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Abstract. Data anonymization techniques based orkttamonymity model have
been the focus of intense research in the last few years. Althoughahenymity
model and the related techniques provide valuable solutions to dataypiuac
rent solutions are limited only to the static data release (i.e., the entire digtaset
assumed to be available at the time of release). While this may be acceptable in
some applications, today we see databases continuously growing &yemd
even every hour. In such dynamic environments, the current tesbsiigay suf-

fer from poor data quality and/or vulnerability to inference. In this payeran-
alyze various inference channels that may exist in multiple anonymizedeta
and discuss how to avoid such inferences. We then present an elppoose-
curely anonymizing a continuously growing dataset in an efficient nramhige
assuring high data quality.

1 Introduction

A model on which recent privacy-protecting techniquesroftely is thek-anonymity
model [17]. In thek-anonymity model, privacy is guaranteed by ensuring thgt an
record in a released dataset be indistinguishable (witbesto a set of attributes,
calledquasi-identifiey from at least(k — 1) other records in the dataset. Thus, in the
k-anonymity model the risk of re-identification is maintadnender an acceptable prob-
ability (i.e., 1/k). Another interesting protection model addressing daitzapy is the
(-diversity model [12]. The/-diversity model assumes that a private dataset contains
some sensitive attribute(s) which cannot be modified. Swednaitive attribute is then
considered disclosed when the association between aigemditibute value and a par-
ticular individual can be inferred with a significant prodéa In order to prevent such
inferences, thé-diversity model requires that every group of indistindpaisle records
contains at leagt distinct sensitive attribute values; thereby the risk tilagte disclo-
sure is kept undet/¢.

Although thek-anonymity and’-diversity models have led to a number of valuable
privacy-protecting techniques [2, 6, 7,9, 10, 16], the taxissolutions are limited only
to static data release. That is, in such solutions it is asdutimat the entire dataset is
available at the time of release. This assumption impliegr@ifecant shortcoming, as
data today are continuously collected (thus continuousbyvj and there is a strong
demand for up-to-date data at all times. For instance, sefwat a hospital wants
to publish its patient records for medical researcherselguall the published records



[ AGE [ Gender| Diagnosis | | AGE [ Gender| Diagnosis |
21 Male Asthma [21 —25] | Male Asthma
23 Male Flu [21 —25] | Male Flu
52 Male | Alzheimer [50 — 60] | Person| Alzheimer
57 | Female| Diabetes [50 — 60] | Person| Diabetes

Fig. 1. Initial patient records

Fig. 2. 2-diverse patient records

[ AGE [ Gender| Diagnosis | [ AGE | Gender| Diagnosis |
21 Male Asthma [21 — 30] | Person Asthma
23 Male Flu [21 — 30] | Person Flu
52 Male Alzheimer [21 — 30] | Person Cancer
57 | Female Diabetes [61 —55] | Male Alzheimer
27 | Female Cancer [61 — 55] Male | Heart Disease
53 Male | Heart Disease [56 — 60] | Female Flu
59 | Female Flu [56 — 60] | Female Diabetes

Fig. 3. New patient records Fig. 4. New 2-diverse patient records

must be properly anonymized in order to protect patientsaoy. At first glance, the

task seems reasonably straightforward, as any of the mgiationymization techniques
can anonymize the records before they are published. THeba is, however, that
as new records are frequently created (e.g., whenever négnfzaare admitted), the
hospital needs a way to provide up-to-date information $eaechers in timely manner.

One possible approach is to anonymize and publish new repandgodically. Then
researchers can either study each released dataset ideéegignor merge multiple
datasets together for more comprehensive analysis. Adtihstraightforward, this ap-
proach may suffer from severely low data quality. The keybpem is that small sets
of records are anonymized independently; thus, recordshawag to be modified much
more than when they are anonymized all together. Thus, ma@f data quality, this
approach is highly undesirable.

A better approach is to anonymize and publish the entiresdatahenever the
dataset is augmented with new records. In this way, reseer@re always provided
with up-to-date information. Although this can be easilg@uoplished using existing
techniques (i.e., by anonymizing the entire dataset everg)t there are two signifi-
cant drawbacks. First, it requires redundant computatistthe entire dataset has to be
anonymized even if only a few records are newly inserted t&o much more critical,
drawback is that even though published datasets are sgam@hymous independently
(i.e., each dataset isanonymous of-diverse), they could be vulnerable to inferences
when observed collectively. In the following section, wastrate such inferences.

