A Logic-based Knowledge Representation for
Authorization with Delegation

(Extended Abstract)*
Ninghui Li Joan Feigenbaum
Computer Science AT&T Labs — Research
New York University Room C203
251 Mercer Street 180 Park Avenue
New York, NY 10012, USA Florham Park, NJ 07932, USA
ninghui@cs.nyu.edu jf@research.att.com

http://www.research.att.com/’jf

Benjamin N. Grosof
IBM T.J. Watson Research Center
P.O.Box 704,
Yorktown Heights, NY 10598, USA
grosof@us.ibm.com
http://www.research.ibm.com/people/g/grosof

Abstract based on logic programs, expresses delegation depth explic-
itly, and supports a wide variety of complex principals (in-
We introduce Delegation Logic (DL), a logic-based cluding but notlimited td-out-of+ thresholds). Compared
knowledge representatiorn.€., language) that deals with to previous approaches to trust management, DL provides
authorization in large-scale, open, distributed systems. Of another novel feature: a concept of proof-of-compliance
central importance in any system for deciding whether re- that is not entirely ad-hoc and that is based on model-
quests should be authorized in such a system are delegatioftheoretic semantics (just as usual logic programs have a
of authority, negation of authority, and conflicts between model-theoretic semantics). DL's approach is also novel in
authorities. DL’s approach to these issues and to the inter- thatit combines the above features with smooth extensibility
play among them borrows from previous work on delega- to non-monotonicity, negation, and prioritized conflict han-
tion and trust management in the computer-security liter- dling. This extensibility is accomplished by building on the
ature and previous work on negation and conflict handling well-understood foundation of DL’s logic-program knowl-
in the logic-programming and non-monotonic reasoning lit- €dge representation.
erature, but it departs from previous work in some crucial Keywords: Authorization, delegation, trust manage-
ways. In this introductory paper, we present the syntax and ment, security policy, non-monotonicity, conflict handling,
semantics of DL and explain our novel design choices. Thisknowledge representation, logic programs.
first paper focuses on delegation, including explicit treat-
ment of delegation depth and delegation to complex princi-
pals; a forthcoming companion paper focuses on negation. 1 |ntroduction
Compared to previous logic-based approaches to autho-

rization, DL prOVideS a novel combination of features: it is In today’s Internet, there are a |arge and growing num-
ber of scenarios that require authorization decisions. By
*This extended abstract appeared in the Proceedings of the 12th IEEEgn authorizationdecision, we mean one in which one party

Computer Security Foundations Workshop, July 1999. An expanded, Re- : ; _
search Report version of this paper is available via the IBM Research Re-SmeIts arequest pOSSIny supported by one or Moree

port server website (http://www.research.ibm.com, then navigate) or via d€ntials that must comply with ano_ther partm”f}yif it iS' '
the authors. to be granted. Scenarios that require authorization decisions

include content advising [23], mobile-code execution [11],
public-key infrastructure [6, 27, 16, 9, 24], and privacy pro-
tection [20, 18].

Electronic commerce is one class of services in which
authorization decisions play a prominent role. Merchants
and customers both have valuable resources at risk and must
have appropriate policies in place before authorizing access
to these resources. An interesting aspect of e-commerce is
that security policies and business policies are not always
clearly separable. If a merchant requires that electronic
checks for more than a certain amount be signed by at least
two members of a set of trusted parties, is that a “security
policy” or a “business policy”? It would be desirable for

services evolve rapidly, and thus the set of potential
actions and the users who may request them are not
known in advance; this implies that authorization in-
formation will be created, stored, and managed in a dy-
namic, distributed fashion. Users are often expected to
gather all credentials needed to authorize an action and
present them along with the request. Since these cre-
dentials are not always under the control of the service
that makes the authorization decision, there is a danger
that they could be altered or stolen. Thus, public-key
signatures (or, more generally, mechanisms for verify-
ing the provenance of credentials) must be part of the
authorization framework.

one authorization mechanism to be able to handle both.
Authorization in Internet services is significantly differ-
ent from authorization in centralized systems or even in
distributed systems that are closed or relatively small. In
these older settings, authorization of a request is tradition-
ally divided into two tasksauthenticatiorandaccess con-
trol. Authentication answers the question “who made the . :
request?,” and access control answers the question “is th ork ontrust managemerfd, 5, 9, 7, 3] is to find a more

requester authorized to perform the requested action?” Fol-tlriXS'E Iriérr?:r:mtirlli?;::i r:gpro%;i;‘;:;:g%:jggﬂ&; r;ieza-
lowing the “trust-management approach,” first put forth by 9 PP

Blazeet al.[4, 5], we argue that this traditional view of au- tion question directly: *Does the sét of credentialsprove

thorization is inadequate. Reasons include: tha't Fhereq’l,Jestr complieswith the set Of.]ocal security
policies P?" The trust-management engirie a separate

system component that takes C, P) as input and outputs
a decision about whether compliance with policy has been

For these and other reasons, dividing authorization into
authentication and access control is nader appropriate.
“Who made this request?” may not be a meaningful ques-
tion — the authorizer may not even know the requester, and
thus the identity or name of the requester may not help in
the authorization decision. The goal of a growing body of

¢ What to protect?: In a traditional client/server com-
puting environment, valuable resources usually belong

to servers, and it is when a client requests access to o';/err:.h rmore. trust-management adopts a “peer model”
valuable resource that the server uses an authorization . ~ Urtnermore, trust-management adopts a "‘peer mode

procedure to decide whether or not to trust the client. of authorization. Every entity can be both a requester and

In today’s Internet (or any large, open, distributed sys- 2" authorizer. To be an authorizer, it maintains policies and

tem), users access many servers, make many differeni® the ultimate source of authority for its authorization de-

types of requests, and have valuable resources of theif'S1ONS: As a r'e.quester, I must maintain credentiels, (
own (e.g, personal information, electronic cash); in- public-key certificates, credit card numbers, and member-

deed “client” is no longer the right metaphor. Such a ship gertificates) or be prepared to retrieve or obtain them
user cannot trust all of the servers it interacts with, and vyhen ltwants access to a protected resource. When SUb.m't'
ting a request to an authorizer, the requester also submits a
set of credentials that purport to justify that the requested
action is permissible. An authorizer may directly autho-

e Whom to protect against? In a large, far-flung net- ize certain requesters to take certain actions (and may not

work, there are many more potential requesters than€ven try to “authenticate” these requesters by resolving their
there are in a smaller, more homogeneous (albeit dis-‘identities”), but more typically it willdelegatethis respon-
tributed) system. Some servicesg, Internet mer- Sibilityto credential issuers that it trusts to have the required
chants, cannot know in advance who the potential re- domain expertise as well as relationships with potential re-
questers are. Similarly, users cannot know in advanceduesters.
which services they will want to use and which re- Basic issues that must be addressed in the design of a
quests they will make. ThUS, authorization mech- trust-management engineinCIUde the definition of “prOOf of
anisms must rely on delegation and on third-party compliance,” the extent to which policies and credentials
credential-issuers more than ever before. should be programmable, and the language or notation in
which they should be expressed.

