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Abstract. Data anonymization techniques based on thek-anonymity model have
been the focus of intense research in the last few years. Although thek-anonymity
model and the related techniques provide valuable solutions to data privacy, cur-
rent solutions are limited only to the static data release (i.e., the entire datasetis
assumed to be available at the time of release). While this may be acceptable in
some applications, today we see databases continuously growing everyday and
even every hour. In such dynamic environments, the current techniques may suf-
fer from poor data quality and/or vulnerability to inference. In this paper,we an-
alyze various inference channels that may exist in multiple anonymized datasets
and discuss how to avoid such inferences. We then present an approach to se-
curely anonymizing a continuously growing dataset in an efficient manner while
assuring high data quality.

1 Introduction

A model on which recent privacy-protecting techniques often rely is thek-anonymity
model [17]. In thek-anonymity model, privacy is guaranteed by ensuring that any
record in a released dataset be indistinguishable (with respect to a set of attributes,
calledquasi-identifier) from at least(k − 1) other records in the dataset. Thus, in the
k-anonymity model the risk of re-identification is maintained under an acceptable prob-
ability (i.e., 1/k). Another interesting protection model addressing data privacy is the
ℓ-diversity model [12]. Theℓ-diversity model assumes that a private dataset contains
some sensitive attribute(s) which cannot be modified. Such asensitive attribute is then
considered disclosed when the association between a sensitive attribute value and a par-
ticular individual can be inferred with a significant probability. In order to prevent such
inferences, theℓ-diversity model requires that every group of indistinguishable records
contains at leastℓ distinct sensitive attribute values; thereby the risk of attribute disclo-
sure is kept under1/ℓ.

Although thek-anonymity andℓ-diversity models have led to a number of valuable
privacy-protecting techniques [2, 6, 7, 9, 10, 16], the existing solutions are limited only
to static data release. That is, in such solutions it is assumed that the entire dataset is
available at the time of release. This assumption implies a significant shortcoming, as
data today are continuously collected (thus continuously grow) and there is a strong
demand for up-to-date data at all times. For instance, suppose that a hospital wants
to publish its patient records for medical researchers. Surely, all the published records
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AGE Gender Diagnosis

21 Male Asthma
23 Male Flu
52 Male Alzheimer
57 Female Diabetes

Fig. 1. Initial patient records

AGE Gender Diagnosis

[21 − 25] Male Asthma
[21 − 25] Male Flu
[50 − 60] Person Alzheimer
[50 − 60] Person Diabetes

Fig. 2.2-diverse patient records

AGE Gender Diagnosis

21 Male Asthma
23 Male Flu
52 Male Alzheimer
57 Female Diabetes
27 Female Cancer
53 Male Heart Disease
59 Female Flu

Fig. 3.New patient records

AGE Gender Diagnosis

[21 − 30] Person Asthma
[21 − 30] Person Flu
[21 − 30] Person Cancer
[51 − 55] Male Alzheimer
[51 − 55] Male Heart Disease
[56 − 60] Female Flu
[56 − 60] Female Diabetes

Fig. 4.New 2-diverse patient records

must be properly anonymized in order to protect patients’ privacy. At first glance, the
task seems reasonably straightforward, as any of the existing anonymization techniques
can anonymize the records before they are published. The challenge is, however, that
as new records are frequently created (e.g., whenever new patients are admitted), the
hospital needs a way to provide up-to-date information to researchers in timely manner.

One possible approach is to anonymize and publish new records periodically. Then
researchers can either study each released dataset independently or merge multiple
datasets together for more comprehensive analysis. Although straightforward, this ap-
proach may suffer from severely low data quality. The key problem is that small sets
of records are anonymized independently; thus, records mayhave to be modified much
more than when they are anonymized all together. Thus, in terms of data quality, this
approach is highly undesirable.

A better approach is to anonymize and publish the entire dataset whenever the
dataset is augmented with new records. In this way, researchers are always provided
with up-to-date information. Although this can be easily accomplished using existing
techniques (i.e., by anonymizing the entire dataset every time), there are two signifi-
cant drawbacks. First, it requires redundant computation,as the entire dataset has to be
anonymized even if only a few records are newly inserted. Another, much more critical,
drawback is that even though published datasets are securely anonymous independently
(i.e., each dataset isk-anonymous orℓ-diverse), they could be vulnerable to inferences
when observed collectively. In the following section, we illustrate such inferences.

