next rule or policy on q. When the evaluation terminates, the
state of the DFA is the result of the combination. Examples of the
DFA-representation of four standard PCAs in XACML are shown
in Figure 1, where the start state is omitted in for clarity. Given an
empty policy, the DFA will end at the start state, in which case the
combining outcome is defined to be NA.

All states in the DFA are accept states; however, on which accept
state a DFA stops is significant. Such a DFA simultaneously defines
four languages, each corresponding to a state in {P, D, NA, IN}.
For instance, if a string in Σ+ leads the DFA to end at state P
(meaning the result of combination is to permit the request), then
that string is in the language corresponding to P.

Handling evaluation errors. Recall that we treat errors as uncer-
tainties and allow each rule/policy/policy-set to evaluate to a subset
of {P, D, NA, IN}. The following definition specifies how to com-
bine results that represent uncertainty.

DEFINITION 2. Let Σ = {P, D, NA, IN}. Let Γ denote the set
containing all non-empty subsets of Σ, i.e., Γ = 2Σ \ {∅}. The

PCO g is extended to be a function g : Γ ∪ {∅} × Γ → Γ, defined
as follows.
g(γ1, γ2) = {g(x1, x2) | x1 ∈ γ1 ∧ x2 ∈ γ2}, for γ1, γ2 ∈ Γ

g(∅, γ) = γ, for γ ∈ Γ

For example, assume that g is a “Deny-overrides” PCO (its matrix
representation is shown in Figure 1). We have

g({P, NA}, {D}) = {g(P, D), g(NA, D)} = {D}
g({P, NA}, {P}) = {g(P, P), g(NA, P)} = {P}
g({P, NA}, {NA}) = {g(P, NA), g(NA, NA)} = {P, NA}
g({D, NA}, {D}) = {g(D, D), g(NA, D)} = {D}
g({D, NA}, {P}) = {g(D, P), g(NA, P)} = {D, P}
g({D, NA}, {NA}) = {g(D, NA), g(NA, NA)} = {D, NA}

It is worth noting that the behavior of the deny-overrides and
permit-overrides RCA in XACML (as we discussed in Section 2.1)
can be explained using the above approach.

The behavior of combining while treating errors as uncertain-
ties can still be modeled using a Finite State Automaton (FSA).
However, now each input to be combined may be a set consisting
of two or more values, e.g., {P, NA}. As a result, the next state
may also be uncertain. We call this an uncertain-input FSA. The
behavior of such an FSA can be equivalently simulated by a DFA
with 16 states and 15 input symbols, where each state is a subset
of Σ = {P, D, NA, IN} and each input is a non-empty subset of Σ.
The initial state is the empty set ∅, and the state transitions can be
defined according to Definition 2. Given a state γ1 and the input
γ2, the new state is given by g(γ1, γ2). All 16 states are accept
states. Each non-empty state defines a different language over Σ+.

We observe that an uncertain-input FSA is conceptually related
to but different from a non-deterministic finite state automaton
(NFA), whose state transition is non-deterministic. In an uncertain-
input FSA, the state transition relation is deterministic, but we may
have uncertain inputs. Converting an NFA to DFA increases the
number of states, but not the number of input symbols. Convert-
ing an uncertain-input FSA to a DFA increases both the number of
states and the number of input symbols.

We stress that our approach is different from an approach using
15 values. Our approach requires a 4-by-4 matrix for combining
the four basic values, and infer the combining behavior of other,
uncertain values. In a 15-valued approach, one specifies a 15-by-15
matrix. Our approach implicitly rules out many 15-by-15 matrices
as illegal, and represent the legal ones compactly.

3.3 Using Linear Constraints
We have introduced the approach of specifying PCAs by nat-

urally extending a binary PCO. This approach, however, cannot

express PCAs that consider the combination of sub-policies as a
whole, rather than through a step-by-step process of combining two
results. In particular, this approach cannot express counting-based
strategies such as weak-majority or strong-majority.

This motivates PCL’s second approach for PCA specification,
which uses linear constraints on the number of sub-policies that
return P, D, NA, and IN.

DEFINITION 3. A linear constraint is an expression that con-
nects a number of linear equations or inequations on variables #P,
#D, #NA, and #IN using conjunctive operator ∧ and disjunctive
operator ∨, where #P, #D, #NA, and #IN stand for the number
of sub-policies that return P, D, NA, and IN, respectively.