Inthis paper, we propose the authorization language Del-
egation Logic (DL) as a trust-management engine. Its no-
Internettable features include:

authorization mechanisms have to protect the users’ re-
sources as well as those of the servers.

e Who stores authorization information?: Tradition-
ally, authorization informatiore.g, an access control
list, is stored and managed by the service.

¢ A definition of “proof of compliance” that is founded The outline of the rest of the paper is as follows. In sec-
on well-understood principles of logic programming tion 2, we give an overview of DL. In section 3, we give the
and knowledge representation. Specifically, DL starts syntax and semantics of the monotonic case of DL, called
with the notion of proof embodied in Datalog definite D1LP. In section 4, we give an example of D1LP’s usage. In
ordinary logic programs [17. DL then extends this section 5, we give an overview of our expressive extension
with several features tailored to authorization. to handle negation and prioritized conflict, called D2LP. A

forthcoming companion paper gives details about D2LP. In

¢ Arigorous and expressive treatment of delegation, in- section 6, we briefly discuss related work and future work.
cluding explicit linguistic support for delegation depth
and for a wide variety of complex principals. 2 Overview of DL

¢ The ability to handle “non-monotonic” policies. These
are policies that deal explicitly with “negative evi-
dence” and specify types of requests thandbcom-
ply. Important examples include hot-lists of “revoked”
credentials and resolution of conflicting advice from
different, but apparently both trustworthy, sources.

Our use of a logic-program knowledge representation as
the foundation of our authorization language (a.k.a. “trust-
management engine”) offers several attractions: compu-
tational tractability, wide practical deployment, seman-
tics shared with other practically important rule systems,
relative algorithmic simplicity, yet considerable expressive
“Non-monotonic” here means in the sense of logic-based power. - : :
knowledge representation (KR). WL? chose Data]og dgflnlte ordinary logic programs

(OLP’s) as the starting point for DL. (More generally, how-

In combining both of these properties, DL departs) ;
:) ever, we could started from other variants of logic-based
sharply from earlier trust-management engines, some key,

) . . : . knowledge representation, e.g., OLP’s without the Datalog
points of which we now review. PolicyMaker, which was . - \
: . i : restriction.) DL extends Datalog definite OLP’s along two
introduced in [4] and was the first system to call itself a . : o :
“ - o dimensions that are crucial to authorization: delegation and
trust-management engine,” uses ad-hoc (albeit rigor- . ; ; : ;

. o) a non-monotonic reasoning. The resulting notion of “proof of

ously analyzed [5]) notion of “proof of compliance” and

handles only monotonic policies. KeyNote [3] is a second- compliance” is easier to justify than thel-hocnotions used

generation system based on most, but not all, of the same. PolicyMaker, KeyNote, REFEREE, and SPKI, because

design principles as PolicyMaker; in particular, KeyNote :Ctr;ng\r:voerfensmn of the well-studied, logic-programming
uses arad-hocnotion of proof of compliance (derived from . ' .

. : : As in much of the related literature,g.,[1, 19, 25], we
the one used in PolicyMaker), and it does not handle NON- < the ternprincipal to mean an “entity” or “party” to an
monotonic policies. Unlike PolicyMaker, KeyNote takes © lermp pe y"or party

. . : authorization decision. For example, a principal may make
an integrated approach to the design of the compliance-

. . . ; a request, issue a credential, or make a decision. Each au-
checking algorithm and the design of the programming lan- e o . o -
. : . - thorization decision must involve a distinguished principal
guage in which credentials and policies are expressed. DL . ; » AT
: that functions as the “trust root” of the decision; this prin-
also takes an integrated approach to these two aspects of AUz -1 is referred to akocal 4 DL supports the specifica
thorization. REFEREE [7] handles nomonotonic policies, P o .' PP € Sp
. . tion of sets of principals, via thresholds and lists, as well as
but it uses amd hocproof system that was never rigor- . " L .
L dynamicsets of the form “all principals that satisfy the fol-
ously analyzed. SPKI [9] handles limited forms of non- . . " L . X
2 o . s lowing predicate.” DL principals express beliefs by making
monotonicity, but the “proof of compliance” notion (to the . !
. N . direct statementanddelegation statements
extent that one is specified in [9]) &&l-hoc :) .
The DL framework provides a uniform representation for
1For review of standard concepts and results in logic programming, "€JUESTS, policies, and credentials. Informat'on in DL is
see [2], for example. “Ordinary” logic programs (LP’s) correspond es- represented as rules and facts that are built out of statement

sentially to pure Prolog, but without the limitation to Prolog’s particular - expressions. A requestin DL corresponds to a quexy, a

mfer_encmg procgdure. These are also known as g_engral LP's (a m's'dsimple query might be to ask whether the ground statement
leading name, since there are many further generalizations of them) an

as “normal” LP’s. “Definite” means without negation. “Datalog” means LOcal says is _key(12345,Bob)" is true: More
without function symbols of more than zero arity. “Arity” means number generally, a request can be a complex expression of state-
of parameters. ments; these expressions are calietement formulaand

2AKR K is (logically)monotoniavhen its entailment relationshipd.,
what it sanctions as conclusions) has the following property: if the set 3Under commonly met restrictiong.g, no logical functions of non-
of premises (e.g., rules), is a superset of the set of premises, then zero arity, a bounded number of logical variables per rule), inferencing,
the set of conclusions entailed B, according toK is a superset of the i.e, rule-set execution, in LPs can be computed in worst-case polynomial-
set of conclusions entailed ;. If a KR is not monotonic, it is called time. By contrast, classical logie (g, first-order logic), is NP-complete
non-monotonic Non-monotonicity means that adding premises can lead under these restrictions and semi-decidable without these restrictions.
to retracting previously-sanctioned conclusions. 4Local plays the role thaPOLICY plays in PolicyMaker.

are defined in the next section. All of the policies and cre- 3 Syntax and Semantics of D1LP

dentials that the receiving principal uses in evaluating the
request form a DL progran®?. The DL semantics defines
a uniqgue minimal model foP, and the request is autho-
rized if and only if it is in this model. The DL semantics

In this section, we formally define D1LP’s syntax and
semantics.

provide the definition of “proof of compliance.” This use 31 Syntax

of model-theoretic semantics is a novel feature of DL and

a clear departure from the approaches taken by other trust- Thealphabetof D1LP consists of three disjoint sets,

management engines.

Delegation is one of the two major concepts with which
we extended Datalog definite OLP’s to form DL, and it is
the main technical focus of this paper. Distinguishing fea-
tures of DL's approach to delegation include:

¢ Delegations have arbitrary but specified depth. For ex-
ample, by using a depth-2 delegation statement, a prin-
cipal A may delegate trust about a certain class of ac-
tions to principalB and allow B to delegate to others
butnotallow these others to delegate further.