1.1 Examples of Inferences

A hospital initially has a dataset in Fig. 1 and publishes its2-diverse version shown
in Fig. 2. As previously discussed, in anℓ-diverse dataset the probability of attribute
disclosure is kept under1/ℓ. For example, even if an attacker knows that the record of
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Tom, who is a 21-year-old male, is in the published dataset, he cannot be sure about
Tom’s disease with greater than1/2 probability (although he learns that Tom has either
asthma or flu). At a later time, three more patient records (shown in Italic) are inserted
into the dataset, resulting the dataset in Fig. 3. The hospital then publishes a new2-
diverse version in Fig. 4. Observe that Tom’s privacy is still protected in the newly
published dataset. However, not every patient is protectedfrom the attacker.

Example 1.Suppose the attacker knows that Alice, who is in her late twenties, has
recently been admitted to the hospital. Thus, he knows that Alice is not in the old dataset
in Fig. 2, but in the new dataset in Fig. 4. From the new dataset, he learns only that Alice
has one of{Asthma, Flu, Cancer}. However, by consulting the previous dataset, he can
easily infer that Alice has neither asthma nor flu. He concludes that Alice has cancer.

Example 2.The attacker knows that Bob is 52 years old and has long been treated in the
hospital. Thus, he is sure that Bob’s record is in both datasets. First, by studying the old
dataset, he learns that Bob suffers from either alzheimer ordiabetes. Now the attacker
checks the new dataset and learns that Bob has either alzheimer or heart disease. He
thus concludes that Bob suffers from alzheimer. Note that three other records in the
new dataset are also vulnerable to similar inferences.

1.2 Contributions and paper outline

As shown in the previous section, anonymizing datasets statically (i.e., without con-
sidering previously released datasets) may lead to variousinferences. In this paper, we
present an approach to securely anonymizing a continuouslygrowing dataset in an ef-
ficient manner while assuring high data quality. The key ideaunderlying our approach
is that one can efficiently anonymize a current dataset by directly inserting new records
to the previously anonymized dataset. This implies, of course, that both new records
and anonymized records may have to be modified, as the resulting dataset must satisfy
the imposed privacy requirements (e.g.,k-anonymity orℓ-diversity). Moreover, such
modifications must be cautiously made as they may lead to poordata quality and/or en-
able undesirable inferences. We thus describe several inference attacks where attacker
tries to undermine the imposed privacy protection by comparing a multiple number of
anonymized datasets. We analyze various inference channels that attacker may exploit
and discuss how to avoid such inferences. In order to addressthe issue of data quality,
we introduce a data quality metric, calledInformation Loss(IL) metric, which mea-
sures the amount of data distortion caused by generalization. Based on our analysis on
inference channels and IL metric, we develop an algorithm that securely and efficiently
inserts new records into an anonymized dataset while assuring high data quality.

The remainder of this paper is organized as follows. We review the basic concepts
of thek-anonymity andℓ-diversity models in Section 2. In Section 3, we describe sev-
eral inference attacks and discuss possible inference channels and how to prevent such
inferences. Then we describe our algorithm that securely and efficiently anonymizes
datasets in Section 4 and evaluate our techniques in Section5. We review some related
work in Section 6 and conclude our discussion in Section 7.
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2 k-Anonymity and ℓ-diversity

The k-anonymity model assumes that person-specific data are stored in a table (or a
relation) of columns (or attributes) and rows (or records).The process of anonymizing
such a table starts with removing all the explicit identifiers, such as name and SSN, from
it. However, even though a table is free of explicit identifiers, some of the remaining
attributes in combination could be specific enough to identify individuals. For example,
as shown by Sweeney [17], 87% of individuals in the United States can be uniquely
identified by a set of attributes such as{ZIP, gender, date of birth}. This implies that
each attribute alone may not be specific enough to identify individuals, but a particular
group of attributes could be. Thus, disclosing such attributes, calledquasi-identifier,
may enable potential adversaries to link records with the corresponding individuals.

Definition 1. (Quasi-identifier) A quasi-identifier of tableT , denoted asQT , is a set
of attributes inT that can be potentially used to link a record inT to a real-world iden-
tity with a significant probability. �

The main objective of thek-anonymity problem is thus to transform a table so that
no one can make high-probability associations between records in the table and the
corresponding entity instances by using quasi-identifier.

Definition 2. (k-anonymity requirement) TableT is said to bek-anonymouswith
respect to quasi-identifierQT if and only if for every recordr in T there exist at least
(k − 1) other records inT that are indistinguishable fromr with respect toQT . �

By enforcing thek-anonymity requirement, it is guaranteed that even though an
adversary knows that ak-anonymous tableT contains the record of a particular indi-
vidual and also knows the quasi-identifier value of the individual, he cannot determine
which record inT corresponds to the individual with a probability greater than 1/k.
Thek-anonymity requirement is typically enforced through generalization, where real
values are replaced with “less specific but semantically consistent values” [17]. Given a
domain, there are various ways to generalize the values in the domain. Commonly, nu-
meric values are generalized into intervals (e.g., [12−19]), and categorical values into a
set of distinct values (e.g.,{USA, Canada}) or a single value that represents such a set
(e.g., North-America). A group of records that are indistinguishable from each other is
often referred to as anequivalence class.

