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ABSTRACT
Modern operating systems primarily use Discretionary Access
Control (DAC) to protect files and other operating system re-
sources. DAC mechanisms are more user-friendly than Manda-
tory Access Control (MAC) systems, but are vulnerable to attacks
that use trojan horse or exploit buggy software. We show that it is
possible to have the best of both worlds: DAC’s easy-to-use dis-
cretionary policy specification and MAC’s defense against trojan
horses and buggy programs. This is made possible by a key new
insight that DAC has this weakness not because it uses the discre-
tionary principle, but because existing DAC enforcement mecha-
nisms assume that a single principal is responsible for any request,
whereas in reality a request may be influenced by multiple princi-
pals; thus these mechanisms cannot correctly identify the true ori-
gin(s) of a request and fall prey to trojan horses. We propose to
solve this problem by combining DAC’s policy specification with
new enforcement techniques that use ideas from MAC’s informa-
tion flow tracking. Our model, called Information Flow Enhanced
Discretionary Access Control (IFEDAC), significantly strengthens
end host security, while preserving to a large degree DAC’s ease
of use. In this paper, we present the IFEDAC model, analyze its
security properties, and discuss our design and implementation for
Linux.

1. INTRODUCTION
Modern commercial-off-the-shelf (COTS) operating systems use

Discretionary Access Control (DAC) to protect files and other op-
erating system resources. According to the Trusted Computer Sys-
tem Evaluation Criteria (TCSEC) (often referred to as the Orange
Book) [10], Discretionary Access Control is “a means of restrict-
ing access to objects based on the identity of subjects and/or groups
to which they belong. The controls are discretionary in the sense
that a subject with a certain access permission is capable of passing
that permission (perhaps indirectly) on to any other subject (un-
less restrained by mandatory access control).” It has been known
since early 1970’s that DAC is vulnerable to trojan horses. A Tro-
jan horse, or simply a trojan, is a piece of malicious software that
in addition to performing some apparently benign and useful ac-
tions, also performs hidden, malicious actions. Such trojans may
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come from email attachments, programs downloaded from the In-
ternet, or removable media such as USB thumb drives. By planting
a trojan, an attacker can get access to resources the attacker is not
authorized under the DAC policy, and is often able to abuse such
privileges to take over the host or to obtain private information.
DAC is also vulnerable when one runs buggy programs that receive
malicious inputs. For example, a network-facing server daemon
may receive packets with mal-formed data, a web browser might
visit malicious web pages, and a media player can read malformed
data stored on a shared drive. An attacker can form the input to
exploit the bugs in these programs and take over the processes run-
ning them, e.g., by injecting malicious code. In essence, a buggy
program that takes malicious input can become a trojan horse.

For existing DAC mechanisms to be effective in achieving the
specified protection policies, one has to assume that all programs
are benign (be functional as intended) and correct (won’t be ex-
ploited by malicious inputs). This assumption does not hold in to-
day’s computing environments. This weakness of DAC is a key
reason that today’s computer hosts are easily compromised.

Even though DAC’s weaknesses is widely known since early
1970’s, DAC is today’s dominant access control approach in op-
erating systems. We believe that this is because DAC has some
fundamental advantages when compared with MAC. DAC is easy
and intuitive (compared with MAC) for users to configure, many
computer users are familiar with it, and the discretionary feature
enables desirable sharing. In this paper we show that it is possible
to have the best of both worlds: DAC’s easy-to-use discretionary
policy specification and MAC’s defense against trojan horses and
buggy programs. This may sound impossible based on conven-
tional wisdom. In fact, it has been asserted that “This basic princi-
ple of discretionary access control contains a fundamental flaw that
makes it vulnerable to Trojan horses.” [26]. We now show why this
assertion is inaccurate.

We dissect a DAC system into two components: the discre-
tionary policy component and the enforcement component. Take
the access control system in UNIX-based systems as an example.
The policy component consists of the following features: each file
has an owner and a number of permission bits controlling which
users can read/write/execute the file. The owner of a file can update
these permission bits, which is the discretionary feature of DAC.
The policy component specifies only which users are authorized,
whereas the actual request are generated by processes (subjects)
and not users. The enforcement component fills in this gap. In
enforcement, each process has an associated user id (the effective
user id) that is used to determine this process’s privileges, and there
are a number of rules that determine how the effective user id is set.
We point out that these rules are mandatory in the sense that they
are specified by the system and is not controlled by users. Such
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rules include the behavior of various setuid-related system calls.1

In short, the policy part specifies which users can access what re-
sources and the enforcement part tries to determine on which users’
behalf a process is executing.

The key new insight that enables us to have the best of both
worlds is DAC’s advantage over MAC lies in the policy component,
whereas DAC’s weakness comes from the enforcement component.
Thus we can keep DAC’s policy component while revamping the
enforcement component.

The key weakness in existing DAC enforcement mechanisms is
that they assume that a single principal is responsible for any re-
quest, whereas in reality a request may be influenced by multiple
principals; thus these DAC mechanisms cannot correctly identify
the true origin(s) of a request and fall prey to trojan horses. This
is the fundamental limitation of existing DAC enforcement mech-
anisms. In DAC, when one user’s process executes a program, the
principal remains to be the user, unless the program is setuid en-
abled. As a result, the Trojan horse executed by a user will carry
the user’s identity and has all privileges associated with the user.
However, the reality is that when one user’s process executes a
program controlled by another user (possibly a trojan planted by
an attacker), both the invoker and the controllers of the program
content may affect the requests made by the process. That is, the
master of the process is a set containing both the invoker and the
controllers. The process is guaranteed to act on behalf of the in-
voker only when the program is benign. Similarly, after reading
data, the process continues acting on behalf of the old master only
when the program is correct; otherwise the (potentially maliciously
formed) data could be used to exploit the program. If the program
is not assumed to be correct, the controllers of the input data must
be added to the set of masters. With a set of masters, the privileges
associated the process is the interaction of the privileges of each
individual master.

Utilizing this insight to solve DAC’s weakness, we keep the dis-
cretionary policy component, but change the enforcement compo-
nent. In the enforcement component, one should maintain a set of
principals, rather than a single one, for each process. When a re-
quest occurs, it is authorized only when every principal in the set
is authorized according to the DAC policy, since any of those prin-
cipals may be responsible for the request. We develop this idea
into the Information Flow Enhanced Discretionary Access Con-
trol (IFEDAC) model that enhances DAC to defend against trojan
horses and buggy software. We believe that IFEDAC can still be
called DAC, even though the information flow tracking techniques
are from mandatory access control. The fundamental difference
of IFEDAC from MAC is that protection labels are not centrally
specified, but rather discretionally specified. In IFEDAC, whether
a subject can access an object is based on whether the requesters’
identities satisfy the DAC policy, rather than the integrity level of
the object. IFEDAC follows the discretionary control principle,
and allows owners to decide which other users can access the file.
Second, while IFEDAC uses mandatory rules to track the set of
principals of each process and uses this in making access control
decisions, all DAC mechanisms must use some mandatory rules to
track who is the requester. In short, IFEDAC is DAC with enhanced
enforcement techniques borrowed from MAC2.

IFEDAC is the first DAC model that can defend against trojan
horses and attacks exploiting buggy software. This is achieved

1The actual DAC enforcement in UNIX-based systems is much
more complicated than described here. See [6] for an excellent
discussion of the complexities.
2Please see Section 6 for a detailed comparison among IFEDAC,
traditional DAC and MAC

by precisely identifying and fixing what makes DAC vulnerable
to trojan horses and buggy programs. IFEDAC can significantly
strengthen end host security, while preserving to a large extent
DAC’s ease of use. We have implemented IFEDAC for Linux as
a kernel module, using the Linux Security Modules (LSM) frame-
work [32]. While the description of the IFEDAC model in this
paper is based on our design for Linux, we believe that the model
can be applied to other UNIX variants with minor changes, and the
general approach would be applicable also to non-Unix operating
systems such as the Microsoft Windows family.