For example, the linear constraint #P ≥ 1 is satisfied when at
least one sub-policy returns P, while #D> (#P + #NA + #IN)
requires that the number of sub-policies that return D is greater than
the number of sub-policies that return other results (in other words,
more than half of the sub-policies return D).

A PCA can be specified by associating a linear constraint with
each of P, D, and IN. We require the three constraints associated
with P, D, and IN be disjoint with each other (i.e. two constraints
cannot be both satisfied). Checking whether two linear constraints
φ1 and φ2 can be both satisfied can be performed using existing
techniques [2, 7]. To combine a number of sub-policies, we count
the number of sub-policies that evaluate to P, D, NA, and IN, re-
spectively, and then check the linear constraints. If the linear con-
straint associated with P (resp. D or IN) is satisfied, the output of
the PCA is P (resp. D or IN). If none of the constraint is satisfied,
the output of the PCA is NA.

Figure 2 shows how to use linear constraints to specify
deny-overrides, only-one-applicable, weak-consensus, and strong-
majority. Other PCAs mentioned in this paper whose evaluation
results do not depend on the order of sub-policies, such as permit-
override, strong-consensus, and weak-majority, can also be spec-
ified using linear constraints. However, the linear constraint ap-
proach cannot specify “first-applicable”, as the evaluation of linear
constraints does not take the order of policies into account. We will
discuss the expressive power of the linear constraint approach in
Section 3.5.

Handling evaluation errors. Similar to the PCO approach, er-
rors are treated as uncertainties. To handle evaluation errors, in-
stead of keeping counters for the four values P, D, NA, and IN,
we keep a counter for each of the fifteen non-empty subsets of
{P, D, NA, IN}. Whenever we receive a (possibly uncertain) value,
one increases the counter corresponding to it.

After evaluating all the sub-policies, when no uncertain value
has been encountered, only one final state is possible; otherwise
we enumerate all possible final states of the four counters P, D,
NA, and IN. For example, assume that the value of the counter
for {P, NA} is 2, while all other counters are 0. In this case, the
three possible states are 〈#P = 2〉, 〈#P = 1, #NA = 1〉, and
〈#NA = 2〉. Then, we evaluate every possible state against the
linear constraints in the PCA, and every decision whose constraint
is satisfied is included in the combination result of the PCA. For in-
stance, assume that the “only-one-applicable” PCA is used. For
the three states in the earlier example, 〈#P = 2〉 satisfies the
constraint for IN (which is #P > 1 ∨ #D > 1 ∨ #IN > 0),
〈#P = 1, #NA = 1〉 satisfies the constraint for P (which is
#P = 1∧#D = 0∧#IN = 0), and 〈#NA = 2〉 does not satisfy
any constraint and thus results in NA. Therefore, the combination
result of the PCA is an uncertainty set {P, NA, IN}.

3.4 Additional Details of PCL
We have introduced the foundations of PCL. While our design

of PCL is motivated by XACML, it can be used in any policy lan-
guage that needs to combine a possibly unbounded number of poli-
cies and/or needs to consider policy evaluation errors. Next, we
will discuss some additional issues that arise mostly for compati-
bility considerations with XACML.

Order-preserving evaluation. XACML has ordered deny-
overrides and permit-overrides. To be compatible, PCL provides
a boolean flag to specify whether the evaluation must follow the
order of the original rules (policies).

Pre-processing and post-processing. We use uncertainty to han-
dle errors occurring at the time of evaluation. However, sometimes,
one may want to specify PCAs that do not treat errors as uncertain-
ties and handle errors in their own ways, such as several PCAs in
XACML do. To specify those PCAs, we introduce a pre-processing
boolean flag, which allows one to map all uncertain input values to
IN before feeding them to the PCA. A PCA with pre-processing en-
abled can define its own error handling scheme by specifying how
to combine IN with other input values.

Also, we introduce a post-processing boolean flag, which al-
lows one to map any uncertain output value to IN. While the
pre-processing step applies to each input result to be combined,
the post-processing step applies to the final combining result. By
mapping any uncertain final result to IN, post-processing prevents
upper-level PCAs to handle an error returned by the current PCA as
uncertainty. Note that when the pre-processing option is selected,
post-processing has no effect. The reason is that a PCA with pre-
processing will not have any uncertain input and thus will not pro-
duce an uncertain output.