Although often ignored in mostk-anonymity techniques, a private dataset typically
contains some sensitive attribute(s) that are not quasi-identifier attributes. For instance,
in the patient records in Fig. 3,Diagnosisis considered a sensitive attribute. For such
datasets, the key consideration of anonymization is the protection of individuals’ sen-
sitive attributes. Observe, however, that thek-anonymity model does not provide suf-
ficient security in this particular setting, as it is possible to infer certain individuals’
attributes without precisely re-identifying their records. For instance, consider ak-
anonymized table where all records in an equivalence class have the same sensitive
attribute value. Although none of these records can be matched with the corresponding
individuals, their sensitive attribute value can be inferred with a probability of1. Re-
cently, Machanavajjhala et al. [12] pointed out such inference issues in thek-anonymity
model and proposed the notion ofℓ-diversity.
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Definition 3. (ℓ-diversity requirement) TableT is said to beℓ-diverseif records in
each equivalence class have at leastℓ distinct sensitive attribute values. �

As theℓ-diversity requirement ensures that every equivalence class contains at least
ℓ distinct sensitive attribute values, the risk of attributedisclosure is kept under1/ℓ.
Note that theℓ-diversity requirement also ensuresℓ-anonymity, as the size of every
equivalence class must be greater than equal toℓ.

3 Incremental Data Release and Inferences

In this section, we first describe our assumptions on datasets and their releases. We then
discuss possible inference channels that may exist among multiple data releases and
present requirements for preventing such inferences.

3.1 Incremental data release

We assume that a private tableT , which contains a set of quasi-identifier attributesQT

and a sensitive attributeST , stores person-specific records, and that only itsℓ-diverse3

versionT̂ is released to public. As more data are collected, new records are inserted
into T , andT̂ is updated and released periodically to reflect the changes of T . Thus,
users, including potential attackers, are allowed to read asequence ofℓ-diverse tables,
T̂0, T̂1, . . ., where|T̂i| < |T̂j | for i < j. As previously discussed, this type of data
release is necessary to ensure high data quality in anonymized datasets.

As every released table isℓ-diverse, by observing each table independently, one
cannot gain more information than what is allowed. That is, the risk of attribute dis-
closure in each table is at most1/ℓ. However, as shown in Section 1, it is possible that
one can increase the probability of attribute disclosure byobserving changes made to
the released tables. For instance, if one can be sure that two(anonymized) records in
two different versions indeed correspond to the same individual, then he may be able
to use this knowledge to infer more information than what is allowed by theℓ-diversity
protection.

Definition 4. (Inference channel) Let T̂i andT̂j be twoℓ-diverse versions of a private
tableT . We say that there exists an inference channel betweenT̂i andT̂j , denoted as
T̂i ⇋ T̂j , if observingT̂i andT̂j together increases the probability of attribute disclosure
in eitherT̂i or T̂j to a probability greater than1/ℓ. �

Thus, for a data provider, it is critical to ensure that thereis no inference channel
among the released tables. In other words, the data providermust make sure that a new
anonymized table to be released does not create any inference channel with respect to
the previously released tables.

Definition 5. (Inference-free data release) Let T̂0, . . . , T̂n be a sequence of previ-
ously released tables, each of which isℓ-diverse. A newℓ-diverse tablêTn+1 is said to
beinference-freeif and only if ∄ T̂i, i = 1, . . . , n, s.t.T̂i ⇋ T̂n+1. �

3 Although we focus onℓ-diverse data in this paper, one can easily extend our discussion to
k-anonymous data.
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3.2 Inference attacks

We first describe a potential attacker and illustrate how theattacker may discover infer-
ence channels among multiple anonymized tables. We then describe various inference
channels and discuss how to prevent them.

Attacker’s knowledge. Before discussing possible inference channels, we first describe
a potential attacker. We assume that the attacker has been keeping track of all the re-
leased tables; he thus possesses a set of released tables{T̂0, . . . , T̂n}, whereT̂i is a
table released at timei. We also assume that the attacker has the knowledge of who
is and who is not contained in each table. This may seem to be too farfetched at first
glance, but such knowledge is not always hard to acquire. Forinstance, consider med-
ical records released by a hospital. Although the attacker may not be aware of all the
patients, he may know when target individuals (in whom he is interested) are admitted
to the hospital. Based on this knowledge, the attacker can easily deduce which tables in-
clude such individuals and which tables do not. Another, perhaps the worst, possibility
is that the attacker may collude with an insider who has access to detailed information
about the patients; e.g., the attacker could obtains a list of patients from a registration
staff. Thus, it is reasonable to assume that the attacker’s knowledge includes the list of
individuals contained in each table as well as their quasi-identifier values. However, as
all the released tables areℓ-diverse, the attacker cannot infer the individuals’ sensitive
attribute values with a significant probability. That is, the probability that an individ-
ual with a certain quasi-identifier has a particular sensitive attribute is bound to1/ℓ;
P (ST = s|QT = q) ≤ 1/ℓ. Therefore, the goal of the attacker is to increase this
probability of attribute disclosure (i.e., above1/ℓ) by comparing the released tables all
together.