¢ Delegations to complex principal structures are al-
lowed. For example, a principal may delegate trust
about a certain class of purchases to all principals that
satisfy the predicat&oodTaste()

The other major concept that we added to Datalog def-
inite OLP’s to form DL is non-monotonicity. DL uses ex-
plicit negation to allow a policy to say what is forbidden,
negation-as-failure to allow a policy to draw conclusions
when there is no information about something, and prior-
ities to handle conflicts among policies.

We use DL to denote our general approach to trust man-
agement. The monotonic version of DiLe(, Datalog defi-
nite OLP’s plus our delegation mechanism) is called D1LP,
and the non-monotonic versiong, with negation and pri-
oritized conflict handling) is called D2LP. This first paper
focuses on D1LP, and only gives an overview of D2LP; a
forthcoming companion paper focuses on D2LP.

Compared to previous logic-based approaches to autho-
rization, DL provides a novel combination of features: it is
based on logic programs, expresses delegation depth explic-
itly, and supports a wide variety of complex principals (in-
cluding but not limited td:-out-of-n thresholds). Compared
to previous approaches to trust management, DL provides
another novel feature: a concept of proof-of-compliance
that is not entirelyad-hocand that is based on model-
theoretic semantics (just as usual logic programs have a
model-theoretic semantics). DL's approach is also novel in
that it combines the above features with smooth extensibil-
ity to non-monotonicity, negation, and prioritized conflict

theconstantsthevariables and thepredicate symbols
The set oprincipalsis a subset of the constants and the
set of principal variablesis a subset of the variables.
Variables start with * (“underscore”)® The special
variable symbol ” means a new variable whose name
doesn’'t matter. Aermis either a variable or a constant.
Note that we prohibit function symbols with non-zero
arity: this is theDatalogrestriction. This restriction
helps enable finiteness of the semantics and of com-
puting inferences (a.k.a. entailments).

. A base atonis an expression of the form

pred(ty, ... tp)

wherepred is a predicate symbol and eaths a term.

. Adirect statemernis an expression of the form

X says p

where X is either a principal or a principal variable,
“says ” is a keyword, andp is a base atom.X is
called thesubjectof this direct statement. A base atom
encodes a trust belief or a security action, and a direct
statement represents a belief of the subject.

. Athreshold structuréakes one of the following forms:

e threshold (k, {(A1,w1), ..., (A, ws)})

where ‘threshold " is a keyword, ¥ and
the w;'s are positive integers, thel;'s are
principals, and4; # A; fori # j. Thew;'s are
calledweights The set

{(A1,w1), ..o, (An, wa)}
is called aprincipal-weight pair se{(abbreviated
P-W se}. If w; = 1, then(A4;, w;) can be written
as A;. A threshold structure supports something
if the sum of all the weights of those principals
that support it is greater than or equakto

o threshold (k, Prin says pred/z)

where ‘threshold " and % are the same

handling. This extensibility imccomplished by building

5In Prolog, variables can also start with upper-case letters, and all con-

on the well-understood foundation of DL's logic-program stants start with lower-case letters. We want to allow constants to start with

knowledge representation.

upper-case letters, and we restrict variables to start with underscore.

as abovepPrin is a principal pred is a predicate
symbol, andz is the arity (hnumber of parame-
ters) ofpred. The arityx should be eithet or

2. Whena = 1, “Prin says pred/1” defines
a P-W set that gives weight to all principals
A such that Prin says pred(A)” is true.
Whena = 2, “Prin says pred/2" defines
a P-W set, where the corresponding weight for
any principal A is the greatest positive integer
w such that Prin says pred(A,w)” is true.
These are calledynamic threshold structures

5. Aprincipal structuretakes one of the following forms:

o A whereA is a principal
e 1S
e PS, PSS,

whereT'S is a threshold structure

whereP S, and P.S, are principal
structures. This is the conjunction
of two principal structures. If both
P5S; and PS; support a base atom
p, thenP S, PS, also supportg.

e PS1; PS, wherePS; andPS, are principal
structures. This is the disjunction
of two principal structures. If
eitherPS; or P.S, supports a
base atonp, thenP S;; P.S; also
support.

o {PS} whereP S is a principal structure

In a principal structure, conjunction(’,’) takes prece-
dence over disjunction(’;"). Aprincipal list is the
special case of a principal structure that has the form
{Ay,..., A, }, where eachd; is a principal. Aprin-
cipal setis the special case of a principal list in which
there are no repetitiongg., in which A; # A; for

i
. A delegation statememakes the form

X delegates p~dto PS

where X is either a principal or a principal variable,
delegates andto are keywordsp is a base atom,
d is either a positive integer or the asterisk symbag| *
and PS is a principal structure.X is called thesub-
ject, d is called thedelegation depthand P S is called
thedelegateeFor example,

Alice delegates is key(.,)2 to Bob
is a delegation statement. Intuitively, it means:

Alice says is _key(_Key_X, _X)

if Bob says is _key(_Key_X, _X).

In this example, Alice trusts Bob in making direct
statements about the predicase_key . Alice may
also trust Bob in judging other people’s ability to make

direct statements aboigt _key , i.e,, Alice trusts any-
one Bob trusts. In this case, the delegation depth is
Similarly, delegation depth can also be greater than
A

delegation depth«’ means unlimited depth.

. A statemenis either a direct statement or a delegation

statement. In the semantics of D1LP, the role of “state-
ment” is similar to the role of “atom” in ordinary LP’s.

. A statement formultakes one of the following forms:

e S wheresS is a statement.

e F1,F, meaning ¢} andF), whereF; andFs

are statement formulas,

e Fyi: I, meaning ¢} or I';), wherel'; and P,
are statement formulas,
o (F) wherel" is a statement formula.

In a statement formula, the operator ', (and) takes
precedence over the operator ’;’ (or).

. A clause also known as aule, takes the form:

S if F

where S is a statement and’ is a statement formula
in which no dynamic threshold structures appears
called theheadof the clause, and’ is called thebody

of the clause. The body may be empty; ifitis, tlife *

part of the clause may be omitted. A clause with an
empty body is also called fact. Permitting dynamic
threshold structures in the body in effect introduces
logical non-monotonicity, which is why we prohibit
it in D1LP. However, when we introduce negation-as-
failure in D2LP, this restriction will be dropped.

There are two special principals that can be used in
the body of a clause:1”” and “Local ". “I " refers to
the subject of the head. It is the default subject for all
statements in the body and may optionally be omitted.
For example, when Alice believes

Bob says p if g, | says r.
this is shorthand for Alice believing

Bob says p

if Bob says g, Bob says r.

“Local "refers tothe principal that is using this state-
ment and trying to make an authorization decisian,
the current trust root. For example, when Alice be-
lieves ‘Bob says p if Local says Q. ", and
Alice believes (thatAlice says) “q”, then Alice
can conclude thatBob says p .