1.1 Examples of Inferences

A hospital initially has a dataset in Fig. 1 and publishe2iiverse version shown
in Fig. 2. As previously discussed, in drdiverse dataset the probability of attribute
disclosure is kept unddr/¢. For example, even if an attacker knows that the record of



Tom, who is a 21-year-old male, is in the published datasetannot be sure about
Tom'’s disease with greater thapj2 probability (although he learns that Tom has either
asthma or flu). At a later time, three more patient recordsvshin Italic) are inserted
into the dataset, resulting the dataset in Fig. 3. The halsihien publishes a ne@+
diverse version in Fig. 4. Observe that Tom’s privacy id gtibtected in the newly
published dataset. However, not every patient is protdcted the attacker.

Example 1.Suppose the attacker knows that Alice, who is in her late tiwsnhas
recently been admitted to the hospital. Thus, he knows theg #s not in the old dataset

in Fig. 2, butin the new dataset in Fig. 4. From the new datagdearns only that Alice
has one of Asthma, Flu, Cancér However, by consulting the previous dataset, he can
easily infer that Alice has neither asthma nor flu. He conetutthat Alice has cancer.

Example 2.The attacker knows that Bob is 52 years old and has long beatett in the
hospital. Thus, he is sure that Bob’s record is in both d&akést, by studying the old
dataset, he learns that Bob suffers from either alzheimdratretes. Now the attacker
checks the new dataset and learns that Bob has either aheimheart disease. He
thus concludes that Bob suffers from alzheimer. Note thagettother records in the
new dataset are also vulnerable to similar inferences.

1.2 Contributions and paper outline

As shown in the previous section, anonymizing datasetgcaligt (i.e., without con-
sidering previously released datasets) may lead to vannderences. In this paper, we
present an approach to securely anonymizing a continuguslying dataset in an ef-
ficient manner while assuring high data quality. The key idederlying our approach
is that one can efficiently anonymize a current dataset lgctlirinserting new records
to the previously anonymized dataset. This implies, of seuthat both new records
and anonymized records may have to be modified, as the regsdbitaset must satisfy
the imposed privacy requirements (e.g=anonymity or¢-diversity). Moreover, such
modifications must be cautiously made as they may lead togettarquality and/or en-
able undesirable inferences. We thus describe severatéinde attacks where attacker
tries to undermine the imposed privacy protection by comgea multiple number of
anonymized datasets. We analyze various inference chatialattacker may exploit
and discuss how to avoid such inferences. In order to adtliedssue of data quality,
we introduce a data quality metric, calléaformation Loss(IL) metric, which mea-
sures the amount of data distortion caused by generaliza@i@sed on our analysis on
inference channels and IL metric, we develop an algoritremgbcurely and efficiently
inserts new records into an anonymized dataset while agshigh data quality.

The remainder of this paper is organized as follows. We vetie basic concepts
of the k-anonymity and’-diversity models in Section 2. In Section 3, we describe sev
eral inference attacks and discuss possible inferencenelaand how to prevent such
inferences. Then we describe our algorithm that securelyedficiently anonymizes
datasets in Section 4 and evaluate our techniques in Séctidie review some related
work in Section 6 and conclude our discussion in Section 7.
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2 k-Anonymity and £-diversity

The k-anonymity model assumes that person-specific data aredstora table (or a
relation) of columns (or attributes) and rows (or recordsje process of anonymizing
such atable starts with removing all the explicit identgjesuch as name and SSN, from
it. However, even though a table is free of explicit ident#iesome of the remaining
attributes in combination could be specific enough to idgmidividuals. For example,
as shown by Sweeney [17], 87% of individuals in the UnitedeStaan be uniquely
identified by a set of attributes such g8IP, gender, date of birth This implies that
each attribute alone may not be specific enough to identifividuals, but a particular
group of attributes could be. Thus, disclosing such atteibucalledquasi-identifiey
may enable potential adversaries to link records with thieesponding individuals.

Definition 1. (Quasi-identifier) A quasi-identifier of tablel’, denoted a§) r, is a set
of attributes in7" that can be potentially used to link a recordiirto a real-world iden-
tity with a significant probability. O

The main objective of thé-anonymity problem is thus to transform a table so that
no one can make high-probability associations betweerrdsda the table and the
corresponding entity instances by using quasi-identifier.