Comparing anonymized tables. Let us suppose that the attacker wants to know the
sensitive attribute of a particular individual, say Tom, whose quasi-identifier value isq.
There are two types of comparisons that may help the attacker: 1) comparison of table
T̂i that does not contain Tom and tablêTj that does, and 2) comparison ofT̂i andT̂j ,
that both contain Tom. In both cases,i < j. Let us call these typesδ(¬T̂i, T̂j) and
δ(T̂i, T̂j), respectively. Note that in either case the attacker only needs to look at the
records that may relate to Tom. For instance, if Tom is a 57 years old, then records
such as〈[10 − 20], F emale, F lu〉 would not help the attacker much. In order to find
records that may help, the attacker first finds from̂Ti an equivalence classei, where
q ⊆ ei[QT ]. In the case ofδ(¬T̂i, T̂j), the attacker knows that Tom’s record is not in
ei; thus, none of the records inei corresponds to Tom. Although such information may
not seem useful, it could help the attacker as he may be able toeliminate such records
when he looks for Tom’s record from̂Tj . In the case ofδ(T̂i, T̂j), however, the attacker
knows that one of the records inei must be Tom’s. Although he cannot identify Tom’s
record or infer his sensitive attribute at this point (asei must contain at leastℓ number of
records that are all indistinguishable to each other and also at leastℓ number of distinct
sensitive attribute values), this could be useful information when he examineŝTj .

After obtainingei, the attacker needs to identify in̂Tj the records that possibly
correspond to the records inei, that is, equivalence class(es) that arecompatibleto ei.
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Ti 

Tj 

ei1 ei2 ei3 

ej2 ej3 ej4 

(i) (ii) (iii) 

Age 

Age 

ej1 

Fig. 5.Compatible equivalence classes

Definition 6. (Compatibility ) Let Q = {q1, . . . , qm} be a set of quasi-identifier at-
tributes. Lete[qi] be theqi-value of an equivalence classe, whereqi ∈ Q. We say that
two equivalence classesea andeb arecompatiblewith respect toQ if and only if any
of the following conditions holds.

1. ∀qi ∈ Q, ea[qi] = eb[qi]: the quasi-identifer values ofea andeb are identical to
each other; we denote it asea

∼= eb.
2. ea ≇ eb and∀qi ∈ Q, ea[qi] ⊆ eb[qi]: the quasi-identifer value ofeb is a more

generalized form of the quasi-identifier ofea; we denote it asea ≺ eb.
3. ea ≇ eb, ea ⊀ eb, and∀qi ∈ Q, ea[qi] ∩ eb[qi] 6= ∅: the quasi-identifier values of

ea andeb overlap with each other; we denote it asea ≎ eb. �

Example 3.Consider Fig. 5, where the records of two tablesTi andTj are spatially
represented along the dimension of the quasi-identifier,Age. For simplicity, we do not
show their sensitive attribute values. TableTi contains six records (shown as ‘�’), and
its 2-diverse version,̂Ti, consists of three equivalence classes,ei1, ei2, andei3. On the
other hand, tableTj contains four additional records (shown as ‘♦’), and its 2-diverse
version,T̂j , consists of four equivalence classes,ej1, ej2, ej3, andej4. Given T̂i and
T̂j , the following compatible equivalences can be found.

1. ei1
∼= ej1 (Fig. 5 (i))

2. ei2 ≺ ej2 (Fig. 5 (ii))
3. ei3 ≎ ej3 andei3 ≎ ej4 (Fig. 5 (iii))

The fact that two equivalence classes are compatible implies that there exist some
records present in both equivalence classes, although their quasi-identifiers may have
been modified differently. In what follows, we show how matching such records be-
tween compatible equivalence classes could enable the attacker to make high probabil-
ity inferences.