Multi-agent logics of belief (or of knowledge) express
beliefs from the viewpoints of multiple agents. DL can

10.

be viewed as expressing beliefs from the viewpoints Here, the domain ofubject is the set of all principals ap-

of multiple agents. However, in DL, there is a single,

distinguished viewpoint: that of the principabcal .

pearing inP, which we write asPrincipals. The domain
of pred is the set of all the predicate symbols appearing in

Every DL rule or statement is implicitly regarded as a P. The domain ofparams] is all the lengtht lists of con-

belief of Local . In other words, DL isisedfrom one
principal’s viewpoint:i.e, Local 's. LetLocal be
the agent Alice. When Alice believes

Bob says is _key(Key _M, M)

if CA says is _key(Key _M, M).

this means that “If | (Alice) believe thatA says
is _key(Key _M, M), then | (Alice) can believe
that Bob says is _key(Key _M, M).” The direct
statements CA says is _key(Key M, M)” and
“Bob says is _key(Key _M, M)” actually mean
“Alice believes CA says is _key(Key M, M)”
and “Alice believesBob says is _key(Key _M,
M).” It doesn’t matter whether Bob says
is _key(Key _M, M)” is believed by other princi-
pals, even Bob himself.

Aprogramis a finite set of clauses. This is also known

as alogic program (LP)or as arule set

As usual, an expression.f, term, base atom, statement,
clause, or program) is callegtoundif it does not contain
any variables.

3.2 Semantics

stants that appear iR, where0 < [< MaxzArity. The
domain oflength is integerq1..N].

A ground atom of the predicatéolds represents a
ground direct statement

subject says pred(params)

Intuitively, length represents the number of delegation
steps that is enough to derive the corresponding direct state-
ment. Wherlength = 1, it means this direct statement can
be derived directly without the use of delegation. We need
not consider cases in which this length exceeds the number
N of principals.

The predicat@elegates takes six parameters:

delegates(subject, pred, [params],

depth, delegatee, length)

Here, subject, pred, params, andlength are as above.
The domain oflepth is[1..Max Depth]U{«}. The domain

of delegatee is the set of all principal sets, which we write
as2Princirals Recall that there ar& principals altogether,
and thugrrincirals s finite. Notice that only principal sets,
rather than more general principal structures, are permitted
asdelegatee here. The reason this suffices to repregent

In this subsection, we define the set of statements that aré"’III become clear soon.

sanctioned as conclusions by a D1LP. Formally, this set of

conclusions is defined as timeinimal modelof the D1LP.
This model assigns a truth valug-¢e or false) to each
ground statement. The valéieue means that the statement
is an entailed conclusionfialse means that it is not an en-

tailed conclusion. These conclusions represent the beliefs

of the principal that is the trust rodte., Local .
LetP be a given D1LP.

Our semantics is defined via a series of steps. First, wefunctions +,

define alanguagéO, that expresses definite OLP’s (defi- oS
nite logic programs [17]). By contrast, we write the original 2 are defined on the domain of principal sefgin<irals,
input (D1LP) language oP asLZp. Second, we define a
translation that mapB to a ground definite OLP in LOp.
Third, we define the minimal model @f as the correspon-
dent (under this translation) @’s minimal model in the
usual OLP semantics [17].

We begin by definingOp. Let N be the number of all

principals inP, M ax Depth be the greatest integer used as

a delegation depth i, and M ax Arity be the maximum
arity of any predicate in°. The languageeOp has two
important predicatesholds anddelegates. The predicate
holds takes four parameters:

holds(subject, pred, [params], length)

A ground atom of the predicatélegates represents a
delegation statement

subject delegates pred(params)” depth
to delegatee

We define£LO» to include (in addition toholds and
delegates) several “built-in” predicates and functions, as
follows. The predicates=, <, >, <, >, and the
—, and min, are defined on the domain
[l..max(N, MaxDepth)] U {x}. The predicates and

“Built-in” is used in the Prolog sense: the predicates
and functions are interpreted (in the semantics and in in-
ferencing) as having pre-defined behavior. The behav-
ior of “*” is similar to oo, e.g, for any integer! in
[1,....max(N, MaxDepth)]: | < %, « —1 = %, x = x,
andmin(*,/) = [. Notice that, technically.O» is many-
sorted in that the domains of some parameters of the predi-
cates (in particular, ofolds anddelegates) are typed. This
also is a straightforward and commonly-made extension of
the usual OLP formalism. See, for example, [17].
TheHerbrand basef LOp is the set of all ground atoms
in LOp. Because all the domains used above are finite, the
Herbrand base of O is also finite. Aninterpretationof

LOp is an assignment of truth values-{e and false) to
the Herbrand base &fO». Such an interpretation can also
be viewed as a set of true ground atoies, as aconclusion
set

Given an interpretatioth of LO» and a principal struc-
ture PS, we definePS’, the normal form of a principal
structure under {.e, relative to)/, as follows. A prin-
cipal structureP.S” is in normal form when it is of the
form: “PSi; PSE .., PSE” where eachPS! is a prin-
cipal set and, for any # j, PS/ ¢ PS]. One can
view PS as a negation-free formula in propositional logic;
PS’s normal formP S” is then the result of converting that
propositional-logic formula into its reduced disjunctive nor-
mal form (DNF). Here, the reduced DNF is logically equiv-
alent (in propositional logic) ta®S given /. “Reduced”
means that there is no subsumption: neither within a con-
junct (i.e, no repetitions of principals) nor between con-
juncts {.e, no conjunctis a subset of another conjunct). For
dynamic threshold structures likehteshold (k, Prin
says pred/z),” the interpretation/ determines the P-W
set defined byPrin andpred. A threshold structure

threshold (k’, {(Al, wl), (Az, wz), R (An, wn)})

is converted to the disjunction of all minimal subsets of
{Ay,..., A,} whose corresponding weights sum to be
greater than or equal ta For example,

threshold(3,{(4,2),(B,1),(C,1),(D,1)})

is converted to
{A, B} {A, O} {A, DB, C, D}

After two principal structures have been transformed, their
conjunction and disjunction are convertible to normal form
using methods similar to the usual ones used in proposi-
tional logic.

Equipped with the definitions afO» and PS?, we are
ready next to give the main definition of the translation.
Given an interpretation of £LOp, the translatio rans’
mapsP into a definite OLRO! in the languag&€ Oy, i.e,,

O! = Trans! (P). We definel'rans! via four steps.

Semantically, we treat a rule containing variables as
shorthand for the set of all its ground instances. This is
standard in the logic programming literature. We write
Pinstd to stand for the LP that results when each nuie
P is replaced by the set of all its possilg®und instantia-
tions i.e, by all of the ground clauses that can be obtained
by replacingr’s variables with constants (or “instantiating”
them).

The first step of 'rans’ is to replaceP by Pinstd,

The second step dfrans’ is to replace all the delega-
tion statements i®”*'¢ by those that delegate to principal
sets, as follows. LePS! be written asPS57; PSE; ..., PSE;
eachPS! is a principal set.

Rewrite head delegation statements.
Replace every clause of the form

Adelegates s dto PS if I
by ther clauses:
{ Adelegates s dto PS! if F.|i=1.r}.