The rest of this paper is organized as follows. We first give an
overview of IFEDAC in Section 2, then present a formal model of
IFEDAC in Section 3, and analyze the security properties in Sec-
tion 4. We discuss our implementation of IFEDAC for Linux and
its evaluation in Section 5. We compare IFEDAC with traditional
DAC and MAC respectively in Section 6. We discuss related work
in Section 7 and conclude in Section 8.

2. AN OVERVIEW OF IFEDAC
One key concept in IFEDAC is the contamination source. Each

contamination source represents a channel potentially controlled by
a different entity who may compromise the system integrity. Each
DAC user account that has a login shell and is not root is viewed
as a separate contamination source. Remote network communica-
tion is another contamination source (denoted as net), which repre-
sents the remote attackers who do not have a local account. In the
following description, we use subject and process interchangeably,
and object and file interchangeably.

IFEDAC maintains an integrity level for each subject and object.
The value of an integrity level is a set of contamination sources that
indicate who may have gained control over the subject or who may
have changed the content stored in the object. The integrity level
is tracked using information flow technique, which is presented in
Section 3.

In IFEDAC, the access control policy is specified by associating
each object with a read protection class (rpc) and a write protection
class (wpc); each is a set of contamination sources that indicates
which entities are authorized to read from and write to the object.
When a subject requests to read (write) an object, the access is
allowed if the subject’s integrity level is a subset of the object’s
rpc (wpc), i.e., all of the contamination sources of the subject are
allowed to access the object. In most cases, the rpc and wpc contain
the entities who are authorized determined by the DAC policy.

Most real-world attacks are prevented by the default policy
model of IFEDAC we have introduced so far. For example, if a
remote attacker breaks in by exploiting a vulnerability in a network
server, the server process controlled by the attacker will have net
in the integrity level, and hence cannot access the system core files
and the files that are authorized only to local users. Similarly, if a
careless administrator executes a trojan horse downloaded from a
malicious site or opens an email attachment that is a mal-formed
file exploiting a vulnerable application, these files will have net
in their integrity levels, as will the processes running and reading
these files. Last, if a malicious local user u exploits a vulnerability
in a setuid-root program to gain root privilege, the exploited pro-
cess will have u in its integrity level, and hence it cannot access the
system core files and other files that are not authorized to u.

While the default policy model of IFEDAC provides strong se-
curity guarantees to protect both core system files and user-owned
files against trojan horses and vulnerability exploiting attacks, the
model will disallow some legitimate operations, i.e., some pro-
cesses need to access files that they are not authorized to access
according to the policy. The same problem also exists in the DAC
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system and is handled by the setuid feature, which impose unlim-
ited trust on these programs. IFEDAC handle this problem by spec-
ifying exceptions for programs. Exceptions imply trusts over pro-
grams and such trusts are strictly limited and can be clearly spec-
ified. We give a definition of exceptions in Section 3, analyze the
underlying security assumptions for exceptions in Section 4, and
discuss the exception policy configuration in practice in Section 5.

DAC offers adequate protection when all programs are benign
and correct. IFEDAC can enforce the same policy without relying
on this unrealistic assumption. We analyze the security properties
IFEDAC can provide in Section 4. In short, IFEDAC weakens the
assumption to be (1) the programs that are explicitly identified as
benign are benign (2) the programs that have exceptions are correct
in processing input data.

3. THE IFEDAC MODEL
We now give a formal definition of the IFEDAC model for Linux.

3.1 Elements in the IFEDAC Model
The IFEDAC model has the following elements:

• S denotes the set of all subjects (i.e., processes).
• O denotes the set of all objects (i.e., files).
• U denotes the set of users. The set U ∪{net} is the set of all

contamination sources.

The users are partitioned into two subsets: U = A ∪ N ,
where A denotes system administrators and N denotes non-
administrators. The users in A are trusted to perform system
administration through certain limited channels, whereas the
users in N are not. The administrators in A are similar to the
notion of “sudoer" in the traditional DAC system in Linux.
• L = 2U∪{net} is the set of all security labels that are used

for integrity levels and protection classes. These labels form
a lattice under a partial order≥ such that `1 ≥ `2 if and only
if `1 ⊆ `2. The meet (i.e., greatest lower bound) of `1, `2 in
the poset 〈L,≥〉 is therefore `1 ∪ `2. The greatest element in
〈L,≥〉 is ∅, which we use > to denote; it means the subject
or object has not been contaminated by any source. The least
element is U ∪ {net}, which we use ⊥ to denote.
• A function int : S ∪ O → L assigns an integrity level to

each subject and each object.
• Each object o has three protection classes.

– A function rpc : O → L assigns a read protection
class to each object.
The value rpc(o) can be explicitly set. If it is not ex-
plicitly set, then rpc(o) is inferred from DAC as fol-
lows: If o is world-readable, then rpc(o) = ⊥. Oth-
erwise, rpc(o) = Ur(o), where Ur(o) is the set of
users in U who are authorized to read o. If o is group-
readable, then Ur(o) may change when group mem-
bership changes. IFEDAC uses the group membership
information at the time of access to determine rpc(o).

– A function wpc : O → L assigns a write protection
class to each object.
Unless explicitly set, the value wpc(o) is inferred from
DAC similarly to rpc(o). We expect that for the vast
majority of objects, rpc(o) and wpc(o) are inferred
from DAC.

– A function apc : O → L assigns an admin protection
class to each object.
This function determines which subject can change the
rpc(o) and wpc(o) either directly or indirectly, through

changing its DAC permission bits. As the Linux DAC
mechanism allows only root or the owner of an object
to change the permission bits, in IFEDAC we choose
apc(o) = {owner(o)}.

• A function spc : S → L assigns a subject protection class
to each subject. The value spc(s) determines which subjects
can send signals or use ptrace to interrupt or control the sub-
ject s. The rules for determining spc is described in next
subsection.

3.2 Access control rules in IFEDAC
IFEDAC has 17 rules for access control and label mainte-

nance(See Table 1). They are separated into four parts: subject
integrity tracking, object integrity tracking, file system protection,
and inter-process communications (IPC) protection. These rules
are summarized in Table 1. Some of these rules can have excep-
tions. We describe them in Section 3.3. We point out that end
users do not need to know these rules to use a Linux system with
IFEDAC, just as they do not need to know the intricacies of setuid-
related system calls to use current Linux.
Subject Integrity Tracking The subject’s integrity level is deter-
mined as follows.

• (m1). The first process, init, has integrity level >.

• (m2). When a new process is created, it inherits the parent
process’s integrit level.

• (m4). When a process receives network traffic, its integrity
level is updated to include net as an additional contamination
source. This represents that the attacker who controls the net-
work may have gained control over the subject by exploiting
vulnerabilities in the subject.

• (m3), (m5). When a process s executes or reads an object
o, its integrity level is contaminated by o, that is, int(s) ←
int(s) ∪ int(o). This represents whichever source that may
have contaminated the object o now may have gained control
over s3.

• (m6). When a process logs in a user u, the process is con-
taminated according to the type of the user. If u is an admin-
istrator, then the process’s integrity level remains unchanged.
Otherwise, if u is a non-administrator, the process’s integrity
level is updated to include u as an additional contamination
source, which represents that the user u has gained control
over the process. We use the fact that a login in Linux trig-
gers an event wherein all three uids (real uid, effective uid,
saved uid) of a process are changed to a new user. This event
occurs whether the login is through a terminal and the X
desktop (the “login” process), via an ssh or ftp server, or by
the execution of the “su” command.