Definition 2. (k-anonymity requirement) Table 7' is said to bek-anonymouswith
respect to quasi-identifigpr if and only if for every record- in T there exist at least
(k — 1) other records irll" that are indistinguishable fromwith respect toQ) 7. d

By enforcing thek-anonymity requirement, it is guaranteed that even though a
adversary knows that le=anonymous tabld" contains the record of a particular indi-
vidual and also knows the quasi-identifier value of the iitiial, he cannot determine
which record inT' corresponds to the individual with a probability greatearth /%.
The k-anonymity requirement is typically enforced through gatieation, where real
values are replaced with “less specific but semanticallpistent values” [17]. Given a
domain, there are various ways to generalize the valuegiddmain. Commonly, nu-
meric values are generalized into intervals (e.g.-{12]), and categorical values into a
set of distinct values (e.gflUSA, Canadd) or a single value that represents such a set
(e.g., North-America). A group of records that are indigtishable from each other is
often referred to as aequivalence class

Although often ignored in mogt-anonymity techniques, a private dataset typically
contains some sensitive attribute(s) that are not quasitiier attributes. For instance,
in the patient records in Fig. Biagnosisis considered a sensitive attribute. For such
datasets, the key consideration of anonymization is theegtion of individuals’ sen-
sitive attributes. Observe, however, that #ranonymity model does not provide suf-
ficient security in this particular setting, as it is possild infer certain individuals’
attributes without precisely re-identifying their recerd~or instance, consider /a
anonymized table where all records in an equivalence clags the same sensitive
attribute value. Although none of these records can be radtalith the corresponding
individuals, their sensitive attribute value can be inddrwith a probability ofl. Re-
cently, Machanavajjhala et al. [12] pointed out such infeeeissues in the-anonymity
model and proposed the notion&fliversity.



Definition 3. (¢-diversity requirement) Table T is said to be/-diverseif records in
each equivalence class have at Idadistinct sensitive attribute values. O

As the/-diversity requirement ensures that every equivalensaantains at least
¢ distinct sensitive attribute values, the risk of attribdisclosure is kept under/¢.
Note that the/-diversity requirement also ensurésnonymity, as the size of every
equivalence class must be greater than equél to

3 Incremental Data Release and Inferences

In this section, we first describe our assumptions on dataset their releases. We then
discuss possible inference channels that may exist amotiiplawdata releases and
present requirements for preventing such inferences.

3.1 Incremental data release

We assume that a private talile which contains a set of quasi-identifier attributgs
and a sensitive attributér, stores person-specific records, and that only-ilsversé
versionT is released to public. As more data are collected, new recare inserted
into 7', andT is updated and released periodically to reflect the chanigds dhus,
users, |nclud|ng potential attackers, are allowed to reselmence of-diverse tables,
To. 71, . . Where|T| < |T | for i < j. As previously discussed, this type of data
release is necessary to ensure high data quality in anoeygndiatasets.

As every released table isdiverse, by observing each table independently, one
cannot gain more information than what is allowed. Thaths, isk of attribute dis-
closure in each table is at maist/. However, as shown in Section 1, it is possible that
one can increase the probability of attribute disclosurelserving changes made to
the released tables. For instance, if one can be sure thgatvemymized) records in
two different versions indeed correspond to the same iddali then he may be able
to use this knowledge to infer more information than whatlmssged by thel-diversity
protection.

Definition 4. (Inference channe) Let 7} andfj be two/-diverse versions of a private
table T'. We say that there exists an inference channel bet@gamd 7}, denoted as
T, = Tj, if observingT; andT} together increases the probability of attribute disclesur
in eitherT; orZIA”j to a probability greater thaty . O

Thus, for a data provider, it is critical to ensure that thisrao inference channel
among the released tables. In other words, the data pravidst make sure that a new
anonymized table to be released does not create any inéectrannel with respect to
the previously released tables.

Definition 5. (Inference-free data releasg Let fo, - j“n be a sequence of previ-
ously released tables, each of whicl-diverse. A new/-diverse tablél’}, , ; is said to

beinference-fredf and only if 3 T’m =1,...,n, s.t.ﬁ- = AnH. O

8 Although we focus orf-diverse data in this paper, one can easily extend our discussion to
k-anonymous data.



3.2 Inference attacks

We first describe a potential attacker and illustrate hovattecker may discover infer-
ence channels among multiple anonymized tables. We themiblewvarious inference
channels and discuss how to prevent them.