Rewrite body delegation statements.
Replace every delegation statement
Adelegates s dto PS
that occurs in the body of a clause, by the conjunction
of ther delegation statements:
Adelegates s dto PSi,
Adelegates s dto PSI,

Adelegates s"dto PSI.

Let T denote the program after the above transformations.
The third step of 'rans’ takesT? as input and translates
it to an OLPTY in the language&€Op, as follows.

o For any direct statement
A says pred(params)
in the body of a clause, change it to:
holds(A, pred, [params], N).

o For any direct statement
A says pred(params)
in the head of a clause, change it to:

holds(A, pred, [params], 1).

For any delegation statement
Adelegates pred(params)” dto PS
in the body of a clause, change it to:
delegates(A, pred, [params],d, PS, N)

For any delegation statement
Adelegates pred(params)” dto PS
in the head of a clause, change it to:
delegates(A, pred, [params],d, PS, 1).

Here, as beforeN is the number of principals i®. In-
tuitively, if a statement in the head is deduced, then it is
deduced directly (length); if a statement can be deduced
within any length, it is true.

The result of these changesTi$.

The fourth step off'rans’ is to add a further collection
of clauses tdl’; the resulting OLP program i/ in the
languageCO». Intuitively, these additional clauses rep-
resent all instances of sevemaleta-rules of deduction in-
volving delegationBecause the relevant domains are finite,
there are a finite number of such instances.

Let A be a principal; BS be a principal set
{Bi,...,B,}; C'S be another principal set{ andd, be
delegation depths.é., elements ofl.. M ax Depth] U {});
and,/ and/, be lengthsi(e., elements of1..N]). Let pred

and[params] be as above (recall the dédfion of rolds). In particular, it has a model/inO L P M odel(O') that is
Below, “length” means delegation-path length. minimal in the sense of the usual OLP semantics.
The additional clauses are as follows.
Proposition 1 Given two interpretationg C J of LOp, if

1. Every ground clause that has the form: an interpretationk” of £LO» is an OLP-model 0®”, then
holds(A, pred, [params],) K is also an OLP-model a-.
if holds(A,pred, [params], ly),
L > lo. Proof. See the expanded Research Report version for

Intuitively, this represents the deduction meta-rule the full proof. Overview: Essentially, this is a logical-
that: If a direct statement is deducible within length monotonicity property. The key observation is the follow-
lo, then the direct statement is deducible within any ing. The differences that may exist betwe@p and®; can
longer length > I. only be caused by dynamic threshold structures, which are
only allowed to appear in heads of clauses. Consider the
normal forms of a dynamic threshold structdrg under/
andJ, i.e, 7'S’ and7'S” . If we view them as propositional
formulas, theril’S” implies7'S”, becausel C J. This
makes?” at least as strong (in deduction powerXzs B

2. Every ground clause that has the form:
delegates(A, pred, [params],d, C'S, 1)
if delegates(A, pred, [params], dy, BS, lp),
d<dy, I >1y, CS D BS.

Intuitively, this represents the deduction meta-rule
that: If a delegation statement is deducible, then any
weaker delegation statement is deducible within any Definition 2 An interpretation/ of LO» is anO-model of
longer length. Smaller depth and larger conjunctive a D1LP program?P if and only if / is an OLP-model of
delegatee set each weaken a delegation statement. O = Trans!(P).

3. Every ground clause that has the form: It turns out that every D1LP progra has at least one
holds(A, pred, [params], ly + 1) O-model, as we will show below in Theorem 7.
if delegates(A, pred, [params], 1, BS,ly),
holds(By, pred, [params], 1), Theorem 3 The intersection of any two O-modelsfis
holds(Bz, pred, [params], 1), also an O-model oP.
holds (B, pred, [params], 1), Proof. Given two O-modelg and.J of P, one can conclude
lo <N. by the definition of O-models thdtis an OLP-model 0®’
Intuitively, this represents the deduction meta-rule that gnd that/ is an OLP-model of”. Let K = IN.J. Because
enforces the effect of deptheelegations. K C IandK C J, Proposition 1 implies that and.J are

both OLP-models 0% . Because definite ordinary logic
programs have the property that two models’ intersection
is still a model [17],K is an OLP-model of?%. By the
definition of O-models/ is thus an O-model of P. |

4. Every ground clause that has the form:
delegates(A, pred, [params], min(d, dy — 1), C'S,
lo+1)
if delegates(A, pred, [params], dy, BS, ly),
delegates(By, pred, [params), d, CS, 1),
delegates(Ba, pred, [params], d, CS, 1), Definition 4 The minimal O-model of P is the in-
c tersection of all of its O-models. We write this as
delegates(By,, pred, [params], d, C'S, 1), MinOM odel(P).
l<d0, ZS (N—lo)
Intuitively, this represents the deduction meta-rule It turns out that every D1LFP has a minimal O-model;
that enforces the effect of chaining of delegations. below, in Theorem 7, we show how to construct it.
The depth of the deduced (head) delegatioriois Ultimately, we are interested in models expressed in
bounded both by the depth of the delegation frérto LIp, the original D1LP language ¢?. We define a sim-
BS and by the depth of the delegations frdsi's to ple reverse translatioReverselrans that maps each O-
C'S. The depth of the delegation frorhto B.S has to model/ of P to its correspondin®1LP-modein £Zp, as
cover the path lengths that have already been used irfollows.

deriving delegations froni's to C'S.
e For each O-conclusion of the form

The @' that results (from adding these further clauses holds(A, pred, [params],length),
to 74) is a ground definite OLP. It thus has one or more include the D1LP-conclusion
OLP-modelsi.e., models in the usual OLP semantics [17]. A says pred(params).

e For each O-conclusion of the form 4 Use of D1LP
delegates(A, pred, [params], depth,

Delegatee, length), include the D1LP-conclusion In this section, we use the public-key infrastructure prob-
Adelegates pred(params)” depth lem to demonstrate the use of D1LP. The trust-management
to Delegatee. approach views the PKI problem from one user’s point of

view. The user has trust beliefs and certificates from other
Notice here that (delegation path) length is ignored after the principals, and it needs to decide whether a particular bind-
OLP conclusions are drawn. ing is valid according to its information. All of these beliefs,

We define théderbrand basef P, in LZp, as the set of certificates, and decisions can be represented uniformly in

all ground statements @?, restricted to require that every D1LP.
principal structure be a principal set. We definerserpre- D1LP can also be used to represent authorizations. Au-
tation of 7 to be an assignment of truth valueés«(e and thorizing a principal to do something can be represented as
false) to the Herbrand base @f. Such an interpretation a delegation to that principal. Whether to allow this princi-
can also be viewed as a set of true ground statemeels, pal to further grant this authorization to other principals can
as aconclusion set be controlled by delegation depth. An authorization request

can be answered by deciding whether a delegation state-
Definition 5 An interpretationM of £LZp is amodelofa ~ Mentis true or false. Moreover, separation of duty [8] can
D1LP programP if and only if M = ReverseTrans(I) be achieved by delegations to threshold structures.

and/ is an O-model of>. Theminimal model of P is We first show how certificates from different PKI pro-
ReverseTrans(MinOModel(P)). We write this as posals can be represented in D1LP. Pretty Good Privacy
MinModel(P). (PGP)’s certificates only establish key bindings; they have

no delegation semantics. The delegations in PGP are ex-
Next, we show thai inO M odel(P) and thus its cor- pressed by trust degrees that are stored in local key rings.