Object Integrity Tracking For subject integrity tracking to be
effective, we also need object integrity tracking.

• (o1). When a new object is created by a process, the object’s
integrity level is initialized to be the process’s integrity level.

3In our subject integrity racking rules, the integrity levels of pro-
cesses can only go down and can never go up. One may worry
that the whole system converges to ⊥ after a time. This is not the
case. It is true that the integrity level of any individual process can
never go up after it goes down. However, as some processes, e.g.,
the root process of the system (i.e., init), are high, there are always
new processes coming up that are also high. One can use a tree as
an analogy. Once a leaf is dead, it does not become alive again.
However, because the root is alive, new leaves keep coming up.
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condition or effect exceptions
Subject Integrity Tracking
After creating the first subject s0 int(s0)← > (m1) no
After s creates s′ int(s′)← int(s) (m2) no
After s executes o int(s)← int(s) ∪ int(o) (m3) no
After s reads from the network int(s)← int(s) ∪ {net} (m4) yes
After s reads from o int(s)← int(s) ∪ int(o) (m5) yes
After s logs in a non-administrator u int(s)← int(s) ∪ {u} (m6) no
After s1 receives IPC data from s2 int(s1)← int(s1) ∪ int(s2) (m7) yes
Object Integrity Tracking
When o is created by s int(o)← int(s) (o1) no
When int(o) is not previously assigned int(o)← wpc(o) (o2) no
After o is written by s int(o)← int(s) ∪ int(o) (o3) yes
Object Protection
For s to read o require int(s) ≥ rpc(o) (a1) yes
For s to write o require int(s) ≥ wpc(o) (a2) yes
For s to change rpc(o) or wpc(o) require int(s) ≥ apc(o) (a3) yes
For s to change apc(o) require int(s) ≥ > (a4) no
For s to change int(o) to `′ require int(s) ≥ apc(o) ∧ int(s) ≥ `′ (a5) no
IPC Protection
For s1 to interrupt s2 require int(s1) ≥ spc(s2) (i1) no
For s1 to ptrace s2 require int(s1) ≥ spc(s2) ∧ int(s1) ≥ int(s2)

a (i2) no

aIf int(s1) 6= >, s2 cannot have any exception privileges. All these conditions should be satisfied during the whole tracing period. A
violation will stop the tracing.

Table 1: The 17 access control and label maintenance rules. The last column indicate whether the rule can have an exception.

• (o2). For an object that is created before IFEDAC is de-
ployed, its integrity level is initialized as its write protection
class, because the write protection class is derived from the
DAC permissions which can indicate how the object is pro-
tected before deploying IFEDAC.
• (o3). When an object o is modified by a process s, the ob-

ject’s integrity level is contaminated by s, that is int(o) ←
int(o) ∪ int(s).

File System Protection The access control rules for file system
protection are as follows.
• (a1), (a2). For a subject s to read o, we require that int(s) ≥

rpc(o). Similarly, we require that int(s) ≥ wpc(o) for s to
write to o.
• (a3). For s to change the rpc (o) and wpc (o), we require

int(s) ≥ apc(o).
• (a4). Linux DAC allows only root to change the owner of

a file; thus IFEDAC adopts the policy that for s to change
apc(o), we require int(s) = >.
• (a5). An object’s integrity level can be updated explicitly.

This is necessary, for example, to allow system updates. The
integrity level of downloaded updates will include net, and
needs to be upgraded to > before the updates can be in-
stalled. However, for s to update o’s integrity level to `, we
require both int(s) ≥ apc(o) and int(s) ≥ `. The former
requires that s represents the owner of o, and the latter pre-
vents malicious upgrading beyond one’s own integrity level.

Inter-process Communications Modern Linux supports various
mechanisms for inter-process communication (IPC). IFEDAC han-
dles IPC by categorizing the IPC mechanisms into three types.

• (m7). We call the first type Data Sending. The IPC mecha-
nisms that belong to this type include pipes, FIFO, message
queues, shared memory, local sockets and loopback network

communication. They can be used to send free-formed data,
and such data can be crafted to exploit bugs in the receiv-
ing process. Therefore after s1 receives IPC traffic from s2,
int(s1) ← int(s1) ∪ int(s2). IFEDAC does not apply ad-
ditional control to these IPCs, because they require active
participation of both the sender and the receiver. Without the
receiver’s active participation, the sender cannot force the re-
ceiver to receive data.

• (i1). We call the second type Interrupting. The IPC mech-
anisms that belong to this type include sending signals and
changing scheduling parameters of another process (through
the sys_set_priority() and sys_set_scheduler() system calls).
For most signals, the default behavior of the receiving pro-
cess is to terminate, core-dump, or stop, unless the process
registers its own signal handlers to overwrite the default ac-
tions. We do not want the attacker to be able to terminate
a critical system service or change the execution state of a
process that belongs to another user. In other words, a user
can only interrupt his own processes and only system ad-
ministrators can do so to the system processes. IFEDAC
achieves that by defining the subject protection class to in-
dicate the “owner" of a process. The spc value is deter-
mined as follows. Initially when a new process is created,
it inherits the parent process’s protection class. When a pro-
cess logs in a user u, its protection class is updated to {u}.
Then, for s1 to deliver an interrupting IPC to s2, we require
int(s1) ≥ spc(s2). If succeed, unlike the data sending IPCs,
the receiver’s integrity level does not change because it is dif-
ficult to use signaling to exploit a vulnerable process.

• (i2). We call the third type Controlling. The only IPC mecha-
nism that belongs to this type is ptrace. It enables the tracing
process to observe and control the traced process and is used
primarily for debugging. The tracing process can arbitrarily
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manipulate the memory and registers of the traced process,
and even inject code into the traced process. As with inter-
rupting IPCs, IFEDAC requires int(s1) ≥ spc(s2) for s1 to
ptrace s2. In addition, because the tracing process can easily
abuse the privileges of the traced process, IFEDAC requires
s2 does not have any privileges that are not available to s1.
That is, int(s1) ≥ int(s2), and s2 does not have any excep-
tions if int(s1) 6= >. These conditions should be satisfied
during the whole tracing period. Any violation will stop the
tracing immediately.

3.3 Exceptions to the Rules
The information flow tracking is a restricted enforcing mecha-

nism and the default policy described above would break some ap-
plications that need to access the files that they are not authorized
to access. The same problem also exists in the DAC system and
is handled by the setuid feature, which impose unlimited trust on
the setuid programs. IFEDAC handle this problem by introducing
exceptions. The exceptions are associated with program binaries,
and imply that these programs are trusted in certain ways. When a
program binary that has exceptions is loaded (through the execve
system call), if the current process’s integrity level satisfies the min-
imal integrity restriction and the program binary has the integrity
level >, the exceptions are enabled. Once a new binary is loaded,
the old exceptions are gone.
Exceptions to the subject integrity tracking Exception to the
network contamination rule ((m4) in Table 1) is by the notion of a
remote administration point (RAP). A process running a RAP pro-
gram maintains its integrity level when receiving network traffic.
If one wants to allow remote system administration through, for
example, the secure shell daemon, then one can identify the SSH
daemon as a RAP. The trust assumption underlying a RAP decla-
ration is that when the program is started in a benign environment
it will process the network input correctly and the attacker cannot
gain control of it by sending malformed network packets. We stress
that whether to declare a program as RAP is a decision made by the
local system administrator.

Similarly, exceptions to the file reading and IPC contamination
rules ((m5) and (m7) in Table 1) are done under the notion of a lo-
cal service point (LSP). The process running a LSP program main-
tains its integrity level when reading from files or receiving IPC
data from other processes. The trust assumption underlying the
LSP declaration is that the program will process file and IPC input
correctly.