Inference channels between compatible equivalence classes. As previously discussed,
there are three cases of compatible equivalence classes. Wenow examine these cases
in conjunction with each ofδ(¬T̂i, T̂j) andδ(T̂i, T̂j), illustrating how the attacker may
infer Tom’s sensitive attribute,sT .
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ei
∼= ej ei ≺ ej ei ≎ ej1 andei ≎ ej2

δ(¬bTi, bTj) ej [S] \ ei[S] ej [S] \ ei[S] ((ej1[S] ∪ ej2[S]) \ ei[S]) ∩ ejk[S], k = 1, 2

δ(bTi, bTj) ∅ ∅ ei[S] ∩ ejk[S], k = 1, 2

Fig. 6.Summary of inference-enabling sets

1. ei
∼= ej or ei ≺ ej : In these cases, the attacker can reason that all the recordsin

ei must also appear inej , and the attacker only needs to look at the sensitive at-
tribute values. Letei[S] andej [S] be the multisets (i.e., duplicate-preserving sets4)
of sensitive attribute values inei andej , respectively.
(a) In the case ofδ(¬T̂i, T̂j), the attacker knows that Tom’s sensitive attribute value

is not in ei[S], but in ej [S]; i.e., sT /∈ ei[S] andsT ∈ ej [S]. As he knows
that all the values inei[S] must also appear inej [S], he can conclude that
sT ∈ (ej [S] \ ei[S]). Therefore, the attacker can infersT with a probability
greater than1/ℓ if (ej [S]\ei[S]) contains less thanℓ number of distinct values.

(b) In the case ofδ(T̂i, T̂j), sT ∈ ei[S] andsT ∈ ej [S]. However, as both sets are
ℓ-diverse, the attacker does not gain any additional information onsT .

2. ei ≎ ej1 andei ≎ ej2
5: In this case, the attacker reasons that the records inei must

appear in eitherej1 or ej2. Moreover, as the attacker knows Tom’s quasi-identifier
is q, he can easily determine which ofej1 andej2 contains Tom’s record. Let us
supposeej1 contains Tom’s record; i.e.,q ⊆ ej1[QT ]. Let ei[S], ej1[S], andej2[S]
be the multisets of sensitive attribute values inei, ej1, andej2, respectively.
(a) In the case ofδ(¬T̂i, T̂j), the attacker knows that Tom’s sensitive attribute value

is included in neitherei[S] nor ej2[S], but in ej1[S]; i.e., sT /∈ ei[S], sT /∈
ej2[S], andsT ∈ ej1[S]. Note that unlike the previous cases, he cannot simply
conclude thatsT ∈ (ej1[S] \ ei[S]), as not all the records inei are in ej1.
However, it is true that Tom’s record is inej1 ∪ ej2, but not inei; thussT ∈
(ej1[S] ∪ ej2[S]) \ ei[S]. As Tom’s record must be inej1, the attacker can
finally conclude thatsT ∈ ((ej1[S] ∪ ej2[S]) \ ei[S]) ∩ ej1[S]. Therefore, if
this set does not contain at leastℓ distinct values, the attacker can infersT with
a probability greater than1/ℓ.

(b) In the case ofδ(T̂i, T̂j), the attacker knows that Tom’s sensitive attribute value
appears in bothei[S] andej1[S]. Based on this knowledge, he can conclude that
(sT ∈ ei[S] ∩ ej1[S]). Thus, attacker can infersT with a probability greater
than1/ℓ if (ei[S] ∩ ej1[S]) contains less thanℓ distinct values.

We summarize our discussion on possible inference-enabling sets in Fig. 6. Intu-
itively, a simple strategy that prevents any inference is toensure that such sets are all
ℓ-diverse. Note that with current static anonymization techniques, this could be a daunt-
ing task as inference channels may exist in every equivalence class and also with respect
to every previously released dataset. In the following section, we address this issue by
developing an efficient approach to preventing inferences during data anonymization.

4 Therefore, set operations (e.g.,∩,∪, and\) used in our discussion are also multiset operations.
5 It is possible thatbTj contains more than two equivalence classes that are compatible toei.

However, we consider two compatible equivalence classes here for simplicity.
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4 Secure Anonymization

In this section, we present an approach to securely anonymizing a dataset based on pre-
viously released datasets. We first describe a simpleℓ-diversity algorithm and propose
a noble quality metric that measures the amount of data distortion in generalized data.
Based on the algorithm and the quality metric, we then develop an approach where new
records are selectively inserted to a previously anonymized dataset while preventing
any inference.

4.1 ℓ-diversity algorithm and data quality

Data anonymization can be considered a special type of optimization problem where
the cost of data modification must be minimized (i.e., the quality of data must be maxi-
mized) while respecting anonymity constraints (e.g.,k-anonymity orℓ-diversity). Thus,
the key components of anonymization technique include generalization strategy and
data quality metric.