: . : - They all have depti. In PGP, a user can also specify
respondingV/ in M odel (P) actuallyexist by showing how) .
to constructMinOMocEelzP). threshold values for accepting a key binding. In D1LP,

this can be achieved through dynamic threshold struc-
o)] tures. One way is to use several predicates to denote
Definition 6 Given P, we define aroperator ¥ that gifferent trust levels, for exampldully _trusted and
takes an interpretatioh of LO»p and returns another one: partly _trusted . A user Alice may have the following
Up(I) = MinOLPModel(OF), where MinOLP M odel policies:
is the standard minimal model operator for OLP.
Alice says fully_trusted(Bob).

Theorem 7 (Construct Minimal Model) Alice says fully_trusted(Sue).
MinOModel(P) is the least fixpoint of ¥p. This Alice says partly_trusted(Carl).
fixpoint is obtained by iteratingl» a finite number of Alice says partly_trusted(Joe).

times, starting fromj). MinModel(P) thus exists for Alice says partly_trusted(Peg).

every D1LPP. Alice delegates is_key(_Key, User)'1

to threshold(1,fully_trusted/1).
Alice delegates is_key(_Key, User)'1

Proof. h R h R ion for th
roof. See the expanded Research Report version for the to threshold(Z,partly_trusted/1).

full proof. Overview: One key observation is that, is
a monotone operator, due to the monotonicity properties of ¢ course, one can also usesighteddynamic threshold
Proposition 1 and of definite OLP’s. Another key obser- giryctures.
vation is that the domain of this operator, i.e., the space |, x 509 [6], certification authorities (CAs)’ certificates
of interpretations, is finite due to the finite Herbrand base gre chained together to establish a key binding. For such
(largely because of the Datalog restriction). B delegation chains to be really meaningful, the certificates
on such chains must also imply delegations. Since there is
Inferencing: Because of the finiteness properties men- no limit on the length of delegation chains, all such delega-
tioned above, computing/inModel(P) is decidable. tions have depth«’. Privacy Enhanced Mail (PEM) uses
Given the minimal model! inM odel(P), queriesinDILP X.509’s certificates but limits the CA hierarchy to three lev-
can be translated as we did for the body of a clause, then anels: IPRA, PCAs, and CAs. Thus PEM’s trust model re-
swered using the model. We have a current implementationquires that every user give a depth-three delegation to IPRA.
of restricted D1LP. It is written in Prolog and uses a top- A SPKI certificate does not establish key binding; it is a
down query-answering method. delegation from the issuer to the subject of the certificate.

It has one field that controls whether a delegation can be to YCAL.

further delegated or not; this means that every delegation YCAL says is_site_key(M_Key,M_Site).

has depth or ‘«'. ZRCA says is_site_key(M_Key,M_Site).
There are other proposals to use lengths of delegation

paths as a metric for public-key bindings. The difference

between these path lengths and our delegation depths is thaf;) N

in the former, there is only one length, and it is specified Eecause there is no certification of that key frERCA

by the trust root. However, every DL delegation statement AI'NO\;\V sup?gse dtgatb mFaddlEo? to these systirlps ?boY[e,
can have a delegation depth limit. This has the effect of IC€ has a Iriend Bob. For whatever reasons, Alice trusts

Bob unconditionally to certify websites’ public keys.,

Then the given information is not enough to dedua,
ntail) that ‘Alice says is _key(M Key,M _Site) .,

allowing every principal on the delegation path to specify
how much further this path can go. Together, the set of ajice delegates is_site_key(K, S)™*
delegation depths along the path determine whether the path to Bob.
is invalidly deep.
Bob thinks that certification by systefhis itself enough for

Next, we give an extended example of public key those sites that belong to associatassoc , and he trusts
authorization with delegation. Consider a user Alice ASSOQn deciding which sites belong tssoc , i.e,,
who Wants to decide whether a public kisiKey ig yvep Bob delegates is_site_key(K, S)'1
site M Site ’'s public key. There are many certification to ZRCA
systems that may be relevant. In particular, Alice trusts
three of them: system&’, V', andZ. SystemX has three
levels: XRCA XPCAs, andXCAs, whereXRCAIs the root,
XCAs are CAs that certify users’ public keys directly,
and XPCAs certify XCAs public keys and are in turn Alice stores these policies that she got from Bob earlier.
certified by XRCA SystemY” has two levels:YRCAand Suppose that sitel Site also sent the following certificate
YCAs. System” has only one levelZRCA which certifies issued byASSOC
users’ keys directly. Alice first translateise(, represents)
certificates of these systems into statements using the pred-
icatesXcertificate(signature_key, subject, ...) , \ith the above additionalinformation, Alice can deduce the
Ycertificate(...) , Zcertificate(...) N following:
Then Alice asserts some rules that translate these into
statements of a common certificate predicate, say, Bob says belongs_to(M_Site,assoc).

if | says belongs_to(_S,assoc).
Bob delegates belongs_to(_S,assoc)’1
to ASSOC.

ASSOC says belongs_to(M_Site,assoc).

is _site _key(_Key, _Site) . Forexample: Bob delegates
is_site_key(M_Key,M_Site)"1
_lIssuer says is_site_key(_Key, Site) to ZRCA.
if Xcertificate(_lssuer,_Key,_Site). Alice delegates
. o . : is_site_key(M_Key,M_Site)"1
Next, Alice specifies the sense in which she trusts the to ZRCA.

three systems, by asserting the rule:

Finally, Alice can deduce:
Alice delegates is_site_key(K, S)"3 y

to {XRCA,{YRCA;ZRCA}}. Alice says is_site_key(M_Key,M_Site).