Attacker’'sknowledge. Before discussing possible inference channels, we firgtrithes

a potential attacker. We assume that the attacker has bepmgetrack of all the re-
leased tables; he thus possesses a set of released{tfﬂb) es., T, I3 whereT; is a
table released at time We also assume that the attacker has the knowledge of who
is and who is not contained in each table. This may seem tod#éatéetched at first
glance, but such knowledge is not always hard to acquireirsteince, consider med-
ical records released by a hospital. Although the attacksyr not be aware of all the
patients, he may know when target individuals (in whom hetierested) are admitted
to the hospital. Based on this knowledge, the attacker csity@duce which tables in-
clude such individuals and which tables do not. Anothemhaps the worst, possibility

is that the attacker may collude with an insider who has actedetailed information
about the patients; e.g., the attacker could obtains afligatients from a registration
staff. Thus, it is reasonable to assume that the attackeowledge includes the list of
individuals contained in each table as well as their quaesiiifier values. However, as
all the released tables afaliverse, the attacker cannot infer the individuals’ sevesi
attribute values with a significant probability. That ise throbability that an individ-
ual with a certain quasi-identifier has a particular sevesittribute is bound ta //;
P(St = s|Qr = q) < 1/¢. Therefore, the goal of the attacker is to increase this
probability of attribute disclosure (i.e., abov¢?) by comparing the released tables alll
together.

Comparing anonymized tables. Let us suppose that the attacker wants to know the
sensitive attribute of a particular individual, say Tom,0sh quasi-identifier value is
There are two types of comparisons that may help the attatkepmparison of table
T, that does not contain Tom and taL‘ZI? that does, and 2) companson Bfand T},
that both contain Tom. In both casgs< j. Let us call these type&(ﬂTl,T ) and
5(E,Tj), respectively. Note that in either case the attacker ongdedo look at the
records that may relate to Tom. For instance, if Tom is a 5%sye#d, then records
such as{[10 — 20], Female, Flu) would not help the attacker much. In order to find
records that may help, the attacker first finds fréiman equivalence class, where
q C ¢;[Qr]. In the case ob(—T;,T;), the attacker knows that Tom’s record is not in
e;; thus, none of the records i corresponds to Tom. Although such information may
not seem useful, it could help the attacker as he may be alelénmate such records
when he looks for Tom’s record froffi;. In the case o6 (T3, T);), however, the attacker
knows that one of the records ¢ must be Tom’s. Although he cannot identify Tom’s
record or infer his sensitive attribute at this point{amust contain at leagtnumber of
records that are all indistinguishable to each other aralaleast number of distinct
sensitive attribute values), this could be useful infoiioratvhen he examinesg;.

After obtaininge;, the attacker needs to identify iﬁj the records that possibly
correspond to the recordsdp, that is, equivalence class(es) that eenpatibleto e;.
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Fig. 5. Compatible equivalence classes

Definition 6. (Compatibility ) Let @ = {q1,...,qn} be a set of quasi-identifier at-
tributes. Lete[q;] be theg;-value of an equivalence classwhereg; € (). We say that
two equivalence classeg ande, arecompatiblewith respect taQ if and only if any
of the following conditions holds.

1. VYgq; € Q, eqfqi] = es]q:]: the quasi-identifer values ef, ande, are identical to
each other; we denote it as = e;,.

2. e, Z epandVy; € Q, eqfqi] C eplgs]: the quasi-identifer value of, is a more
generalized form of the quasi-identifier @f; we denote it ag, < ey.

3. eq Zep eq A ey, andvg; € Q, eq[q;] Neplq;] # O: the quasi-identifier values of
e, ande, overlap with each other; we denote it@s< e, O

Example 3.Consider Fig. 5, where the records of two tablésand7; are spatially
represented along the dimension of the quasi-identifige, For simplicity, we do not
show their sensitive gttribute values. Talblecontains six records (shown d3’), and

its 2-diverse version[;, consists of three equivalence classgs, e;2, ande;s3. On the

other hand, tabl@’; contains four additional records (shown &s); and its 2-diverse
version,fj, consists of four equivalence classes,, e;2, ¢;3, ande. GivenT; and

f}-, the following compatible equivalences can be found.

1. €1 = 6j1 (F|g 5 (I))
2. e;n < ejo (Fig. 5 (ii))
3. e3< €3 ande;s < €4 (Flg S) (”I))

The fact that two equivalence classes are compatible isihiat there exist some
records present in both equivalence classes, althoughghasi-identifiers may have
been modified differently. In what follows, we show how machsuch records be-
tween compatible equivalence classes could enable thekettto make high probabil-
ity inferences.