ℓ-diversity algorithm. In [12], Machanavajjhala et al. propose anℓ-diversity algorithm
by extending thek-anonymity algorithm in [9] to ensure that every equivalence class
is ℓ-diverse. In this paper, we present a slightly different algorithm which extends the
multidimensionalapproach described in [10]. The advantage of the multidimensional
approach is that generalizations are not restricted by pre-defined generalization hierar-
chies (DGH) and thus more flexible. Specifically, the algorithm consists of the follow-
ing two steps. The first step is to find a partitioning scheme ofthed-dimensional space,
whered is the number of attributes in the quasi-identifier, such that each partition con-
tains a group of records with at leastℓ number of distinct sensitive attribute values. In
order to find such a partitioning, the algorithm recursivelysplits a partition at the me-
dian value (of a selected dimension) until no more split is allowed with respect to the
ℓ-diversity requirement. Then the records in each partitionare generalized so that they
all share the same quasi-identifier value, thereby forming an equivalence class. Com-
pared to the technique based on DGH in [12], this multidimensional approach allows
finer-grained search and thus often leads to better data quality.

Data quality metric. The other key issue is how to measure the quality of anonymized
datasets. To date, several data quality metrics have been proposed fork-anonymous
datasets [2, 6, 10, 7, 16]. Among them, Discernibility Metric (DM) [2] and Average
Equivalence Class Size Metric [10] there are two data quality metrics that do not depend
on generalization hierarchies. Intuitively, DM measures the effect ofk-anonymization
process by measuring how much records are indistinguishable from each other. How-
ever, DM does not consider the actual transformation of datavalues. For instance, sup-
pose that there are more thank records that already have the identical quasi-identifer
value and that they are all in the same equivalence class. Even though these records are
not generalized at all, DM penalizes each of these un-generalized records. The same
issue arises for the average equivalence class size metric,which measures the quality of
anonymization directly based on the size of the equivalenceclasses.
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Fig. 7.Generalization and data distortion

To address this shortcoming, we propose a data quality metric that captures the
amount of data distortion by measuring the expansion of eachequivalence class (i.e., the
geometrical size of each partition). For instance, consider Fig. 7 (i), where the records
are spatially represented in 2-dimensional space for quasi-identifier,{Age, Weight}. In
the figure, the dotted regions group the records into two3-diverse equivalence classes,
e1 ande2. Note that as all the records in an equivalence class are modified to share
the same quasi-identifer, each region indeed represents the generalized quasi-identifier
of the records contained in the region. For instance, the generalized records ine1 may
share the identical quasi-identifier〈[a1 − a2], [w1 − w2]〉. Thus, data distortion can be
measured naturally by the size of the regions covered by equivalence classes. Based
on this idea, we now define a new data quality metric, referredto asInformation Loss
metric (IL) as follows.

Definition 7. (Information loss) Let e = {r1, . . . , rn} be an equivalence class where
QT = {a1, . . . , am}. Then the amount of data distortion occurred by generalizing e,
denoted byIL(e), is defined as:

IL(e) = |e| ×
∑

j=1,...,m

|Gj |
|Dj |

where|e| is the number of records ine, and|Dj | represents the domain size of attribute
aj . |Gj | represents the amount of generalization in attributeaj (e.g., the length of an
interval which contains all the attribute values existing in e. �

4.2 Updates of anonymized datasets

As previously described, our goal is to produce an up-to-date anonymized dataset by
inserting new records into a previously anonymized dataset. Note that in our discussion
below, we assume that allℓ-diverse tables are maintained internally as partitioned,but
unmodified tables. That is, eachℓ-diverse table consists of a set of equivalent groups,
{e1, . . . , em}, which contain un-generalized records. This is a practicalassumption as
generating actualℓ-diverse records for publication from a partitioned table is a relatively
simple task. Consequently, given such a partitioned table and a new set of records, our
insertion algorithm produces a new partitioned table whichincludes the new records.
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Suppose that an anonymized tableT̂ , which is anℓ-diverse version of a private
tableT , has been published. Suppose that at a later time, a new set ofrecordsR =
{r1, . . . , rn} has been inserted intoT . Let us denote the updatedT asT ′. Intuitively, a
newℓ-diverse version̂T ′ can be generated by insertingR into T̂ . The key requirements
for such insertions are: 1)̂T ′ must beℓ-diverse, 2) the data quality of̂T ′ should be
maintained as high as possible, and 3)T̂ ′ must be inference-free.

We now briefly describe such an insertion algorithm which ensures the first two
requirements. A key idea is to insert a record into a “closest” equivalence class so that
the necessary generalization is minimized. For instance, let us revisit Fig. 7, which (i)
depicts six records partitioned into two3-diverse equivalence classes, and (ii) shows
revised equivalence classes after recordr is inserted. Observe that asr is inserted into
e1 resulting ine′1, the information loss of the dataset is increased byIL(e′i) − IL(ei).
However, ifr were inserted intoe2, then the increase of the information would have
been much greater. Based on this idea, we devise an insertionalgorithm that ensures
high data quality as follows.