In general, by introducing pre-processing and post-processing,
one can specify three levels of uncertainty handling in PCL: (1) no
uncertain input, (2) allow uncertain input, but not uncertain output,
(3) allow both uncertain input and uncertain output.

3.5 The Expressive Power of PCL
A natural question that arises is: How expressive is PCL? This

question has both practical and theoretical relevance. We now study
the expressive power of PCL. As we will see, in PCL, the PCO-
based approach and the linear-constraint-based approach have dif-
ferent expressive powers. While there are PCAs that cannot be
expressed using either, all the ones that we consider to be natural
can be expressed. For clarity, we assume that policy evaluation er-
rors are always handled by uncertainty and ignore policy evaluation
errors in the discussions below. To understand what PCAs can be
expressed in PCL and what cannot, we need a definition of PCAs
independent of PCL. This is given below.

DEFINITION 4. A PCA is given by a tuple of four languages
〈LP, LD, LNA, LIN〉 over the alphabet of Σ = {P, D, NA, IN}, sat-
isfying the conditions that they are mutually disjoint and Σ+ =
LP ∪ LD ∪ LNA ∪ LIN.

For example, the first-applicable PCA can be expressed using
regular expression syntax as:

〈 LP = NA∗ P Σ∗, LD = NA∗ D Σ∗,
LNA = NA∗, LIN = NA∗ IN Σ∗ 〉.

DEFINITION 5. We say a PCA 〈LP, LD, LNA, LIN〉 is regular if
and only if the languages LP, LD, LNA, LIN are regular.

DEFINITION 6. We say a PCA 〈LP, LD, LNA, LIN〉 is order-
insensitive if and only if the languages LP, LD, LNA, LIN are order-
insensitive. A language L is order-insensitive if for every pair of

Deny-override Only-one-applicable Weak consensus Strong majority
P #P > 0 ∧#D = 0 ∧#IN = 0 #P = 1 ∧#D = 0 ∧#IN = 0 #P > 0 ∧#D = 0 ∧#IN = 0 #P > #D + #NA + #IN
D #D > 0 #P = 0 ∧#D = 1 ∧#IN = 0 #P = 0 ∧ D > 0 ∧#IN = 0 #D > #P + #NA + #IN

(#P ≤ #D + #NA + #IN)∧
IN #D = 0 ∧#IN > 0 #P > 1 ∨#D > 1 ∨ IN > 0 (#P > 0 ∧#D > 0) ∨#IN > 0 (#D ≤ #P + #NA + #IN)∧

(#P + #D + #IN > 0)

Figure 2: Using linear constraints to specify PCAs

Regular

PCO
Linear
Constraints 1

2

3 4 6

9
Order
Insensitive

5

8 7

Figure 3: Expressive power of PCL using PCO or linear con-
straints

strings π, π′ such that π and π′ consists of the same multiset of
letters, π ∈ L if and only if π′ ∈ L. A PCA that is not order-
insensitive is order-sensitive.

The following lemmas establish upper-bounds on the kinds of
PCAs that can be expressed using the PCO-based approach and the
linear-constraint-based approach in PCL.

LEMMA 1. A PCO-based PCA is regular.

PROOF. All PCO-based PCAs specified in PCL are expressed
using DFA, and the languages derived from DFAs are regular.

LEMMA 2. A PCA specified by linear constraints is order-
insensitive.

PROOF. We cannot use linear constraints to specify order-
sensitive PCAs, because the evaluation of linear constraints only
depends on aggregated values (i.e. counts) of inputs. The order of
inputs is not taken into account in constraint evaluation.

The upper-bounds given in Lemmas 1 and 2 are not tight. There
exist regular PCAs that cannot be expressed using the PCO-based
approach. Similarly, there exist order-insensitive PCAs that cannot
be expressed in PCL using linear constraints.

Figure 3 presents a diagram that illustrates the expressive power
of the two approaches in PCL. Figure 3 has 9 numbered areas.
Areas 1-5 can be expressed in PCL; areas 6-9 cannot be expressed
in PCL. Some observations from the diagram are:

• PCL can express non-regular PCAs (area number 4 in Fig-
ure 3). Examples include weak majority and strong majority.