I nference channels between compatible equivalence classes. As previously discussed,

there are three cases of compatible equivalence classesowexamine these cases
in conjunction with each of (—7;, T;) andd(T3, T;), illustrating how the attacker may
infer Tom’s sensitive attributes;r.



e; = €; e; < €; €; <= €51 andel- < €ej2
6(=T5,T5) | e5[ST\ €ilS] | e5[S]\ eilS] | ((ejn[STU €s2[S]) \ ei[S]) NejwlS], k=1,2
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Fig. 6. Summary of inference-enabling sets

1. e; = ej ore; < ;i Inthese cases, the attacker can reason that all the reicords
e; must also appear in;, and the attacker only needs to look at the sensitive at-
tribute values. Let;[S] ande, [S] be the multisets (i.e., duplicate-preserving $ets
of sensitive attribute values i) ande;, respectively.

(a) Inthe case Qf(ﬂﬁ-, fj), the attacker knows that Tom'’s sensitive attribute value
is not ine;[S], but ine;[S]; i.e., sy ¢ e;[S] andsy € e;[S]. As he knows
that all the values ire;[S] must also appear in;[S], he can conclude that
st € (e;[S]\ ei[S]). Therefore, the attacker can infer with a probability
greater thar /¢ if (e;[S]\ e;[S]) contains less thafinumber of distinct values.

(b) Inthe case oeﬁ(ﬁ,fj), st € e;[S] andsy € e;[S]. However, as both sets are
(-diverse, the attacker does not gain any additional inftionan s-.

2. e; = ej1 ande; < e;2°: In this case, the attacker reasons that the recorelsriust
appear in eithee;; or e;o. Moreover, as the attacker knows Tom’s quasi-identifier
is ¢, he can easily determine which ef; ande;, contains Tom’s record. Let us
suppose;; contains Tom’s record; i.eq, C e;1[Qr]. Lete;[S], e;1[S], ande;s[S]
be the multisets of sensitive attribute values;re;,, ande;, respectively.

(&) Inthecase cﬁ‘(ﬂﬁ, fj), the attacker knows that Tom’s sensitive attribute value
is included in neithek;[S] nor e;2[S], but ine;1[S]; i.e., sr ¢ e;[S], sr ¢
e;2[S], andsy € e;1[S]. Note that unlike the previous cases, he cannot simply
conclude thatsy € (ej1[S] \ €;[S]), as not all the records ig; are ine;j;.
However, it is true that Tom’s record is #}; U e;o, but not ine;; thussr €
(ej1[S] U €j2[S]) \ e;[S]. As Tom’s record must be in;;, the attacker can
finally conclude thasy € ((e;1[S] U e;2[S]) \ ei[S]) N e;1[S]. Therefore, if
this set does not contain at ledsdistinct values, the attacker can infer with
a probability greater thah/¢.

(b) Inthe case oaﬁ(ﬂ Tj), the attacker knows that Tom'’s sensitive attribute value
appears in both;[S] ande;; [S]. Based on this knowledge, he can conclude that
(st € €;[S] Ne;1[S]). Thus, attacker can infef, with a probability greater
thanl1/¢if (e;[S] N e;1[S]) contains less thahdistinct values.

We summarize our discussion on possible inference-ergabbits in Fig. 6. Intu-
itively, a simple strategy that prevents any inference isrteure that such sets are all
(-diverse. Note that with current static anonymization teghes, this could be a daunt-
ing task as inference channels may exist in every equivalelass and also with respect
to every previously released dataset. In the followingieactve address this issue by
developing an efficient approach to preventing inferencemd data anonymization.

* Therefore, set operations (e.9,,U, and\) used in our discussion are also multiset operations.
® It is possible thafl; contains more than two equivalence classes that are compatible to
However, we consider two compatible equivalence classes here fplicimn



4 Secure Anonymization

In this section, we present an approach to securely anonygrézdataset based on pre-
viously released datasets. We first describe a siffipligersity algorithm and propose

a noble quality metric that measures the amount of datartdmtdn generalized data.

Based on the algorithm and the quality metric, we then d@vatoapproach where new
records are selectively inserted to a previously anonyindagtaset while preventing

any inference.

4.1 ¢-diversity algorithm and data quality

Data anonymization can be considered a special type of tatiiton problem where
the cost of data modification must be minimized (i.e., thdituaf data must be maxi-
mized) while respecting anonymity constraints (ekganonymity or/-diversity). Thus,
the key components of anonymization technique include rgdimation strategy and
data quality metric.