1. (Add) If a group of records inR forms anℓ-diverse equivalence class which does
not overlap with any of existing equivalence classes, then we can simplyaddsuch
records toT̂ as a new equivalence class.

2. (Insert) The records which cannot be added as a new equivalence class must bein-
sertedinto some existing equivalence classes. In order to minimize the data distor-
tion in T̂ ′, each recordri is inserted into equivalent groupej in T̂ which minimizes
IL(ej ∪ {ri}) − IL(ej).

3. (Split) After adding or inserting all the records inR into T̂ , it is possible that the
number of distinct values in some equivalence class exceeds2ℓ. If such an equiv-
alence class exists, then we may be able tosplit it into two separate equivalence
classes for better data quality. Note that splitting an equivalence class may or may
not be possible, depending on how the records are distributed in the equivalence
class.

Clearly, the algorithm above do not consider the possibility of inference channels at
all. In the following section, we enhance this algorithm further to ensure that an updated
dataset does not create any inference channel.

4.3 Preventing inference channels

In Section 3, we discuss that in order to prevent any inference channel, all the inference-
enabling sets (see Fig. 6) must beℓ-diverse. We now discuss how to enhance our unse-
cure insertion algorithm to ensure such sets are allℓ-diverse. Specifically, we examine
each of three major operations,add, insert, andsplit, and describe necessary techniques
to achieve inference-free updates.

Clearly, the add operation does not introduce any inferencechannel, as it only adds
new ℓ-diverse equivalence classes that are not compatible to anypreviously released
equivalence class. However, the insert operation may introduce inference channels (i.e.,
ej [S] \ ei[S]). That is, if the new records inserted into an equivalence class contain less
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thanℓ number of distinct sensitive values, then the equivalence class becomes vulnera-
ble to inference attacks throughδ(¬T̂i, T̂j). Thus, such insertions must not be allowed.
In order to address this issue, we modify the insertion operation as follows. During
the insertion phase, instead of inserting records directlyto equivalence classes, we in-
sert records into the waiting-lists of equivalence classes. Apparently, the records in a
waiting-list can be actually inserted into the corresponding equivalence class if they are
ℓ-diverse by themselves; until then, they are suppressed from the anonymized dataset.
Note that as more records are continuously inserted into thetable (and into the waiting
lists), for most records, the waiting period is not significant. However, to expedite the
waiting period, we also check if the records in the waiting lists can be added as an inde-
pendent equivalence class which does not overlap with any other existing equivalence
class.

There are two inference channels that may be introduced whenan equivalence class
ei is split intoeji andej2. The first possibility is:((ej1[S]∪ej2[S])\ei[S])∩ejk[S], k =
1, 2. Clearly, if such sets are notℓ-diverse, then they become vulnerable to inference
attacks throughδ(¬T̂i, T̂j). Thus, the condition must be checked before splittingei. The
other possible inference channel is:ei[S] ∩ ejk[S], k = 1, 2. This implies that if there
are not enough overlapping sensitive values between the original equivalence class and
each of the split equivalence classes, then split equivalence classes become vulnerable
to inference attacks throughδ(T̂i, T̂j). Thus, unless such condition is satisfied,ei must
not be split. The tricky issue in this case is, however, that inference channels may exist
between any of the compatible equivalence classes that werepreviously released. For
instance, if there exists equivalence classe′i that was released beforeei, then the splitting
condition must be satisfied with respect toe′i as well. This means that the system needs
to maintain the information about all the previous releases. In order to facilitate this, we
store such information for each equivalence class; that is,each equivalence class keeps
the information about its previous states. Note that it doesnot require a huge storage
overhead, as we need to keep only the information about the sensitive attribute (not
all the records). We also purge such information when any previous equivalence class
becomes no longer compatible to the current equivalence class.

Clearly, inference preventing mechanisms may decrease thequality of anonymized
data. Although it is a drawback, it is also the price to pay forbetter data privacy.

5 Experimental Results

In this section, we describe our experimental settings and report the results in details.

Experimental setup. The experiments were performed on a2.66 GHz IntelIV proces-
sor machine with1 GB of RAM. The operating system on the machine was Microsoft
Windows XP Professional Edition, and the implementation was built and run in Java
2 Platform, Standard Edition 5.0. For our experiments, we used the Adult dataset from
the UC Irvine Machine Learning Repository [15], which is considered a de facto bench-
mark for evaluating the performance of anonymization algorithms. Before the experi-
ments, the Adult data set was prepared as described in [2, 7, 10]. We removed records
with missing values and retained only nine of the original attributes. In our experiments,
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we considered{age, work class, marital status, occupation, race, gender, native coun-
try, salary} as the quasi-identifier, andeducationattribute as the sensitive attribute.