The concepts of RAP and LSP are similar to the ring policy in
the Biba model, in which a subject can read objects of an arbi-
trary integrity level without dropping its own integrity level. This is
also similar to the notion of well-formed transactions in the Clark-
Wilson model, which can read low integrity unconstrained data
items and write to high integrity constrained data items.
Exceptions to object protection and integrity tracking For some
programs, the integrity level at which it is normally running does
not dominate the protection class of some objects it needs to access.
For example, the ftp daemon will be running at the integrity level
{net}, but it needs to read from the /etc/shadow file to authenti-
cate users. However, the shadow file has the read protection class
>, and thus the default policy will stop the access. We deal with
this by allowing exceptions to object protection rules ((a1) and (a2)
in Table 1). One can specify a set of file access exceptions for a
program. Each exception enables a process running the program
to read from or write to a file while violating the object protection
rules. For the example of ftp server, one can specify the ftp dae-
mon program to have a file access exception to read from the file

/etc/shadow.
A file write exception contains an additional field to enable an

exception to the object integrity tracking rule ((o3) in Table 1).
When that field is set, after the program writes to the file, the
file’s integrity level remains unchanged. For example, the pro-
gram /etc/passwd needs an exception to write to the file /etc/shadow
when it is executed by a non-administrator u at the integrity level
{u}. Moreover, the shadow file’s integrity level should remain as
> after being modified by passwd.

Note that since the old exception privileges are gone after a new
binary is loaded, even if a vulnerable program is granted some ex-
ception privileges and the process running that program is exploited
by the attacker, a shell (or other programs) spawned from the ex-
ploited process won’t have any exception privileges.

4. SECURITY PROPERTIES OF IFEDAC
Recall that for DAC to be effective, all programs need to be as-

sumed to be benign and correct. By introducing information flow
techniques, IFEDAC aims at weakening this unrealistic assump-
tion. We now analyze what the security properties IFEDAC can
provide and what are the necessary assumptions to achieve them.
The high-level security goal of IFEDAC is that confidentiality and
integrity properties of a system are preserved under attacks.

4.1 Defining Integrity
Defining integrity in the context of operating systems is a diffi-

cult task. One can start by defining integrity as the property that key
components do not change. This definition is too strong, as key files
(e.g., /etc/shadow) and the kernel data structures need to change.
As key components must change, one may modify the property to
state that the resulting state after a change must satisfy certain con-
straints that can be precisely specified and checked. However, it is
infeasible (and often impossible) to characterize these constraints.
Next, one could refine the definition of integrity as the property that
key components are changed only through certain programs. This
property, though, is insufficient. Text editors must be allowed to
modify key system script files. Yet, one cannot say these files have
integrity solely because all updates are performed only through
these editors. Finally, one can define integrity by declaring that
key components are changed only by certain users. We believe this
last choice most accurately reflects the intuition. If the change is in-
tended by authorized users, then integrity is preserved; otherwise,
it is violated.

We thus define integrity informally as

Integrity means all updates reflect authorized users’ intentions.

To formalize this, we must identify two things: (1) who is autho-
rized to perform an update, and (2) whose intention a subject (pro-
cess) reflects. In IFEDAC, the former is specified by the write and
administration protection classes. Any user in wpc(o) (as well as
root) is authorized to update o. For the latter, we observe that an
integrity label has a natural interpretation as a representation of in-
tentions. A label of > means the intention of the root user. A label
of {u1, u2} means the intention of u1, u2, or root. If we have
int(s) = {u1, u2} and wpc(o) = {u1, u3}, then s cannot update
o, because the update may reflect the intention of u2, who is not
authorized to do so.

Therefore, a key property we need to show is that IFEDAC main-
tains the integrity levels for subjects correctly. That is, if a subject
has integrity level ` according to IFEDAC, then the subject is be-
nign for integrity level ` in the sense that any operation performed
by the subject reflects the intention of only those users in `.

To achieve this goal, we start by noting that integrity protection
requires some degree of trust that programs do not introduce bad
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data. We can contrast this with confidentiality protection, for which
if an untrusted subject never reads any secret information, it can not
later write or leak secret information. For integrity, it is not enough
to control what the subject reads, as it can create bad data without
reading bad data. This observation suggests that integrity is not
simply an information flow property. The strict integrity policy in
the Biba model allows a subject at integrity level ` to read objects
at ` or higher and write objects at level ` or lower. This implicitly
requires that one trusts a subject at integrity level ` to be able to
generate data at integrity level ` when reading data only at level `
or higher. Therefore, the code executed in the subject must be both
functional and not malicious for integrity level `. We say such a
program is assumed to be benign for integrity level `. Intuitively,
the behavior of a benign program reflects the users’ intention. For
example, the basic utilities on a system such as editors and file ma-
nipulation tools are considered benign, not because they cannot be
used to do bad things, but because they reflect the users’ intentions.

We still need to translate the benign property of a static program
file to the benign property of a running process. To do this, we
assume the following axiom.

AXIOM 1. If a program is benign for an integrity level `, then
when it is executed by a subject that is benign at integrity level `
or higher, and the subject reads only input at integrity level ` or
higher, the subject is benign for integrity level `.

We note that assuming that a program is benign is a weaker as-
sumption than that the program is both benign and correct. A be-
nign program is not trusted to handle malicious input. In short, a
benign program mostly works as expected. But when it is exposed
to malicious input, it may not do so anymore.

4.2 Integrity Protection Properties
We now show that IFEDAC achieves the integrity goal that all

updates reflect authorized users’ intentions, under a number of as-
sumptions. It suffices to show that IFEDAC maintains the follow-
ing three invariants: (1) Every subject with integrity level ` is be-
nign for that integrity level. (2) The content of every file with in-
tegrity level ` is only controlled by the users in `. (3) For every file
o, wpc(o) correctly identifies the authorized users.

These are maintained by IFEDAC under the following assump-
tions. (1) When IFEDAC is enabled, the integrity levels of files are
correct. For example, a program labeled with integrity level ` is
benign for that level. (2) When IFEDAC is enabled, files are la-
beled with the correct write and administration protection classes.
(3) The hardware has not been compromised. (4) The kernel and
the programs that have exceptions are trusted either to process input
correctly or not to fail in a way that the attacker can directly exploit
the exceptions. (5) When a legitimate user intends to upgrade a
file’s integrity level, the decision is correct. When a legitimate user
intends to change the write or admin protection class of an object,
the decision is correct.

Assumptions (1) and (2) say that the initial labels are correct.
IFEDAC cannot defend against physical attacks such as changing
the BIOS settings to boot from the attacker’s media; hence assump-
tion (3). Assumption (5) means that the system must trust the le-
gitimate user’s intentions. Rather than assuming all programs are
benign, assumptions (1) and (5) indicate that IFEDAC requires only
the programs that are explicitly identified as benign (by setting the
program’s integrity level) to be benign.

Assumption (4) requires more examination. First, as IFEDAC
works within the kernel, we must assume the kernel has no vulner-
abilities the attacker can exploit. This assumption is also needed
for similar protection systems, such as Security Enhanced Linux
(SELinux) or AppArmor. IFEDAC extends this assumption so that

a process running a program specified as RAP cannot be compro-
mised by receiving network traffic, as the program is assumed to
process network data correctly. Similarly, any program specified
as LSP is assumed to process IPC inputs correctly. Read excep-
tions do not affect integrity, as it does not involve an update. If a
program has a write exception, it is assumed that (1) the program
correctly handles bad input (similar to the previous discussion of
RAP and LSP), or (2) if the program is exploited, the attacker is
unable to inject malicious code directly into the address space to
take advantage of the exception. In a typical exploit, the attacker
injects the shell code into the vulnerable process, then runs mali-
cious code in the spawned shell. Under IFEDAC, the spawned shell
loses the write exceptions. The other possibility is for the attacker
to inject all of the malicious code directly into the address space,
but this task is more difficult than getting a shell, and is more easily
defended against (e.g., with a non-executable stack).

