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Abstract

Although thek-anonymity and/-diversity models have led to a number of valuable privaytgrting
techniques and algorithms, the existing solutions areeatisr limited to static data release. That is, it is
assumed that a complete dataset is available at the timet@frelease. This assumption implies a sig-
nificant shortcoming, as in many applications data coltecis rather a continual process. Moreover, the
assumption entails “one-time” data dissemination; thudpés not adequately address today’s strong de-
mand for immediate and up-to-date information. In this pawe consider incremental data dissemination,
where a dataset is continuously incremented with new data. K€y issue here is that the same data may
be anonymized and published multiple times, each of the itmaedifferent form. Thus, static anonymiza-
tion (i.e., anonymization which does not consider preMipusleased data) may enable various types of
inference. In this paper, we identify such inference issurekdiscuss some prevention methods.

1 Introduction

When person-specific data is published, protecting ind&idespondents’ privacy is a top priority. Among
various approaches addressing this issuekthronymitymodel [22, 19] and thé-diversitymodel [16] have
recently drawn significant attention in the research comitpuim the £-anonymity model, privacy protection
is achieved by ensuring that every record in a releasedetdasaisdistinguishable from at lea@t — 1) other
records within the dataset. Thus, every respondent indlirdthe dataset correspond to at lelasécords in

a k-anonymous dataset, and the risk of record identificati@n, he probability of associating a particular
individual with a released record) is guaranteed to be at mgs While thek-anonymity model primarily
focuses on the problem of record identification, thdiversity model, which is built upon the-anonymity
model, addresses the risk of attribute disclosure (i.e ptbbability of associating a particular individual with
a sensitive attribute value). As an attribute disclosurg owur without records being identified (e.g., due
to lack of diversity in a sensitive attribute), thaliversity model, in its simplest fortnadditionally requires
that every group of indistinguishable records contain astédistinct sensitive attribute values; thereby the
risk of attribute disclosure is bound to at magy.

1We discuss more robusétdiversity requirements in Section 2.



Although these models have yielded a number of valuableapyiprotecting techniques [3, 8, 9, 11,
12, 21], existing approaches only deal with static dataasde That is, all these approaches assume that a
complete dataset is available at the time of data releass.aBsumption implies a significant shortcoming,
as in many applications data collection is rather a contisysrocess. Moreover, the assumption entails
“one-time” data dissemination. Obviously, this does natrads today’s strong demand for immediate and
up-to-date information, as the data cannot be releasedebitfe data collection is considered complete.

As a simple example, suppose that a hospital is requirecai@ sts patient records with a disease control
agency. In order to protect patients’ privacy, the hosgtanymizes all the records prior to sharing. At
first glance, the task seems reasonably straightforwareliang anonymization techniques can efficiently
anonymize the records. The challenge is, however, that eesrds are continuously collected by the hospital
(e.g., whenever new patients are admitted), and it is atifa the agency to receive up-to-date data in timely
manner.

One possible approach is to provide the agency with datesataining only the new records, which are
independently anonymized, on a regular basis. Then theggan either study each dataset independently or
merge multiple datasets together for more comprehensalgsia. Although straightforward, this approach
may suffer from severely low data quality. The key problenthiat relatively small sets of records are
anonymized independently so that the records may have todukified much more than when they are
anonymized together with previous records [5]. Moreoveer@ding scheme applied to each dataset may
make the datasets inconsistent with each other; thus,ctigeanalysis on multiple datasets may require
additional data modification. Therefore, in terms of datalidy this approach is highly undesirable. One
may believe that data quality can be assured by waiting far dieta to be accumulated sufficiently large.
However, this approach may not be acceptable in many apiplicaas new data cannot be released in a
timely manner.

A better approach is to anonymize and provide the entiresdatahenever it is augmented with new
records (possibly along with another dataset containirlg new records). In this way, the agency can be
provided with up-to-date, quality-preserving and “morengete” datasets each time. Although this ap-
proach can also be easily implemented by using existingntgaBs (i.e., anonymizing the entire dataset
every time), it has a significant drawback. That is, even ginoeach released dataset, when observed inde-
pendently, is guaranteed to be anonymous, the combindteveral released datasets may be vulnerable to
various inferences. We illustrate these inferences thr@agne examples in Section 3.1. As such inferences
are typically made by comparing or linking records acroffedint tables (or versions), we refer to them as
cross-version inferences differentiate them from inferences that may occur withisingle table.