(-diversity algorithm. In [12], Machanavajjhala et al. propose @&diversity algorithm
by extending the:-anonymity algorithm in [9] to ensure that every equivaketass
is ¢-diverse. In this paper, we present a slightly differenbathm which extends the
multidimensionabpproach described in [10]. The advantage of the multidgiczrl
approach is that generalizations are not restricted bylpfised generalization hierar-
chies (DGH) and thus more flexible. Specifically, the aldornitconsists of the follow-
ing two steps. The first step is to find a partitioning schenthef-dimensional space,
whered is the number of attributes in the quasi-identifier, such ¢aah partition con-
tains a group of records with at leashumber of distinct sensitive attribute values. In
order to find such a partitioning, the algorithm recursivghyits a partition at the me-
dian value (of a selected dimension) until no more split isve¢d with respect to the
£-diversity requirement. Then the records in each partiiongeneralized so that they
all share the same quasi-identifier value, thereby formmgguivalence class. Com-
pared to the technique based on DGH in [12], this multidirferad approach allows
finer-grained search and thus often leads to better datéyqual

Data quality metric. The other key issue is how to measure the quality of anonyanize
datasets. To date, several data quality metrics have begroged fork-anonymous
datasets [2, 6, 10,7, 16]. Among them, Discernibility MetfDM) [2] and Average
Equivalence Class Size Metric [10] there are two data quadétrics that do not depend
on generalization hierarchies. Intuitively, DM measutes ¢ffect ofk-anonymization
process by measuring how much records are indistinguietatrih each other. How-
ever, DM does not consider the actual transformation of daltzes. For instance, sup-
pose that there are more thamecords that already have the identical quasi-identifer
value and that they are all in the same equivalence class. tBeeigh these records are
not generalized at all, DM penalizes each of these un-gknedlarecords. The same
issue arises for the average equivalence class size nvaliich measures the quality of
anonymization directly based on the size of the equivaletasses.
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Fig. 7. Generalization and data distortion

To address this shortcoming, we propose a data quality enitat captures the
amount of data distortion by measuring the expansion of eqalvalence class (i.e., the
geometrical size of each partition). For instance, comdtilg 7 (i), where the records
are spatially represented in 2-dimensional space for gdestifier,{ Age Weight. In
the figure, the dotted regions group the records into3vdiverse equivalence classes,
e; andes. Note that as all the records in an equivalence class arefiedo share
the same quasi-identifer, each region indeed representseiieralized quasi-identifier
of the records contained in the region. For instance, themdined records ie; may
share the identical quasi-identifidr; — as], [w1 — ws]). Thus, data distortion can be
measured naturally by the size of the regions covered byalgumice classes. Based
on this idea, we now define a new data quality metric, refetweasIinformation Loss
metric (IL) as follows.

Definition 7. (Information loss) Let e = {r,...,7,} be an equivalence class where
Qr ={a1,...,an}. Then the amount of data distortion occurred by genergizin
denoted by L(e), is defined as:

G
IL(e) = le| x Zj:l,...,m I‘D;I‘

wherele| is the number of records in and|D;| represents the domain size of attribute
a;. |G,| represents the amount of generalization in attribytée.g., the length of an
interval which contains all the attribute values existing.i O

4.2 Updates of anonymized datasets

As previously described, our goal is to produce an up-te-dabnymized dataset by
inserting new records into a previously anonymized datbme that in our discussion
below, we assume that alidiverse tables are maintained internally as partitioted,
unmodified tables. That is, ea¢kdiverse table consists of a set of equivalent groups,
{e1,...,em}, which contain un-generalized records. This is a pracésalmption as
generating actudtdiverse records for publication from a partitioned takle relatively
simple task. Consequently, given such a partitioned tatdesanew set of records, our
insertion algorithm produces a new partitioned table winctudes the new records.



11

Suppose that an anonymized tallfle which is an¢-diverse version of a private
table 7', has been published. Suppose that at a later time, a new set@fiskR =
{r1,...,r} has been inserted intB. Let us denote the updatéddas 7". Intuitively, a
new/-diverse versiori” can be generated by insertifginto T.The key requirements
for such insertions are: 1J must be/-diverse, 2) the data quality df" should be
maintained as high as possible, andi3)must be inference-free.

We now briefly describe such an insertion algorithm whichuees the first two
requirements. A key idea is to insert a record into a “cldsegtivalence class so that
the necessary generalization is minimized. For instamteud revisit Fig. 7, which (i)
depicts six records partitioned into twediverse equivalence classes, and (ii) shows
revised equivalence classes after recorslinserted. Observe that ass inserted into
ey resulting ine}, the information loss of the dataset is increased bye’,) — I L(e;).
However, ifr were inserted int@,, then the increase of the information would have
been much greater. Based on this idea, we devise an insefforithm that ensures
high data quality as follows.