Almost all exceptions we have are also allowed in the SELinux
Targeted policy. Each of our exception specifications makes the
underlying security assumption explicit, which is not the case in,
for example, SELinux.

4.3 Confidentiality Protection in IFEDAC
As in integrity protection, DAC assumes all programs to be be-

nign for confidentiality. For example, when one uses /bin/cat to
view a file’s contents, one implicitly trusts that it will not secretly
send the file through an email, or create a world-readable copy
of the file. Some programs will also write to, for example, files
readable by others while reading files readable only by the user.
Those programs are trusted to correctly declassify information. In
IFEDAC, if we assume that a subject that is benign at integrity level
` can correctly declassify information at level `, then confidential-
ity is also preserved by IFEDAC, under similar assumptions for
integrity protection. Of course, we need to assume that the initial
read protection classes of objects are set correctly. Also, when a
program has a read exception, we assume that the program either
(1) can handle malicious input, or (2) cannot be exploited in a way
that the attacker injects malicious code into the address space and
takes advantage of the exceptions.

5. IMPLEMENTATION & EVALUATION
We have implemented the IFEDAC model for Linux using Linux

Security Module (LSM) framework. The implementation does not
require any changes to the kernel source. We use extended at-
tributes to store the additional fields IFEDAC introduced for each
file; they are the integrity level, optional read protection class and
optional write protection class. The module also maintains a label
for each process, which includes the integrity level and the excep-
tions (if any) for the process. The module implements a number of
hook functions to handle events that will trigger the IFEDAC rules
and perform access control and label maintenance. More details
about the implementation is discussed in Appendix A.

We evaluated the implementation on the Fedora Core 5 distribu-
tion of Linux with kernel version 2.6.15, along the following di-
mensions: usability, security and performance.

5.1 Deployment and Usability
We established a server and a personal workstation with the

IFEDAC module loaded during system boot. On the server ma-
chine, we installed some commonly used server applications (e.g.,
httpd, ftpd, samba, svn) and provided services to our research
group. Multiple user accounts exist on the server, some of which
are allowed to perform system administration (specified as a su-
doer and a member of A, the set of administrators). On the personal
workstation, we perform everyday jobs on the Gnome desktop. The
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jobs we tested include web browsing, emailing, file downloading,
instant-messaging and normal system administration. We report
some interesting experiences of deploying, configuring and using
the IFEDAC module.
A Usage Case We use the email client ThunderBird as a usage case
to describe how to configure and use IFEDAC in practise. When a
local user u launches the application of ThunderBird, the process
inherits the parent’s integrity level and runs at {u}. After the pro-
cess receives network traffic from remote servers, its integrity level
is updated to {u, net}. The process needs to read from and write
to the configuration files and the files storing the downloaded mes-
sages, which are located in the directory $HOME/.thunderbird by
default ($HOME refers to u’s home directory). In DAC, those files
are writable only by u; hence in IFEDAC they have the write pro-
tection class {u}, which is higher than the process’s integrity level.
To enable the access, we grant the binary executable of Thunder-
Bird an exception privilege to read from and write to the directory
$HOME/.thunderbird/ recursively. In this way, the email client can
function normally.

If the user wants to save a file from an email attachment to the
file system, this is achieved by the Internet Directory. The user u
can create an Internet directory and set its write protection class to
be {u, net}. When he wants to save an email attachment, he first
saves the file to the Internet directory. The saved file’s integrity
is initialized as the process’s integrity level, {u, net}, which can
be manually upgraded later if the user has confidence in the file
and wants to use it with a higher integrity level. The Internet Di-
rectory is not only used by the email client; in fact the user may
create multiple Internet directories and can store all downloaded
files (e.g., through a web browser, ftp client, instant messenger) to
those directories and later upgrade their integrity levels if he wants
to. The Internet directory is an example where the write protection
class is lower than that inferred from DAC permission. In DAC,
that directory is writable only by the owner.

Possible attack channels exposed by the email client include ex-
ecuting a mal-ware in an email attachment, opening an attachment
that is a mal-formed file exploiting a vulnerable application and
a vulnerability in the email client being exploited by a remote at-
tacker. In all these attacks, the process controlled by the attacker
will have the integrity level {u, net} and can only access the files
writable by the world and the user’s Internet directories. See the
security evaluation for details about testing against attacks.
System Administration and Automatic Update Many modern
Linux systems allow normal user accounts to perform system ad-
ministration through the sudo tool. One benefit is better account-
ability. With IFEDAC we can still use this common usage practise
with better security property. These accounts should be in A, the
set of administrators. Even though users in A are trusted, each of
them still corresponds to a contamination source. This separation
helps to enforce the DAC policy. Additionally, most tasks these
users perform are user-level jobs that do not need full privileges.
Viewing these users as separate contamination sources limits any
errors made for a user-level job to that particular user.

For a user u ∈ A, most of his files have the write protection
class and integrity level at {u} or lower, except for some startup
files (e.g., the startup script of the shell) that are used during lo-
gin. When making u an administrative user, one upgrades the write
protection class and integrity level of the user’s startup files to >.
For example, the startup scripts for Bash Shell include: /.bash_rc,
/.bash_profile and /.bash_logout. When he logs in, he gets a shell
at >, where he can perform system administration tasks. However,
any descendant process that reads his normal files will drop to the

integrity level {u}. He can also downgrade the shell’s integrity
level to {u} by executing a utility program provided by IFEDAC,
when he starts performing user-level jobs. To perform system ad-
ministration later, he needs to obtain a fresh channel with at > by
logging in again.

The startup files owned by users in A provide an example where
the write protection class is higher than that inferred from DAC
permissions. In DAC, those files are owned by normal users, rather
than root. Assigning those files with the write protection class >
helps protecting system integrity, because those files are critical and
should only be modified at level >.

Remote administration through a secure shell daemon is ex-
pected in some situations. As mentioned in Section 3, one can al-
low that by specifying the program /usr/sbin/sshd to be a remote ad-
ministration point (RAP). Also, automatic updates are commonly
used in today’s commercial operating systems. These programs
download updated packages and automatically install them. To en-
able automatic updates in IFEDAC, the administrator can specify
the update program as a RAP, trusting that it is not vulnerable. For
example, the automatic update programs in Fedora Core include
/usr/bin/yum and /usr/share/rhn/rhn_applet/applet.py.
Exception Policy Configuration Most programs can work with
IFEDAC without any modification and policy configuration. Two
kinds of programs need exceptions in IFEDAC: network programs
and setuid root programs.
Network Programs Like the email client described before, network
programs run at the integrity level {net} or {u, net}, but need to
access configuration and log files that have higher protection class.
See Table 2 for a sample policy for some commonly used server
and client programs. For each program, only a small number of
exception privileges are needed. The policy can be easily under-
stood.
Setuid Root Programs The setuid-root programs run at integrity
levels {u} when they are executed by a non-administrator u. The
default policy will forbid them from performing system critical op-
erations that require the integrity level >. However, most of these
programs need to perform such high-integrity tasks. A sample ex-
ception policy for setuid-root programs in Fedora Core 5 is shown
in Table 5. The complete policy used in practice in presented in
Appendix B. Those exceptions will be activated only from an in-
tegrity level {u}. That is, if a process has integrity level {u1, u2}
or {u1, net}, it does not get any exceptions when loading the setuid
root programs.