Our goal in this paper is to identify and prevent cross-weraiferences so that an increasing dataset can
be incrementally disseminated without compromising thpdsed privacy requirement. In order to achieve
this, we first define the privacy requirement for incremedtdh dissemination. We then discuss three types
of cross-version inference that an attacker may exploithseoving multiple anonymized datasets. We also
present our anonymization method where the degree of deragian is determined based on the previ-
ously released datasets to prevent any cross-versiorimder The basic idea is to obscure linking between
records across different datasets. We develop our tecanigtwo different types of recoding approaches;
namely, full-domain generalization [11] and multidimessl anonymization [12]. One of the key differ-
ences between these two approaches is that the former {eeeegiven dataset according to pre-defined
generalization hierarchies, while the latter does noteBam our experimental result, we compare these two
approaches with respect to data quality and vulnerabditydss-table inference. Another issue we address is
that as a dataset is released multiple times, one may neegotke history of previously released datasets.
We thus discuss how to maintain such history in a compact fomaduce unnecessary overheads.



The remainder of this paper is organized as follows. In 8a@j we review the basic concepts of the
anonymity and’-diversity models and provide an overview of related teghas. In Section 3, we formulate
the privacy requirement for incremental data dissemimatibhen in Section 4, we describe three types of
inference attacks based on our assumption of potentiakattsa. \We present our approach to preventing these
inferences in Section 5 and evaluate our technique in Se6tidVe review some related work in Section 7
and conclude our discussion in Section 8.

2 Preliminaries

In this section, we discuss a number of anonymization moaletsbriefly review existing anonymization
techniques.

2.1 Anonymity Models

The k-anonymity model assumes that data are stored in a tableréation) of columns (or attributes) and
rows (or records). It also assumes that the target tableaomnperson-specific information and that each
record in the table corresponds to a unique real-world iddad. The process of anonymizing such a table
starts with removing all the explicit identifiers, such assand SSN, from the table. However, even though
atable is free of explicit identifiers, some of the remairatigibutes in combination could be specific enough
to identify individuals. For example, it has been shown 8i&% of individuals in the United States can be
uniquely identified by a set of attributes such{&dP, gender, date of birth[22]. This implies that each
attribute alone may not be specific enough to identify irdlials, but a particular group of attributes together
may identify a particular individuals [19, 22].

The main objective of thé-anonymity model is thus to transform a table so that no onewake high-
probability associations between records in the table bedorresponding individuals by using such group
of attributes, calledjuasi-identifier In order to achieve this goal, thkeanonymity model requires that any
record in a table be indistinguishable from at le@st- 1) other records with respect to the quasi-identifier.
A set of records that are indistinguishable from each otheften referred to as aquivalence classThus,

a k-anonymous table can be viewed as a set of equivalence gl&ssm of which contains at ledstecords.
The enforcement of-anonymity guarantees that even though an adversary krienguasi-identifier value
of an individual and is sure that /aanonymous tabl€" contains the record of the individual, he cannot
determine which record ifi corresponds to the individual with a probability greaterth/ k.

Although thek-anonymity model does not consider sensitive attributpsiyvate dataset typically contains
some sensitive attributes that are not part of the quasitifiky. For instance, in patient tablBjagnosisis
considered a sensitive attribute. For such datasets, thedtesideration of anonymization is the protection
of individuals’ sensitive attributes. However, theanonymity model does not provide sufficient protection
in this setting, as it is possible to infer certain indivitkigensitive attribute values without precisely re-
identifying their records. For instance, considet-anonymized table where all records in an equivalence
class have the same sensitive attribute value. Althougk nbthese records can be uniquely matched with
the corresponding individuals, their sensitive attribugdue can be inferred with probability. Recently,
Machanavajjhala et al. [16] pointed out such inferencedssn thek-anonymity model and proposed the
notion of /-diversity. Several formulations dfdiversity are introduced in [16]. In its simplest form, the
(-diversity model requires that records in each equivalehass have at leagtdistinct sensitive attribute
values. As this requirement ensures that every equivalgaess contains at leaétistinct sensitive attribute
values, the risk of attribute disclosure is kept untlgt. Note that in this case, thiediversity requirement



also ensureé-anonymity, as the size of every equivalence class mustdsggrthan or equal to Although
simple and intuitive, modified datasets based on this requent could still be vulnerable to probabilistic
inferences. For example, consider that among/tdestinct values in an equivalence class, one particular
value appears much more frequently than the others. In swals@ an adversary may conclude that the
individuals contained in the equivalence class are vemiliko have that specific value. A more robust
diversity is achieved by enforcing entropydiversity [16], which requires every equivalence classatsfy

the following condition.