1. (Add) If a group of records iR forms an/-diverse equivalence class which does
not overlap with any of existing equivalence classes, thercan simplyadd such
records toT" as a hew equivalence class.

2. (Insert) The records which cannot be added as a new equivalence dasben-
sertedinto some existing equivalence classes. In order to mirgrtiiz data distor-
tion in 77, each record, is inserted into equivalent group in T which minimizes
IL(ej @] {’I"v}) - IL(EJ)

3. (Split) After adding or inserting all the records finto 7', it is possible that the
number of distinct values in some equivalence class excaedtsuch an equiv-
alence class exists, then we may be ablsglit it into two separate equivalence
classes for better data quality. Note that splitting an\ejance class may or may
not be possible, depending on how the records are distdbatéhe equivalence
class.

Clearly, the algorithm above do not consider the possjbilitinference channels at
all. In the following section, we enhance this algorithitfigr to ensure that an updated
dataset does not create any inference channel.

4.3 Preventing inference channels

In Section 3, we discuss that in order to prevent any infexehannel, all the inference-
enabling sets (see Fig. 6) mustbdiverse. We now discuss how to enhance our unse-
cure insertion algorithm to ensure such sets aré-diverse. Specifically, we examine
each of three major operatiore]d insert, andsplit, and describe necessary techniques
to achieve inference-free updates.

Clearly, the add operation does not introduce any inferehe@nel, as it only adds
new ¢-diverse equivalence classes that are not compatible tgeewously released
equivalence class. However, the insert operation maydntre inference channels (i.e.,
e;[S] \ e;[S]). That s, if the new records inserted into an equivalenaetontain less
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than/ number of distinct sensitive values, then the equivalefessdecomes vulnera-
ble to inference attacks through—T1;, T;). Thus, such insertions must not be allowed.
In order to address this issue, we modify the insertion dmeras follows. During
the insertion phase, instead of inserting records dird¢otlquivalence classes, we in-
sert records into the waiting-lists of equivalence classgparently, the records in a
waiting-list can be actually inserted into the correspagdiquivalence class if they are
(-diverse by themselves; until then, they are suppressed fine anonymized dataset.
Note that as more records are continuously inserted inttatble (and into the waiting
lists), for most records, the waiting period is not significdHowever, to expedite the
waiting period, we also check if the records in the waitirsislican be added as an inde-
pendent equivalence class which does not overlap with admr @xisting equivalence
class.

There are two inference channels that may be introduced amerguivalence class
e; is splitintoe;; ande;,. The first possibility is((e;1 [S]Ue;2[S])\ei[S])Ne;x[S], k =
1,2. Clearly, if such sets are nétdiverse, then they become vulnerable to inference
attacks througli(—T;, T;). Thus, the condition must be checked before splitting he
other possible inference channeldgiS] N e;x[S], k£ = 1, 2. This implies that if there
are not enough overlapping sensitive values between thaatiequivalence class and
each of the split equivalence classes, then split equivelefasses become vulnerable
to inference attacks througt{7;, T;). Thus, unless such condition is satisfiedmust
not be split. The tricky issue in this case is, however, thigrence channels may exist
between any of the compatible equivalence classes thatprevéously released. For
instance, if there exists equivalence clgsthat was released beforg then the splitting
condition must be satisfied with respecefaas well. This means that the system needs
to maintain the information about all the previous releakesrder to facilitate this, we
store such information for each equivalence class; thatish equivalence class keeps
the information about its previous states. Note that it dogsrequire a huge storage
overhead, as we need to keep only the information about th&tse attribute (not
all the records). We also purge such information when anyigus equivalence class
becomes no longer compatible to the current equivalenss.cla

Clearly, inference preventing mechanisms may decreasguddéy of anonymized
data. Although it is a drawback, it is also the price to payfetter data privacy.

5 Experimental Results
In this section, we describe our experimental settings epdrt the results in details.

Experimental setup. The experiments were performed oB.&6 GHz Intel IV proces-
sor machine with GB of RAM. The operating system on the machine was Microsoft
Windows XP Professional Edition, and the implementatiors Wailt and run in Java

2 Platform, Standard Edition 5.0. For our experiments, vweglike Adult dataset from
the UC Irvine Machine Learning Repository [15], which is satered a de facto bench-
mark for evaluating the performance of anonymization atgors. Before the experi-
ments, the Adult data set was prepared as described in [@]. A\Ve removed records
with missing values and retained only nine of the origintlfawtes. In our experiments,
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we consideredage work class marital status occupationrace, gender native coun-
try, salary} as the quasi-identifier, aretlucatiorattribute as the sensitive attribute.
For the experiments, we implemented three diffefediversity approachestatic
I, Static Il, andDynamic Static | is an approach where the entire dataset is anoegimiz
whenever new records are inserted, while Static Il anongsirew records indepen-
dently and merges the result with the previously anonymudathset. Dynamic im-
plements our approach, where new records are directlytatsénto the previously
anonymized dataset while preventing inference channels.