IFEDAC provides better protection for setuid-root programs than
DAC in three aspects. First, in IFEDAC the privileges gained by
those programs are restricted based on the least privilege princi-
ple. For example, the program “ping" needs to be setuid-root only
because it performs raw socket operations (controlled by the capa-
bility CAP_NET_RAW). IFEDAC grants only that exception priv-
ilege to “ping", whereas DAC allows “ping" to perform any critical
operation. IFEDAC significantly reduces the damage caused by
an exploit in “ping". Second, the shell spawned from an exploit
loses the exception privileges. In order to abuse the exception priv-
ileges, the attacker must inject all malicious code into the address
space of the vulnerable process, which is more difficult. Third, with
IFEDAC, only malicious local users are able to take advantage of
buggy setuid-root programs. Remote attackers breaking in through
network programs cannot use setuid-root program to elevate their
privileges, because they cannot use the exception privileges if the
integrity level contains net.
What end-users need to know about IFEDAC? In practice, the
exception policies should be specified and distributed by the soft-
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ware and OS vendor (e.g., included in the installation packages).
System administrators only need to make high-level decisions such
as whether to allow remote administration or not. Similarly, ad-
ministrator only need to specify which users are allowed to per-
form system administration; the configurations are done automat-
ically by the system. Normal users should understand the basic
meaning of read protection class and write protection class for ob-
jects (which are similar to ACL). In most situations, the protection
classes are derived from the DAC policy and configuring them are
achieved by changing the permission bits. In our experiments, the
only case that a normal user need to explicitly manage the pro-
tection class is to setup the Internet directory, which can be done
automatically by the system when a new user is created. Normal
users should also understand the integrity level for objects and, in a
few situations, users need to manually upgrade an object’s integrity
level. For example, when a user wants to use a downloaded pro-
gram to manage his own files, he need to upgrade the program’s
integrity level from {u, net} to {u}.

5.2 Security
IFEDAC can defend against most attacks caused by trojan horse

and buggy software. To evaluate the effectiveness of IFEDAC, we
test IFEDAC against two sets of attack scenarios.
Vulnerability exploitation attacks We used the NetCat tool to pro-
vide an interactive root shell to remote attackers. We ran NetCat
as root on the victim machine, listening on a port. When the at-
tacker connects to the port, NetCat spawns a shell process, which
takes input from the attacker and also directs output to him. In
this way, NetCat can be viewed as a vulnerable network server ex-
ploited by the attacker. In the interactive root shell, we performed
the following three attacks. (1) Installing a rootkit: we attempted
to install the kernel mode rootkit “Adore-ng" by loading a kernel
module and the user mode rootkit “Linux Rootkit Family (LRK)"
by replacing existing system programs. (2) Stealing /etc/shadow:
we attempted to send out the /etc/shadow file as an email attach-
ment. (3) Altering another user’s web page: we attempted to mod-
ify another user’s web page files. All attacks succeed on the system
with DAC because the spawned shell controlled by the attacker has
root privilege as the NetCat process. In contrast, all the attacks fail
when IFEDAC is enabled because the NetCat process is running
at the integrity level {net} and so is the spawned shell. All those
attacks require either executing critical capabilities reserved for the
integrity level > or accessing files with the protection class > or
{u}, which are not authorized to the processes running at {net}.
Trojan horse attacks We assume the victim root user accidentally
execute a bot program called Agobot from an email attachment.
The program connects to an IRC server, receives commands from
a remote attacker, and executes the commands locally. The bot
can execute local Linux commands, download files, send spam,
and launch DDoS attacks, among others. With DAC, the bot runs
as root and can arbitrarily corrupt the system resources. With
IFEDAC, the downloaded bot program has the integrity level {net}
and so does the process executing the bot. As a result, IFEDAC
successfully prevents the bot from corrupting critical system re-
sources and user-owned protected files, but offers no protection
against launching the DDoS, spamming, and port scanning attacks.
To maximize the effect of the bot, the attacker will try to add the
bot to the boot script. The attempt is prevented by IFEDAC and the
attacker loses access to the victim once the process is terminated.

5.3 Performance
We compared our performance result with SELinux [22]. Our

module has comparable performance overhead. Our performance

evaluation uses the Lmbench 3 benchmark and the Unixbench 4.1
benchmark suites. We established a PC configured with RedHat
Linux Fedora Core 5, running on an Intel Pentium IV processor
3GHZ with 1GB memory. The test results are given in Table 6 and
Table 7 in Appendix C.

6. DISCUSSION
6.1 Compare IFEDAC with Traditional DAC

Compared with traditional DAC, IFEDAC provides much
stronger security guarantee. The traditional DAC has two goals:
(1) protect system resources from local users. Both malicious be-
havior and careless mistakes performed by local users won’t com-
promise the system. (2) provide user separation. User-owned re-
sources are protected against other malicious users. In achieving
the two security goals, traditional DAC makes a strong assump-
tion: all programs are benign and correct. This assumption is far
from the reality today due to the large amount of malware and soft-
ware vulnerabilities. IFEDAC achieves the same security goals as
the traditional DAC by enforcing the discretional policy specified
in the existing DAC system. However, IFEDAC eliminates the un-
realistic trust over the programs. By using the information flow
techniques to track the principal of a running process, IFEDAC is
able to defend against Trojan horse and vulnerability exploitation.

In terms of usability, certainly the policy enforcement mecha-
nism in IFEDAC is more complicated than that in traditional DAC.
However, the end users generally do not need to understand or even
know about those rules. Most of IFDEAC policy is derived from
the existing DAC policy, the user can specify IFEDAC policy in
the same ways as they administer traditional DAC systems, which
is believed to be easy and intuitive. Information flow tracking is
a more restricted enforcing mechanism and would break some ap-
plications that can run in traditional DAC. IFEDAC address this
issue by introducing exceptions to the default policy. The funda-
mental concept is similar to the setuid feature in traditional DAC.
However, as discussed in Section 4, the assumptions implied by ex-
ceptions are strictly limited and the attack surface exposed by the
trusted programs are significantly reduced.

6.2 Compare IFEDAC with MAC
The traditional approach to address the weakness of DAC is to

build a MAC system on top of the existing DAC system. Several
MAC systems have been deployed in real-world commercial op-
erating systems, such as SELinux [28] and AppArmor [2]. Such
MAC systems are flexible and powerful. Through proper con-
figuration, they could result in highly-secure systems. However,
they are also complex and intimidating to configure. For example,
SELinux has 29 different classes of objects, hundreds of possible
operations, and thousands of policy rules for a typical system. The
SELinux policy interface is daunting even for security experts. Be-
sides the complexity in policy configuration, the MAC systems are
also difficult to use when configured with a policy providing com-
prehensive security. For example, the strict policy shipped with
SELinux in Fedora Core 2 used a disallow-by-default approach.
The policy has to be kept updated with every change to the oper-
ating system. In particular, any newly installed application won’t
operate without specifying a policy.