This means that Alice requires systexnand one of sys- o . o
temY and systen¥ to certify a website public key. She 5 Extension: Negations and Priorities

does this with delegation depth 3 because she knows that

3 is the maximum number of levels in those certification ~ D1LP is (logically) monotonic. It cannot express nega-
systems. (Note that, for other purposes, Alice can use predfion or negative knowledge. _
icates other thais _site _key and trustthese systems dif- However, many security policies are non-monotonic or
ferently.) Suppose thatKey is certified by both systerr more easily specified as non-monotonic oreeg, certifi-

and systent, i.e, there are certificates that translate into: ~Cate revocation. In many applications, a natural policy is to
make a decision in one directioa.g, in favor of authoriz-

YRCA delegates is_site_key(K, S)'1 ing H, if there is no information/evidence to the contrary,

N))) . ion. Usi ion-as-failuréa.k.a.
6The exact fields of these predicates are determined by Alice. They €.9, no known revocation. Us ngegation-as-failu Qa a

should be whichever elements of the certificates are relevant to Alice’s de_ff':‘un negatiomrweak neQatiO)"i_S often an easy and in-
policies. tuitive way to do this. Also useful in representation of many

policies isclassical negationa.k.a. explicit negationor to permit each statement to be negated in two ways: by
strong negatioly which allows policies that explicitly for- classical negation~ and/or by negation-as-failure (NAF)
bid something. Classical negation in rules, especially inthe~. Each rule also is generalized to permit an op-
consequents (heads) of rules, enables one to specify both thgonal rule label which is a handle for specifying prior-
positive and negativeidesof a policy, (.e., both permis- ity. Prioritization is specified via the predicatecrrides.
sion and prohibition) using the expressive power of rules, overrides(labely , label;) means that every rule having rule
e.g, using inferential chaining. As argued in [14, 15], this labellabel, has strictly higher priority than every rule hav-
allows more flexible security policies. Classical negation ing rule labellabels. overrides is treated specially in the

is particularly desirable for authorization in Internet scenar- semantics to generate the prioritization used by all rules.
ios, where the number of potential requesters is huge. ForOtherwise, howeverpverrides is treated as an ordinary
low-value transactions, users sometimes have security polipredicate.

cies that give access to all except a few requesterdidvit A D2LP direct statement has the form:

negations, it would be effectively impossible to do this.

Introducing classical negation leads to the potential for
conflict Two rules for opposing sides may both apply to A D2LP delegation statement has the form:
a given situation. Care must be taken to avoid producing
inconsistencyPriorities, which specify that one rule over- A [~][] delegates p~dto PS
rides another, are an important tool for specifying how to
handle such conflictE.g, a known revocation overrides a
general rule to presume trustworthineSgy, one principal
overrides another’s decision/recommendation. Some form
of prioritizationis generally present in many rule-based sys-
tems; prioritization has also received a great deal of atten-
tion in the non-monotonic reasoning literature (ses,

[12] for some literature review and pointers).

Prioritization information is naturally available. One
common basis for prioritization ispecificity Often it is
desirable to specify that more specific-case rules should
override more general-case rules. Another basiseis

A says [~ [T]p

Here, as when we described D1LP,is a principal,p is
a base atomd is a depth, and”S is a principal structure.
Square brackets (“[...]") indicate the optiditg of what
they enclose stands for classical negation and is read in
English as “not”. ~ stands for negation-as-failure and is
read in English as “fail”.
When a statement does not containwe say it isclas-
sical; when it contains neither nor—, we say it isatomic
Semantically, the negations’ scope can be viewed as ap-
plying to the whole statement. Intuitivelys means thag
is believed to be false. By contrastcs means thats is
- . X not believed to be trué.e., eitheres is believed to be false,
cency in which more recent rules override less recent or ¢s is unknown “Unknown” here means in the sense that
rules. A third common basis is relathvauthority, in 06 is no belief one way or the other about whetheis
which rules from a more 'authorltatlve source override (., versus false.
rules from a less authoritative one. For example, a supe- A po| p statement formula is defined as the result of
rior legal/bureaucratic/organizational jurisdiction or a more conjunctions and disjunctions applied to D2LP statements,
knowledgeable/expert source may Pe,g“’eﬁ higher priority. similarly to the way in which a D1LP statement formula is
Itis often useful to reason about prioritizati@ng, to rea- defined as the result of conjunctions and disjunctions ap-

son from organization roles or timestamps to deduce priori- yjiaq 1o D11 P statements¢, atomic statements). A D2LP
ties. Reasoning about prioritization may itself involve con- rule (clause) is defined as:

flict, e.g, a less recent rule may be more specific or more (aby S if F.

authoritative. ~___ Here,Sis aclassicalstatement.F" is a statement formula.
To allow users to express non-monotonic policies in The ryle labelab is an ordinary logical term (e.g., the con-
a natural and powerful fashion, we defiB2LP, which stant rrqu below) in the D2LP language. The rule label
stands for version 2 of Delegation Logic Programs. D2LP gy optionally be omitted. Note that D2LP relaxes the
is (logically) non-monotonic. D2LP expressively extends p1|p prohibition on dynamic threshold structures in the
D1LP toinclude negation-as-failure, classical negation, andpgy. Syntactically, a D1LP rule is a special case of a D2LP
partially-ordered priorities. Just as D1LP bases its syntaxe.
and semantics on definite ordinary LP's, D2LP bases its Next, we give a simple example that illustrates the use of

syntax and semantics on Courteous LP’s. The version of¢|assical negation and priorities. Let D2LP progr&mbe
Courteous LP's we use is expressively generalized as comyne following set of rules:

pared to the previous version in [12, 13]. (cred) A says honest(_X)

In the rest of this section, we give an overview of D2LP. if B says creditRating(_X, good).
Full details will be given in a forthcoming companion paper. (frau) A says —honest(_X)

Syntactically, each D2LP rule (clause) is generalized if C says fraudulent(_X),

D says fraudEzpert(C). there are several differences. One is that Maurer's model

A says overrides(frau, cred). supports direct statements and delegation statements but not
B says creditRating(Joe, good). clauses (rules). A second is that Maurer's model supports
D says fraudExpert(C). reasoning about the delegations and beliefs of what DL calls
R1 entails the conclusion: A says honest(Joe). “Local,” but it does not allow, say, Local A to reason about
Continuing the example, suppose the following statement isthe beliefs of B é.g, about whether, in As view, B dele-
added toR ; to formR.,. gates to C or B believes a particular statement). Thus, one
C says fraudulent(Joe). cannot express, in Maurer's model, that “A saysf B says
'R, instead entails the conclusion: Y'.” This restriction permits delegation chaining to be much
A says —honest(Joe). simpler than it is

The semantics of a D2LP are defined via a translation in DL and eliminates the need to maintain “lengths.”
Trans2 to a ground courteous LP that is roughly similar Thirdly, Maurer's model does not support delegation to
to D1LP’s translatiori'rans to a ground OLP. Courteous lists, threshold structuregtc. Finally, DL does not use

LP’s expressively extend OLP’s to includeand~, as well confidence values.
as prioritization represented via anerrides predicate on Neither Abadiet al. nor Maurer consider negations and
rule labels. non-monotonicity. However, there is also previous work on

We impose some further expressive restrictions in D2LP, authorization languages that consider negations. But these
related especially to cyclicity of dependency between pred-work is different from DL in that it does not consider dele-
icates, to ensure D2LP’s well-behavior semantically and gation. The way these work handles negation is also differ-
computationally. (Limited space prevents us from detailing ent from D2LP. One well-known example is the language of
these restrictions here.) The generalized version of CourteWoo and Lam [26], which is based on Default Logic [22].
ous LP’s relies on the well-founded semantics [10], which Woo and Lam do not guarantee that every program (or, in
is computationally tractable (worst-case polynomial-time) their terms, every “policy base”) has a model; furthermore,
for the ground case. when a model exists, it might not have a meaningful inter-