Vulnerability. The first question we investigated was how vulnerable detasere

to inferences when they were statically anonymized (i.&tiSl). In the experiment,
we first anonymized 10K records and generated the first “pbtl” dataset. We then
generated twenty more subsequent datasets by anonymifi6@ tore records each
time. Thus, we had the total of twenty-ofdiverse datasets with different sizes ranging
from 10K to 30K. After obtaining the datasets, we examineditifierence-enabling sets
existing between the datasets. For instance, we examirethférence-enabling sets
of the 12K-sized dataset with respect to the 10K- and 11lKesidatasets. Whenever
we found an inference channel, we counted how many records wenerable by it.
Fig. 8 shows the results whefe= 5, 7. As expected, more records become vulnerable
to inferences as the size of dataset gets larger; for thes3tdd dataset, about 8.3%
of records are vulnerable to inferences. Note that there wervulnerable records in
datasets generated by Static || and Dynamic.

Data Quality. Next, we compared the data quality resulted by Static |,iStgtand
Dynamic. For each approach, we generated different sizégiobrse datasets, ranging
from 1K to 30K, as previously described. For the data quatiasure, we used the av-
erage cost of IL metric (described in Section 4.1). Thatis,quality of an anonymized
datasetT" was computed asy ... IL(e) / |T|, where€ is a set of all equivalence

classes in7'. Intuitively, this measure indicates the degree to whiotheaf record is

generalized. Our experiment results are shown in Fig. hodigh Dynamic results in
lower data quality when compared to Static |, it produceshrhigher quality data than
Static Il. Moreover, the quality is maintained regardlekthe data size. Fig. 10 shows
the number of suppressed records in Dynamic approach. Nateach number shows
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the total number of suppressed records with respect to tfire elataset. For instance,
when? = 5, only 421 records needed to be suppressed for the 30K-sized dataset.

Execution Time. Fig. 11 shows the execution times of anonymizing variousssif
datasets. As shown, the execution time of Static | increlasearly with respect to the
size of the dataset, while Static Il and Dynamic produce gymizred datasets almost
instantly.

6 Related Work

In this section, we briefly survey existing literature thdtleesses data privacy. Instead
of providing a comprehensive survey, we discuss variousasmf data privacy. Note
that we do not include the-anonymity or¢-diversity work here as detailed discussion
can be found in Section 2.

Ensuring privacy in published data has been a difficult mwbior a long time, and
this problem has been studied in various aspects. In [8],Hemhprovides informative
discussion on the risk and harm of undesirable disclosurdsiscusses how to eval-
uate a dataset in terms of these risk and harm. In [3], Dadepases the problem of
re-identification in (supposedly) anonymous census recardl firstly introduces the
notion of “quasi-identifier”. He also suggests some ideahsas suppression or en-
cryption of data as possible solutions.

Data privacy has been extensively addressed in statistatabases, which primar-
ily aim at preventing various inference channels. One ottiramon techniques is data
perturbation [11, 14, 18], which mostly involves swappirgfadvalues or introducing
noise to the dataset. While the perturbation is applied inamawhich preserves sta-
tistical characteristics of the original data, the transfed dataset is useful only for
statistical research. Another important technique is yuestriction [4, 5], which re-
stricts queries that may result in inference. In this apgnogueries are restricted by
various criteria such as query-set-size, query-histarg, @artitions. Although this ap-
proach can be effective, it requires the protected datantairein a dedicated database
at all time.
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Conclusions

In this paper, we presented an approach to securely anomgnrazontinuously grow-
ing dataset in an efficient manner while assuring high datdityuln particular, we
described several inference attacks where attacker triesdermine the imposed pri-
vacy protection by comparing a multiple number of anonymhidatasets. We analyzed
various inference channels and discussed how to avoid sifiefences. We also in-
troduced Information Loss (IL) metric, which measures thant of data distortion
caused by generalization. Based on the discussion on mfeichannels and IL metric,
we then developed an algorithm that securely and efficiémélgrts new records into an
anonymized dataset while assuring high data quality.
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