To overcome the usability issues, the policy actually enforced in
the real-world MAC systems only confine tens of sever daemons
and about a dozen of setuid-root programs. All other programs
remain unconfined and are trusted to be benign and correct. Ex-
ploiting any of those programs would lead to system compromise.
In addition, the real-world policy make the MAC systems vulnera-
ble to Trojan horse, because all new installed applications that do

8



Programs File Exceptions Capability Exceptions
Servers
FTP Server
/usr/sbin/vsftpd

read /etc/shadow;
write to /etc/vsftpd, /var/log/xferlog;

CAP_SYS_CHROOT
CAP_NET_BIND_SERVICE

Web Server, /usr/sbin/httpd read /etc/pki/tls, /var/www;
write to /var/log/httpd, /var/run/httpd.pid

Samba Server
/usr/sbin/smbd

write to /var/cache/samba, /etc/samba,
/var/log/samba, /var/run/smbd.pid

CAP_SYS_RESOURCE
CAP_NET_BIND_SERVICE

NetBIOS Server, /usr/sbin/nmbd write to /var/cache/samba, /var/log/samba
Clients
Browser, /usr/lib/.../firefox-bin write to /tmp, $HOME/.mozilla/firefox
Email, /usr/lib/.../thunderbird-bin write to /tmp, $HOME/.thunderbird

Table 2: Exception privileges for network programs

Usage Types Setuid Root Programs Exception Privileges a b,
User information
updates

passwd, chage: change user password and ex-
piry information

create files in /etc;
write to /etc/passwd, /etc/shadow;

chsh, chfn: change user login shell and finger
information

create files in /etc;
write to /etc/passwd;

Network utilities ping, ping6: ping network hosts use CAP_NET_RAW
Mounting utilities mount, umount create files in /etc; read /etc/fstab;

write to /etc/mtab, /etc/filesystems;

aThe write privilege over a file infers the read privilege over the same file.
bAll write exceptions keep the integrity level of the written files.

Table 3: A sample policy of exception privileges for setuid-root program in Fedora 5. The complete policy is given in Appendix B.

not have corresponding policies are treated as unconfined.

7. RELATED WORK
The limitations of DAC have been discussed in many sources,

e.g., [11, 26]. While such analysis is invaluable, it did not ac-
curately pinpoint the exact problem that makes DAC vulnerable
to trojan horses. We show that the key problem lies in trying to
associate a single user with a request. Traditionally, people deal
with the weaknesses of DAC by replacing or enhancing it with
Mandatory Access Control (MAC). There are three classes of ap-
proaches to add MAC to operating systems: confidentiality-based,
confinement-based, and integrity-based.

Perhaps the best known example of confidentiality-based MAC
is the Bell-LaPadula (BLP) model [4]. Systems that implement pro-
tection models similar to BLP include Trusted Solaris and IX [23].
The BLP model assumes that programs are either trusted or un-
trusted. This results in a strict security policy rule (the *-property)
that will break today’s COTS operating systems, unless almost all
components are declared to be trusted. IFEDAC, however, di-
vides programs into trusted, benign, and untrusted. This enables
it to work on COTS operating system such as Linux while offering
meaningful protection.

Confinement-based MAC systems include SELinux [28], Ap-
pArmor [2, 8], systrace [29], LIDS [21], PACL [31]. These ap-
proaches develop an access control system completely separate
from DAC to offer additional protection. Our approach is differ-
ent in that it preserves the policy goals of DAC. This leads to a
smaller policy size and easier policy configuration. Also, it is dif-
ficult to configure these other systems to implement information
flow policies beyond the creation of a dichotomy of high and low
integrity. Jaeger et al. [15] analyzed the SELinux example policy
to separate the domains and types into those in a Trusted Com-
puting Base (TCB), i.e., high integrity, and those are not, i.e., low
integrity. They found many information flow channels from low
to high, due to the nature of Linux. The approaches in AppAr-

mor, systrace, and PACL are to identify a number of programs that,
when compromised, could be dangerous, and confine them by a
policy. These techniques require a larger policy than that used in
IFEDAC, because they do not have default policy rules to allow
some accesses and must explicitly specify every access. Further-
more, these approaches remain vulnerable to trojan horse attacks.
As most programs, such as shells, obtained through normal usage
channels are unconfined, the execution of a trojan horse program
will not be subject to the control of the system.

The Biba model [5] is perhaps the earliest mandatory integrity
protection model. It provides five integrity policies, which offer im-
portant insights into integrity protection and contamination track-
ing. LOMAC [13] is based on the subject low-water mark policy in
Biba. IFEDAC can be viewed as an approach that integrates Biba’s
integrity tracking and DAC’s policy specification and enforcement.
We use integrity audits (subject and object low-water mark at the
same time) to track the contamination sources of subjects and ob-
jects, and then we use these sources as identities in DAC. Microsoft
Vista introduced a security feature called Mandatory Integrity Con-
trol (MIC) [1]. The approach partitions files and programs into
four different integrity levels: low, medium, high, and system. A
program running at one level cannot update objects that are at a
higher level. There is no information flow tracking; a subject’s in-
tegrity level is fixed. This can be viewed as a simplified version of
SELinux, where there are only four types.

In addition to enforcing DAC policies and allow discretionary
control, existing models use a single integrity level for each entity
(subject or object) to determine both how the entity contaminates
other entities and how the entity is to be protected. This mixing of
contamination tracking with the protection classification is undesir-
able. For example, system logs are inevitably affected by channels
that the attacker may control (implying low integrity), but need pro-
tection from modification by the attacker (require high integrity).
In IFEDAC, protection levels are separate from integrity levels and
are derived from DAC policies.
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The work that is most closely related to ours is the UMIP model,
recently introduced by Li et al. [19]. UMIP uses only high and
low integrity levels, and can be viewed as an approximation of
IFEDAC, where all labels not containing {net} collapse into high,
and all others collapse into low. Consequently, UMIP is unable to
provide strong user separation, and UMIP does not separate sub-
ject protection classes from integrity levels. Compared to UMIP,
IFEDAC is able to enforce all DAC policies correctly and protect
against malicious users and weak passwords. Another well-known
integrity model is the Clark-Wilson model [7], with follow-up
work by Karger [16] and Lee [18], among others. These integrity-
protection approaches have not been applied to operating systems
and do not support user-specific integrity, e.g., separating one user
from another.

Language-based information flow security has been studied ex-
tensively in the programming language context [9, 24, 25]. This
line of work is related to ours because the underlying principles for
information flow tracking are often the same. This line of work is
orthogonal to ours in that it focuses on analyzing and controlling
information flow within programs, and our work uses information
flow at the process level and applies that to operating system ac-
cess control. Our work can benefit from language-based informa-
tion flow security. In IFEDAC, programs that have exceptions are
trusted to process inputs correctly. This trust has to be based on
the correctness of these programs, which can be addressed using
techniques in language-based information flow security. Some re-
cent papers are starting to bridge this gap. The CW-Lite work [30]
addresses this issue of trust by explicitly analyzing source code of
programs. Hicks et al. [14] proposed an architecture for an oper-
ating system service that integrates a security-typed language with
MAC in operating systems, and built SIESTA, an implementation
of the service that handles applications developed in Jif running on
SELinux.

8. CONCLUSIONS
The DAC mechanism in operating systems suffers from trojan

horses and buggy software. We point out that this is because exist-
ing DAC mechanism tries to associate a single principal with each
request. We have proposed the IFEDAC model, which uses infor-
mation flow techniques to track which principals are responsible
for a request, thereby achieving DAC policy without assuming that
softwares are bug free and benign. While using techniques from
mandatory information flow, IFEDAC follows the discretionary
control principle and allows owners to decide which other users
can access the file and uses the identities of the requester to decide
access. In this sense, IFEDAC is the first DAC model that can de-
fend against trojan horses. We have presented the formal model
and security analysis of IFEDAC. We have also reported the expe-
riences and evaluation results of our implementation of IFEDAC
under Linux.
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APPENDIX
A. IMPLEMENTATION DETAILS

A.1 Capabilities Protection
The protection provided by the IFEDAC model described in Sec-

tion 3 focuses on the file system. In Linux, there are also non-
file critical resources that require protection – capabilities. Mod-
ern Linux uses capabilities to break the privileges normally re-
served for root down to smaller pieces. As of Linux Kernel 2.6.22,
there are 31 different capabilities; they control critical operations
such as loading a kernel module, administering an IP firewall, and
mounting a file system. IFEDAC protects the capabilities by cat-
egorizing them into three types (see Table 4 in Appendix). (1)
Allowed. IFEDAC does not restrict processes using the allowed
capabilities. The capabilities controlling file accesses are allowed
because IFEDAC relies on its own access control for files, which
is sufficient to protect the file system integrity. (2) Restricted. In
the default policy, the restricted capabilities can only be used by
processes running at the integrity level >. Other processes can
gain restricted capabilities by exceptions. (3) Reserved. The re-
served capabilities (e.g., CAP_SYS_MODULE, CAP_RAW_IO)
can only be used by processes running at the integrity level >.
Other processes cannot gain reserved capabilities by exceptions.
The reserved capabilities correspond to extremely critical opera-
tions, which should be performed only by system administrators.
Many attacks rely on those reserved capabilities. For example, ker-
nel rootkits are installed either by loading a kernel module (con-
trolled by CAP_SYS_MODULE) or by modifying the kernel mem-
ory image (controlled by CAP_RAW_IO). By reserving them for
processes running at > we can effectively disable many attacks.