• There exist order-insensitive PCAs that can be expressed us-
ing PCOs but cannot be expressed using linear constraints
(area number 5). Examples include those that use periodic-
ity constraints, e.g., permit a request if the number of sub-
policies permitting the request is even.

Below we discuss areas 1-9 in Figure 3 and give examples in
each area.
Area 1: These PCAs can be expressed using PCO or linear

constraints. Examples include Deny-overrides, Permit-overrides,
Only-one-applicable, Weak-consensus, Strong-consensus.
Area 2: These PCAs can be expressed using linear constraints, are
regular, but cannot be expressed using PCO. An example is At least
k, which permits a request if at least k sub-policies permit it, and
denies a request if at least k deny. The PCA returns IN if both of
the above two conditions hold, and returns NA if neither holds.

Specifying linear constraints to define this PCA is straightfor-
ward. The PCA is regular for any fixed k, as one can use a DFA
which counts how many P’s and D’s have been encountered so
far. We point out that “at least 1” is the same as weak-consensus,
which is expressible using a PCO. However, “at least 2” cannot be
expressed using PCO, because it requires differentiating between
eight states

{〈i× P, j × D〉 | i, j ∈ {0, 1, 2+}},
whereas a PCO can distinguish only four of them. Only the four
states in Σ can be used to differentiate states.
Area 3: These PCAs can be expressed using PCO, but are order-
sensitive, and hence cannot be expressed using linear constraints.
An example is First-applicable.
Area 4: These PCAs can be expressed using linear constraints, but
are not regular. Examples include weak-majority, strong-majority,
super-majority-permit (see Section 1). All these require counting
to an unbounded number, and hence are not regular.
Area 5: These PCAs can be expressed using PCO, are order-
insensitive, but cannot be expressed using linear constraints. An
example is odd-permit, which permits a request if there are an odd
number of sub-policies that permit it, and return NA otherwise.
Area 6: These PCAs are regular, order-sensitive, and cannot be
expressed using PCOs. An example is first-two-agree, which per-
mits (resp. denies) a request if during the combining process, it
encounters two applicable sub-policies that permit (resp. deny) the
request before encountering two applicable sub-policies that deny
(resp. permit) the request. This PCA is clearly regular. It cannot
be expressed using PCO, because, similar to “at least 2”, it requires
differentiating between eight states, whereas a PCO can distinguish
only four of them.
Area 7: These PCAs are both regular and order-insensitive, but
cannot be expressed in PCL. These PCAs typically involve period-
icity constraints, such as permitting a request when the number of
permit is even and the number of deny is odd.
Area 8: These PCAs are order-insensitive, non-regular, and cannot
be expressed using linear constraints. One example is to permit
a request when number of permits is even and is greater than the
number of denies.
Area 9: These PCAs are non-regular and order-sensitive. An ex-
ample is ordered evaluation dominance, which permits a request
if during the combining process, the number of sub-policies that
permit the request is always larger than the number of sub-policies
that deny the request. This PCA is neither regular (as it requires
counting) nor order-insensitive.

Expressing Other Policy Combining Behaviors. To achieve
more exotic behaviors, e.g., combining the first two sub-policies us-
ing permit-overrides, and then combine with the third using deny-
overrides, one can exploit the recursive nature of XACML and uses
a policy-set that contains other policy-sets as sub-policies.

4. HANDLING OBLIGATIONS
In this section, we discuss how to combine the obligations as-

sociated with sub-policies in PCL. In PCL we adopt an approach
that views obligations as black-boxes, that is, our approach does
not rely on any ways of comparing whether one set of obligations
implies another set. Conceptually, a PCA that combines the deci-
sions and obligations of n sub-policies P1, P2, · · · , Pn on a request
gives 〈d,O〉, where d ∈ {P, D, NA, IN} denotes the decision, and
O indicates which sub-policies’ obligations should be returned. O
can be a set of indexes to the sub-policies, i.e, O ⊆ {1, 2, · · · , n},
which means that obligations from sub-policies {Pi | i ∈ O} are
returned. Note that when the obligation of a policy Pi is returned,
only those obligations whose FullFillOn attributes are the same
as the decision of Pi (i.e., both are permit or both are deny) are re-
turned. O can also take one of two special values ∅ and µ. O = ∅
means that no obligation is returned, and O = µ means that the
set of sub-policies whose obligations should be returned is uncer-
tain. Following the approach in XACML, we assume that in any
combined outcome 〈d,O〉, we have “(d = NA) ⇒ (O = ∅)” and
“(d= IN) ⇒ (O =µ)”.