Courteous LP’s semantic well-behavior includes having pretation, because of potential inconsistency. Walinded
a unique (minimal) model that isonsistents and —s are semantics and prioritized conflict handling allow D2LP to
never both sanctioned as conclusions). D2LP inherits thissupport a more expressive set of hon-monotonic policies
same well-behavior. D2LP inferencing remains decidable; and give a unique and meaningful model to every program.
its finiteness properties are similar to those of D1LP. Jajodiaet al. [14, 15] proposed a logical authorization

In a forthcoming paper, we cover DL's treatment of nega- language that is based on Datalog extended with two nega-
tion in detail, as we have covered delegation in detail in this tions. They have only limited support for non-monotonic

paper. policies, however, via syntactic restrictions that ensure that
policies are conflict-free and stratified. By contrast, D2LP
6 Discussion and Future Work is more expressive, via well-founded semantics and conflict

handling. Programs written in Jajodéhal.s language are
syntactically restricted and delegation-free special cases of

As explained in previous sections, our design of DL was 5, and D2LP would give the same model for them
primarily influenced by earlier work on trust management ' '

and on logic programming and knowledge representation. Future work will address the computational complex-

There is other, more tenuously related work in the com- ity of compliance checking in DL, syntactically restricted

puter security literature, and we briefly discuss some of it classes of DL programs for which compliance can be

in this Extended Abstract. A longer discussion appears inchecked very efficiently, implementation of the DL inter-

the expanded, Technical Report version of this paper. preter (for which we now have only a preliminary ver-
In [1, 19, 25], Abadi, Burrows, Lampson, Wobber, sion for restricted D1LP), and deployment of DL in an e-

and Plotkin developed a logic for authentication in dis- commerce platform.

tributed systems. The central notion in their logic is del-

egation, which they express via thepeaks fdt relation. References

They develop a system of reasoning about which princi-

pals speak for which other principals. But they didn’t con- (1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A

sider delegation-depth limits and threshold structures. In Calculus for Access Control in Distributed SystemaCM

this sense, DL's treatment of delegation is more powerful. Transactions on Programming Languages and Systérhs
Maurer [21] modelled public-key infrastructure via rec- (1993), pp. 706—734.

ommendations with levels and confidence values. Delega-[2] C. Baral and M. Gelfond, “Logic Programming and Knowl-

tion in DL is very similar to recommendation in [21], but edge Representation”Journal of Logic Programming

19,20(1994), pp. 73—148. Includes extensive revielitexa-
ture.

[3] M. Blaze, J. Feigenbaum, J. loannidis, and A. Keromytis,
“The KeyNote Trust-Management System,” submitted for
publication as an Internet RFC, March 1998.
http://www.cis.upenn.edu/"angelos/Papers/

draft-keynote.txt
(4]

M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized Trust
Management,” irProceedings of the Symposium on Security
and Privacy IEEE Computer Society Press, Los Alamitos,

1996, pp. 164-173.

M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance-
Checking in the PolicyMaker Trust Management System,” in
Proceedings of Financial Crypto '9& ecture Notes in Com-
puter Science, vol. 1465, Springer, Berlin, 1998, pp. 254—
274.

[6] ITU-T Rec. X.509 (revised)The Directory - Authentication
Framework International Telecommunication Union, 1993.

[7] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and
M. Strauss, “REFEREE: Trust Management for Web Appli-
cations,"World Wide Web Journa? (1997), pp. 706—734.

[8] D. Clark and D. Wilson, “A Comparison of Commercial and
Military Computer Security Policies,” IfProceedings of the
IEEE Symposium on Security and Privat)EE Computer
Society Press, Los Alamitos, 1987.

[9] C. Ellison, “SPKI Certificate Documentation,”
http://www.pobox.com/“cme/html/spki.html.

[10] A. Van Gelder, K. A. Ross, and J. S. Schlipf, “The Well-
founded Semantics for Logic Programmindgurnal of the
ACM, 38 (1991), pp. 620-650.

[11] J. Gosling and H. McGiltonThe Java Language Environ-
ment, A White PaperSun Microsystems, Inc., Mountain
View, 1995.

[12] B. Grosof, “Courteous Logic Programs: Prioritized Conflict
Handling for Rules,” IBM Research Report RC20836, May
1997. This is an extended version of [13].

[5]

[13] B. Grosof, “Prioritized Conflict Handling for Logic Pro-
grams,” in Proceedings of the International Symposium on
Logic ProgrammingMIT Press, Cambridge, 1997, pp. 197—
212.

[14] S. Jajodia, P. Samarati, and V. S. Subrahmanian, “A Logi-
cal Language for Expressing Authorizations,Hroceedings
of the Symposium on Security and PrivadSEE Computer
Society Press, Los Alamitos, 1997, pp. 31-42.

[15] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino,
“A Unified Framework for Enforcing Multiple Acess Con-
trol Policies,” inProceedings ACM SIGMOD Conference on
Management of Datal997.

[16] S. T. Kent, “Internet Privacy Enhanced MaiCommunica-
tions of the ACM8 (1993), pp. 48-60.

[17] J.W. Lloyd,Foundations of Logic Programmingecond edi-
tion, Springer, Berlin, 1987.

[18] M. Longhair (editor), “A P3P Preference Exchange Lan-
guage (APPEL) Working Draft,” W3C Working Draft 9, Oc-
tober 1998,
http://Awww.w3.0rg/P3P/Group/Preferences/
Drafts/WD-P3P-preferences-19981009

[19] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Au-
thentication in Distributed Systems: Theory and Practice,”
ACM Transactions on Computer Systetr(1992), pp. 265—
310.

[20] M. Marchiori, J. Reagle, and D. Jaye (editors), “Platform for
Privacy Preferences (P3P1.0) Specification,” W3C Working
Draft 9 November 1998,
http:/Mmww.w3.0rg/TR/WD-P3P/

[21] U. Maurer, “Modelling a Public-Key Infrastructure,” iro-
ceedings of the 1996 European Symposium on Research
in Computer SecurityLecture Notes in Computer Science,
vol. 1146, Springer, Berlin, 1997, pp. 325-350.

[22] R. Reiter, “A Logic for Default ReasoningArtificial Intelli-
gencel3 (1980), pp. 81-132.

[23] P. Resnick and J. Miller, “PICS: Intern@iccess controls
without censorship Communications of the ACN9 (1996),
pp. 87-93.

[24] R. Rivest and B. Lampson, “Cryptography and Information
Security Group Research Project: A Simple Distributed Se-
curity Infrastructure,”
http://theory.lcs.mit.edu/ cis/sdsi.html .

[25] E. Wobber, M. Abadi, M. Burrows, and B. Lampson, “Au-
thentication in the TAOS Operating SystertACM Transac-
tions on Computer Systeni® (1994), pp. 3-32.

[26] T. Woo and S. Lam, “Authorization in Distributed Systems:
A New Approach,”Journal of Computer Securit@ (1993),
pp. 107-136.

[27] P. ZimmermannThe Official PGP User’'s GuidéMIT Press,
Cambridge, 1995.