A.2 Resident vs. Removable Drives
Files coming from removable drives can contain malicious con-

tents. IFEDAC handles this by explicitly distinguishing between
resident drives and removable drives. Local drives are called resi-
dent. IFEDAC performs access control and integrity tracking for
the files stored in resident drives. All resident drives must be

identified in the policy. Removable drives are often plugged into
other machines with untrustworthy operating systems. By default,
IFEDAC will not perform access control for files stored in remov-
able drives, and will not track those files’ integrity levels. All those
files are assigned the integrity level ⊥.

Setting all files on removable filesystems to the integrity level ⊥
is not desirable when users want to install software or do a system
update from a removable filesystem. IFEDAC handles this situation
by providing a command to upgrade the integrity level of either
all or a portion of a removable filesystem. Such upgrade has two
requirements: (1) the upgrade should satisfy the condition given by
rule (a5) in Table 1, i.e., only the owner can upgrade a removable
filesystem to its own integrity level (2) the upgrade is revoked once
the removable filesystem is unmounted.

B. EXCEPTION POLICY CONFIGURA-
TION

A complete version of exception policies for setuid-root pro-
grams in Fedora Core 5 is presented in Table 5.

C. PERFORMANCE EVALUATION RE-
SULTS

The performance evaluation results are given in Table 6 and Ta-
ble 7.
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No Name Description Type
0 CAP_CHOWN Allow changing file ownership and group ownership Allowed
1 CAP_DAC_OVERRIDE Bypass DAC checks for file read, write and execute permissions Allowed
2 CAP_DAC_READ_SEARCH Bypass DAC checks for file read permission and directory read and ex-

ecute permissions
Allowed

3 CAP_FOWNER Bypass checks on operations that normally require filesystem UID of
the process match the owner UID of the file

Allowed

4 CAP_FSETID Allow setting the setuid and setgid bits of files Allowed
5 CAP_KILL Allow sending a signal to any process Restricted
6 CAP_SETGID Allow manipulating process GIDs Allowed
7 CAP_SETUID Allow manipulating process UIDs Allowed
8 CAP_SETPCAP Allow transferring or removing capabilities in caller’s permitted set to

or from any other process
Reserved a

9 CAP_LINUX_IMMUTABLE Allow modification of the S_IMMUTABLE and S_APPEND file at-
tributes

Reserved

10 CAP_NET_BIND_SERVICE Allow binding to a port below 1024 Restricted
11 CAP_NET_BROADCAST Allow broadcasting and listening to multicast Restricted
12 CAP_NET_ADMIN Allow network administration, e.g., interface configuration, firewall

configuration
Restricted

13 CAP_NET_RAW Allow using RAW sockets and PACKET sockets Restricted
14 CAP_IPC_LOCK Allow locking of shared memory segments Restricted
15 CAP_IPC_OWNER Bypass permission checks for operations on System V IPC objects Restricted
16 CAP_SYS_MODULE Allow inserting and removing kernel modules Reserved
17 CAP_SYS_RAWIO Allow I/O port operations and accessing /proc/kcore Reserved
18 CAP_SYS_CHROOT Allow using chroot() Restricted
19 CAP_SYS_PTRACE Allow ptracing any process Reserved
20 CAP_SYS_PACCT Allow configuration of process accounting Reserved
21 CAP_SYS_ADMIN Allow system administration, e.g., configuring kernel’s syslog, using

mount() and umount()
Restricted

22 CAP_SYS_BOOT Allow executing reboot() Reserved
23 CAP_SYS_NICE Allow setting scheduling parameters of any process Reserved
24 CAP_SYS_RESOURCE Allow manipulating resource limits, e.g., overwriting disk quota limits Restricted
25 CAP_SYS_TIME Allow setting system clock Restricted
26 CAP_SYS_TTY_CONFIG Allow configuring tty devices Restricted
27 CAP_MKNOD Allow creating special files using mknod() Restricted
28 CAP_LEASE Allow establishing file leases on arbitrary files Restricted
29 CAP_AUDIT_WRITE Allow writing records to kernel auditing log Reserved
30 CAP_AUDIT_CONTROL Allow performing auditing control, e.g., enabling and disabling kernel

auditing
Reserved

aCAP_SETPCAP is disabled for all processes in current Linux kernel implementation (v.2.6.22)

Table 4: Categorizing 31 capabilities in Linux kernel 2.6 into three types
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Usage Types Setuid Root Programs Exception Privileges a b,
User information
updates

passwd, chage: change user password and ex-
piry information

create files in /etc;
write to /etc/passwd, /etc/shadow;

chsh, chfn: change user login shell and finger
information

create files in /etc;
write to /etc/passwd;

PAM (Pluggable
Authentication
Module) utilities

unix_chkpwd: check user password read /etc/shadow
userhelper: update user information create files in /etc;

write to /etc/passwd, /etc/shadow;
read from /var/run/sudo;

Group
configuration

gpasswd create files in /etc;
write to /etc/gshadow, /etc/group, /var/run/utmp;

User identity
switches

newgrp: login to a new group read /etc/group, /etc/passwd, /etc/shadow,
/etc/gshadow;
write to /var/run/utmp

su, sudo, sudoedit: run a shell or other com-
mands as another user

read /etc/shadow, /etc/sudoer

Network utilities ping, ping6: ping network hosts use CAP_NET_RAW
Mounting utilities mount, umount create files in /etc; read /etc/fstab;

write to /etc/mtab, /etc/filesystems;
r-commands rlogin, rcp, rsh: remote login, copy and shell write to /etc/krb5.conf, /etc/krb.conf;

use CAP_NET_BIND_SERVICE

Job scheduling at: schedule a command write to /var/spool/at, /var/run/utmp;
read /etc/at.allow, /etc/at.deny

crontab: edit the regular job schedule write to /var/spool/cron;
read /etc/cron.allow, /etc/cron.deny;

aThe write privilege over a file infers the read privilege over the same file.
bAll write exceptions keep the integrity level of the written files.

Table 5: Exception privileges for setuid-root program in Fedora Core 5

Benchmark excel throughput file copy pipe throughput process creation shell scripts
Base 666.3 696.8 452.8 697.37 939.5
IFEDAC 607 661.6 366.7 675.3 856.2
Overhead(%) 9 5 19 3 9
SELinux(%) 5 5 16 2 4

Table 6: The performance results of Unixbench4.1 measurements.

Benchmark stat open/close pipe latency AF_UNIX sock fork+/bin/sh-c RCP/udp latency TCP/IP cost
Base 3.36 4.70 9.56 16.35 1617 31.31 79.20
IFEDAC 3.69 5.94 11.51 19.82 1842 39.13 82
Overhead(%) 9 26 20 21 14 25 4
SELinux(%) 28 27 12 19 10 18 9

Table 7: The performance results of lmbench 3 measurements.
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