We first describe the obligation combining scheme for the PCO-
based approach, and then we discuss the case for linear constraints.

4.1 Combining Obligations with PCO
The need to combine obligations places restrictions on what ma-

trices can be used as PCOs. Because XACML’s obligation behavior
implicitly assumes that a Permit outcome depends upon evaluated
sub-policies that also permit the request, we require a PCO to sat-
isfy the following principle:

PRINCIPLE 3. A PCO matrix must satisfy: a P can occur only
in the row or the column corresponding to P, and a D can occur
only in the row or the column corresponding to D.

We note that the only PCA we have encountered so far that does
not satisfy this is XACML’s deny-overrides PCA, which we have
shown to be problematic in several ways. The variant that we show
in Figure 1(a) satisfies the above principle.

In PCO-based specification of PCA, we need to specify when
combining results from two branches, which branch’s obligations
should be used. To simplify the specification, we adopt the fol-
lowing default behavior: (1) If the combined outcome is NA, then
O = ∅; (2) If the combined outcome either is IN or is an uncertain
value (i.e., a non-singleton set), then O = µ; (3) If the combined
outcome is P, and only one branch gives P, then that branch’s obli-
gation should be returned; (4) If the combined outcome is D, and
only one branch gives D, then that branch’s obligation should be
returned.

What remain to be specified are what happens when a P is re-
sulted from two branches that return P (and similarly, when a D is
resulted from two branches that return D). This can be specified in
PCL; and PCL allows three possibilities:

1. both, which indicates that the combined outcome depends
on both branches. This would be desirable when specifying
the strong-consensus PCA, which permits a request when all
sub-policies permit the request. Since all sub-policies play a
role in the decision; their obligations should all be returned.

2. first, which indicates that the combined outcome depends
on the first branch. This would be desirable when specifying
the first-applicable PCA. Combining a P and the next P gives
P, but only the obligations of the first branch should be used.

3. either, which indicates that the combined outcome de-
pends on one of the two branches, and either branch is
fine. This would be desirable when specifying the permit-
overrides PCA. Combining two P’s give a P, and any one of
the branch is sufficient for permitting the request. Returning
the obligations of either branch should be considered correct.

In PCL, a PCO-based PCA can specify which of the three ap-
proaches is used when combining two P’s and which is used when
combining two D’s. (Refer to Figure 5 for the complete syntax.)

Figure 4 gives the pseudo-code for combining decisions and
obligations. This code returns sets of obligations, rather than sets
of policy indices.

Input: A sequence of policies P1, . . . , Pn, a request Q, a PCO g,
vY ∈ {both,first,either} indicates how to combine obli-
gations for P and P, vN ∈ {both,first,either} indicates
how to combine obligations for D and D.

Output: 〈d, O〉, where d ∈ {P, D, NA, IN} is the decision and O
is a set of obligations

d := ∅; O := ∅; // initialization
For i := 1 TO n Do
〈di, oi〉 := D(Pi, Q);
d′ := g(d, di);
If d′ = NA Then O := ∅;
Else If d′ = IN or d′ is a non-singleton Then O := µ;
Else If d′ 6= d and d′ = di Then O := oi;
Else If d′ = d and d′ = di Then

If d = P Then v := vY Else v := vN ;
Switch v

Case both: If O 6= µ and oi 6= µ Then
O := O ∪ oi;

Else O := µ;
Case first: continue;
Case either:

If O = µ and oi 6= µ Then O := oi;
EndSwitch;

EndElse;
d := d′;

EndFor
Return 〈d, O〉

Figure 4: Description of the obligation-combining algorithm
for the PCO-based approach. D(Pi, Q) recursively calls the
same procedure to return combined decision and obligations
for Pi.

4.2 Obligations with Linear Constraints
When a PCA is specified using linear constraints, one can choose

either of the following options for obligation handling.

• all: All sub-policies contained in the current policy must be
evaluated, and the obligations of all the sub-policies whose
decision is the same as the final decision of the PCA (when
the final decision is P or D) are returned.