For the experiments, we implemented three differentℓ-diversity approaches:Static
I, Static II, andDynamic. Static I is an approach where the entire dataset is anonymized
whenever new records are inserted, while Static II anonymizes new records indepen-
dently and merges the result with the previously anonymizeddataset. Dynamic im-
plements our approach, where new records are directly inserted into the previously
anonymized dataset while preventing inference channels.

Vulnerability. The first question we investigated was how vulnerable datasets were
to inferences when they were statically anonymized (i.e., Static I). In the experiment,
we first anonymized 10K records and generated the first “published” dataset. We then
generated twenty more subsequent datasets by anonymizing 1,000 more records each
time. Thus, we had the total of twenty-oneℓ-diverse datasets with different sizes ranging
from 10K to 30K. After obtaining the datasets, we examined the inference-enabling sets
existing between the datasets. For instance, we examined the inference-enabling sets
of the 12K-sized dataset with respect to the 10K- and 11K-sized datasets. Whenever
we found an inference channel, we counted how many records were vulnerable by it.
Fig. 8 shows the results whereℓ = 5, 7. As expected, more records become vulnerable
to inferences as the size of dataset gets larger; for the 30K-sized dataset, about 8.3%
of records are vulnerable to inferences. Note that there were no vulnerable records in
datasets generated by Static II and Dynamic.

Data Quality. Next, we compared the data quality resulted by Static I, Static II, and
Dynamic. For each approach, we generated different sizes ofℓ-diverse datasets, ranging
from 1K to 30K, as previously described. For the data qualitymeasure, we used the av-
erage cost of IL metric (described in Section 4.1). That is, the quality of an anonymized
datasetT̂ was computed as:

∑
e∈E IL(e) / |T̂ |, whereE is a set of all equivalence

classes in̂T . Intuitively, this measure indicates the degree to which each of record is
generalized. Our experiment results are shown in Fig. 9. Although Dynamic results in
lower data quality when compared to Static I, it produces much higher quality data than
Static II. Moreover, the quality is maintained regardless of the data size. Fig. 10 shows
the number of suppressed records in Dynamic approach. Note that each number shows
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the total number of suppressed records with respect to the entire dataset. For instance,
whenℓ = 5, only 421 records needed to be suppressed for the 30K-sized dataset.

Execution Time. Fig. 11 shows the execution times of anonymizing various sizes of
datasets. As shown, the execution time of Static I increaseslinearly with respect to the
size of the dataset, while Static II and Dynamic produce anonymized datasets almost
instantly.

6 Related Work

In this section, we briefly survey existing literature that addresses data privacy. Instead
of providing a comprehensive survey, we discuss various aspects of data privacy. Note
that we do not include thek-anonymity orℓ-diversity work here as detailed discussion
can be found in Section 2.

Ensuring privacy in published data has been a difficult problem for a long time, and
this problem has been studied in various aspects. In [8], Lambert provides informative
discussion on the risk and harm of undesirable disclosures and discusses how to eval-
uate a dataset in terms of these risk and harm. In [3], Dalenius poses the problem of
re-identification in (supposedly) anonymous census records and firstly introduces the
notion of “quasi-identifier”. He also suggests some ideas such as suppression or en-
cryption of data as possible solutions.

Data privacy has been extensively addressed in statisticaldatabases, which primar-
ily aim at preventing various inference channels. One of thecommon techniques is data
perturbation [11, 14, 18], which mostly involves swapping data values or introducing
noise to the dataset. While the perturbation is applied in a manner which preserves sta-
tistical characteristics of the original data, the transformed dataset is useful only for
statistical research. Another important technique is query restriction [4, 5], which re-
stricts queries that may result in inference. In this approach, queries are restricted by
various criteria such as query-set-size, query-history, and partitions. Although this ap-
proach can be effective, it requires the protected data to remain in a dedicated database
at all time.
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7 Conclusions

In this paper, we presented an approach to securely anonymizing a continuously grow-
ing dataset in an efficient manner while assuring high data quality. In particular, we
described several inference attacks where attacker tries to undermine the imposed pri-
vacy protection by comparing a multiple number of anonymized datasets. We analyzed
various inference channels and discussed how to avoid such inferences. We also in-
troduced Information Loss (IL) metric, which measures the amount of data distortion
caused by generalization. Based on the discussion on inference channels and IL metric,
we then developed an algorithm that securely and efficientlyinserts new records into an
anonymized dataset while assuring high data quality.
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