• all-evaluated: There is no requirement to evaluate all
sub-policies, as long as the final decision can be determined

without evaluating all of them. The obligations of all sub-
policies that have been evaluated and whose decision is the
same as the final outcome of the PCA are returned.

5. DISCUSSIONS
Implementation. We implemented PCL and integrated it with
Sun’s implementation for XACML 1.1[19]. To make the integra-
tion possible, we changed several classes. In particular, we changed
the Result class in order to account for errors in evaluation. Thus
instead of holding only one decision element, it was extended to
include a set of decisions that conform to PCL. The encoding of
the response was also modified to include a set of decisions in the
〈Decision〉 element. Subsequently, the relevant files using this class
were modified to account for changes made to the class interface.

Impacting XACML. While PCL provides a general approach for
specifying PCAs, and is useful for any access control policy lan-
guage that desires sophisticated policy combining behavior, the
place that PCL is mostly likely to have an immediate impact is
XACML. We have developed an XML encoding of PCL, which
is described in Figure 5. XACML has been increasingly adopted
in recent years, and is becoming the de facto standard for specify-
ing access control policies for various applications, especially web
services. Currently, version 3.0 of XACML is being developed.
This new version of XACML will be addressing some of the issues
with the Indeterminate combining result which we discussed
in this paper. Furthermore, the new version will introduce two
new combining algorithms: permit-unless-deny and deny-unless-
permit, both of which can be expressed using our approach. We
plan to submit our proposal of adding PCL to the XACML stan-
dard group.

6. RELATED WORK
Many policy languages specify some fixed policy combining

strategies, such as XACML [22], XACL [10], EPAL [1], SPL [17],
and firewall policies. Policy combing also appears in the access
control language in Bauer et al. [4]. However, none of them pro-
vides a formal language for specifying new PCAs.

Theoretical studies have resulted in a number of algebras for
combining access control policies [6, 8, 3, 11, 12, 16, 21]. Bon-
atti et al. [6] proposed a 2-valued algebra for composing access
control policies. Backes et al. [3] introduced a 3-valued algebra
for combining enterprise privacy policies. Their algebra applies to
EPAL [1] policies, whose effect can be “allow”, “deny”, or “don’t
care”. They defined three operators: conjunction, disjunction, and
scoping, and studied their properties. Among existing algebras,
this is the only one that specifies how obligations are combined.
Obligations can be union’ed (corresponding to our both)or or’ed
(corresponding to our either) when combining two sub-policies
of the same result. Bruns el at [8] introduced a 4-valued algebra
for policy combination. They defined a policy as a 4-valued predi-
cate that maps each request to grant, deny, conflict, or unspecified,
which correspond to the four elements of the Belnap bilattice [5].
None of these works deal with policy evaluation errors; nor can
they specify counting-based policy combining algorithms.

Mazzoleni et al. [16] proposed a policy integration algorithm for
XACML. Their approach allows an resource owner to specify how
she would like her policies to be combined with third party poli-
cies, and the combination behavior can be based on analyzing the
two policies to be combined. For example, one can specify that two
policies are combined using some strategy only if they are similar
according to some measurement of similarity. Such behavior can-

not be specified in PCL, as the combining result on one request
may be depending on how the policies handle other requests. This
work, however, proposes only new combination algorithms, rather
than a language for specifying such algorithms.

Kolovski et al. [12] presented a formalization of XACML using
description logics. They map the semantics of XACML policies
and combining algorithms to a set of logical rules, which allows
them to perform a variety of analysis on XACML policies. The
formalization of XACML combining algorithms in this work, how-
ever, is incomplete. It does not deal with policy evaluation errors,
nor can it express the only-one-applicable PCA. The formalization
in [12] was not intended to be a language for specifying PCAs.

Wijesekera and Jajodia [21] proposed a propositional algebra to
manipulate access control policies. An interesting aspect about this
work is that a policy can be a non-deterministic set of permission
assignments, e.g., a policy may grant either permission A or per-
mission B but not both. They also use algebraic approach for policy
combining, and hence has the same limitations as other algebraic
approaches.

Our work uses automata for policy evaluation. This is related
to work on security automata [18, 13], started by Schneider [18].
We are using similar techniques (automata, in particular) to solve
different problems in access control.

Other related and orthogonal work includes work on XACML
policy analysis and testing [15, 9] and optimizing XACML policy
evaluation [14].

7. CONCLUSION
In this paper, we have introduced an expressive policy combin-

ing language PCL. PCL advances the theory of policy combining
in several ways. It is more expressive than previous algebras. It
systematically treats policy evaluation errors as uncertainty over a
set of possible values. It also considers combining obligations as
well as decisions. Though PCL is primarily motivated by XACML,
the underlying formalism and approaches can be applied to other
languages. On the practice side, we have provided a detailed and
principled analysis of policy combining in XACML and identified
several problems in XACML. We have also shown that PCL can
be implemented and integrated with XACML. One big advantage
of having such a formal language in XACML is that it enables the
introduction and usage of new PCAs. Anyone can create a new
PCA, and all PCL-enabled policy evaluation engines will be able
to evaluate policies using the PCA.

8. REFERENCES
[1] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter.

The enterprise privacy authorization language (EPAL).
http://www.w3.org/2003/p3p-ws/pp/ibm3.html.

[2] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and
R. Sebastiani. A sat based approach for solving formulas
over boolean and linear mathematical propositions. In
CADE-18: Proceedings of the 18th International Conference
on Automated Deduction, pp. 195–210, 2002.

[3] M. Backes, M. Durmuth, and R. Steinwandt. An algebra for
composing enterprise privacy policies. In ESORICS ’04:
Proceedings of the 2004 European Symposium on Research
in Computer Security, 2004.

[4] L. Bauer, J. Ligatti, and D. Walker. Composing security
policies with polymer. In PLDI ’05: ACM Conference on
Programming Language Design and Implementation, 2005.

[5] N. D. Belnap. A useful four-valued logic. In Modern Uses of
Multiple-Valued Logic, 1977.

〈PolicyCombiningAlgorithm〉 ::= 〈PreProcessing〉 〈SpecType〉 〈PostProcessing〉 (1)
〈SpecType〉 ::= (〈ConstraintSet〉 | 〈DecisionMatrix〉) (2)

〈PreProcessing〉 ::= “PreProcessing” “(” [True | False] “)” (3)

〈DecisionMatrix〉 ::= “Matrix” “(” [〈PermitResult〉] [〈DenyResult〉] [〈NotApplicableResult〉] [〈ConflictResult〉] 〈YY-Obligation〉 〈NN-Obligation〉 “)” (4)
〈PermitResult〉 ::= “Permit” “(” 〈DecisionPair〉+ “)” (5)
〈DenyResult〉 ::= “Deny” “(” 〈DecisionPair〉+ “)” (6)

〈NotApplicableResult〉 ::= “NotApplicable” “(” 〈DecisionPair〉+ “)” (7)
〈ConflictResult〉 ::= “Conflict” “(” 〈DecisionPair〉+ “)” (8)
〈DecisionPair〉 ::= 〈tag1〉 - 〈tag2〉 (9)
〈YY-Obligation〉 ::= “YY-Oblg” “(” 〈obl-tag1〉“)” (10)
〈NN-Obligation〉 ::= “NN-Oblg” “(” 〈obl-tag1〉“)” (11)

〈ConstraintSet〉 ::= “Constraints” “(” [〈Permit-If〉] [〈Deny-If〉] [〈Conflict-If〉] [〈NotApplicable-If〉] 〈ConsObligation〉 “)” (12)
〈Permit-If〉 ::= “Permit” “(” 〈ConstraintBiExp〉+ “)” (13)
〈Deny-If〉 ::= “Deny” “(” 〈ConstraintBiExp〉+ “)” (14)

〈Conflict-If〉 ::= “Conflict” “(” 〈ConstraintBiExp〉+ “)” (15)
〈NotApplicable-If〉 ::= “NotApplicable” “(” 〈ConstraintBiExp〉+ “)” (16)
〈ConstraintBiExp〉 ::= 〈ConstraintTerm〉 {〈simpleOp〉 | 〈logicOp〉} 〈ConstraintTerm〉 (17)
〈ConstraintTerm〉 ::= (〈ConstraintTerm〉 | 〈C-Term〉 | 〈Integer〉) (18)
〈ConsObligation〉 ::= “Cons-Oblg” “(” 〈obl-tag2〉“)” (19)

〈C-Term〉 ::= (#P | #D | #N | #C) (20)
〈simpleOp〉 ::= (+ | − | × | > | < | ≥ | ≤) (21)
〈logicOp〉 ::= (AND | OR) (22)
〈Integer〉 ::= 〈digit〉+ (23)

〈PostProcessing〉 ::= “PostProcessing” “(” [True | False] “)” (24)

〈tag1〉 ::= (Permit | Deny | NotApplicable | Conflict | Any) (25)
〈tag2〉 ::= (Permit | Deny | NotApplicable | Conflict) (26)

〈obl-tag1〉 ::= (All | First | Either) (27)
〈obl-tag2〉 ::= (All | AllEvaluated) (28)

Figure 5: Syntax of the proposed PCL schema in BNF. Complex types are shown in 〈〉 and simple types are shown in italics. Elements
following each other denotes sequence, | denotes choice. #P, #D, #NA and #CF denote the number of P, D, NA, and CF to be combined,
respectively. Lines (4)-(11) define the XML encoding of PCOs. The DecisionMatrix element can have the property isSymmetric which
denotes whether the matrix is symmertic. In case of symmetry, only half the matrix needs to be encoded. The PolicyCombiningAlgorithm
element can have a policyCombiningAlgId attribute in order to uniquely identify the algorithm in an implementation. Lines (12)-(19) define
the XML encoding of the linear-constraint-based approach.

[6] P. Bonatti, S. de Capitani di Vimercati, and P. Samarati. An
algebra for composing access control policies. ACM
Trans. Inf. and Sys. Sec., 5(1):1–35, Feb. 2002.

[7] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van
Rossum, S. Schulz, and R. Sebastiani. An incremental and
layered procedure for the satisfiability of linear arithmetic
logic. In TACAS, pp. 317–333, 2005.

[8] G. Bruns, D. S. Dantas, and M. Huth. A simple and
expressive semantic framework for policy composition in
access control. In FMSE, pp. 12–21, 2007.

[9] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of
access-control policies. In ICSE, pp. 196–205, 2005.

[10] S. Hada and M. Kudo. XML access control language:
Provisional authorization for XML documents.
http://www.trl.ibm.com/projects/xml/xacl/xacl-spec.html.

[11] J. Halpern and V. Weissman. Using first-order logic to reason
about policies. In CSFW, 2003.

[12] V. Kolovski, J. Hendler, and B. Parsia. Analyzing web access
control policies. In Proc. 16th International Conference on
World Wide Web, pp. 677–686, 2007.

[13] J. Ligatti, L. Bauer, and D. Walker. Edit automata:
enforcement mechanisms for run-time security policies. Int.
J. Inf. Sec., 4(1-2):2–16, 2005.

[14] A. X. Liu, F. Chen, J. Hwang, and T. Xie. XEngine: A fast
and scalable XACML policy evaluation engine. In Proc.
SIGMETRICS, pp. 265–276, June 2008.

[15] E. Martin and T. Xie. A fault model and mutation testing of

access control policies. In Proc. 16th International
Conference on World Wide Web, pp. 667–676, May 2007.

[16] P. Mazzoleni, E. Bertino, B. Crispo, and S. Sivasubramanian.
XACML policy integration algorithms: not to be confused
with XACML policy combination algorithms! In SACMAT
’06: Proceedings of the eleventh ACM symposium on Access
control models and technologies, pp. 219–227, New York,
NY, USA, 2006. ACM.

[17] C. Ribeiro, A. Zĺšquete, P. Ferreira, and P. Guedes. SPL: An
access control language for security policies with complex
constraints. In NDSS ’01: Network and Distributed System
Security Symposium, 2001.

[18] F. B. Schneider. Enforceable security policies. ACM
Tran. Inf. and Sys. Sec., 3(1):30–50, 2000.

[19] Sun Microsystems. Sun’s XACML implementation.
http://sunxacml.sourceforge.net/.

[20] D. Wijesekera and S. Jajodia. Policy algebras for access
control the predicate case. In Proc. ACM Conference on
Computer and Communications Security (CCS),
pp. 171–180, 2002.

[21] D. Wijesekera and S. Jajodia. A propositional policy algebra
for access control. ACM Tran. Inf. and Sys. Sec.,
6(2):286–325, May 2003.

[22] XACML TC. OASIS eXtensible Access Control Markup
Language (XACML).
http://www.oasis-open.org/committees/xacml/.