— Zp(e, s) log p(e,s) > log ¥
seS

whereS is the domain of the sensitive attribute and, s) represents the fraction of records:ithat have
sensitive value. Although entropy-diversity does provide stronger privacy, the requirennesly sometimes
be too restrictive. For instance, as pointed out in [16],nteeo for entropy/-diversity to be achievable, the
entropy of the entire table must also be greater than or equied /.

Recently, a number of anonymization models have been peopds [26], Xiao and Tao observed that
diversity cannot prevent attribute disclosure, when mpldtrecords in the table corresponds to one individual.
They proposed to have each individual specify privacy pedi@bout his or her own attributes. In [13], Li
et al. observed thatdiversity is neither sufficient nor necessary for protegtigainst attribute disclosure.
They proposed-closeness as a stronger anonymization model, which esgjthe distribution of sensitive
values in each equivalence class to be analogous to thédt&in of the entire dataset. In [15], Li and
Li considered the adversary’s background knowledge in ohefiprivacy. They proposed an approach for
modeling the adversary’s background knowledge by using eléting techniques on the data to be released.

2.2 Anonymization Techniques

The k-anonymity (and/-diversity) requirement is typically enforced througéneralizationwhere real val-
ues are replaced with “less specific but semantically ctargisralues” [21]. Given a domain, there are
various ways to generalize the values in the domain. Inglitj numeric values can be generalized into in-
tervals (e.g., 11 — 20]), and categorical values can be generalized into a setstfiple values (e.g{USA,
Canada, Mexic}) or a single value that represents such a set (e.g., Northrisa). As generalization makes
data uncertain, the utility of the data is inevitably dowerdgd. The key challenge of anonymization is thus
to minimize the amount of ambiguity introduced by genegdlan while enforcing anonymity requirement.

Various generalization strategies have been developethelnierarchy-based generalizatischemes,
a non-overlapping generalization-hierarchy is first defifer each attribute in the quasi-identifier. Then an
algorithm in this category tries to find an optimal (or goodlusion which is allowed by such generalization
hierarchies. Here an optimal solution is a solution thasas the privacy requirement and at the same time
minimizes a desired cost metric. Based on the use of genatialn hierarchies, the algorithms in this category
can be further classified into two subclasses. Insingle-level generalizatioachemes [11, 19, 21], all the
values in a domain are generalized into a single level in dreesponding hierarchy. This restriction could
be a significant drawback in that it may lead to relativelyhhigta distortion due to excessive generalization.
Themulti-level generalizatiofB, 9] schemes, on the other hand, allows values in a domdia tgeneralized
into different levels in the hierarchy. Although this leasmuch more flexible generalization, possible
generalizations are still limited by the imposed geneadian hierarchies.

Another class of generalization schemes idtieearchy-free generalizatioclass [3, 2, 12, 4]Hierarchy-
free generalizatiorschemes do not rely on the notion of pre-defined generalizétierarchies. In [3], Ba-



yardo et al. propose an algorithm based on a powerset searblem, where the space of anonymizations
(formulated as the powerset of totally ordered values intas#d) is explored using a tree-search strategies.
In [2], Aggrawal et al. propose a clustering approach to eahk-anonymity, which clusters records into
groups based on some distance metric. In [12], LeFevre erahsform thek-anonymity problem into a
partitioning problem and propose a greedy approach thatrsaely splits a partition at the median value
until no more split is allowed with respect to theanonymity requirement. Byun et al.[4], on the other hand,
introduce a flexiblé&-anonymization approach which uses the idea of clusteoinginimize information loss
and thus ensures good data quality.

On the theoretic side, optimatanonymity has been proved to be NP-hardior 3 [17]. Furthermore,
the curse of dimensionality also calls for more effectiverammization techniques, as shown in [1] that,
when the number of quasi-identifier attributes is high, erifay k-anonymity necessarily results in severe
information loss, even fak = 2.

Recently, Xiao and Tao [25] propose Anatomy, a data anorgtioiz approach that divides one table into
two for release; one table includes original quasi-idegttdind a group id, and the other includes the associa-
tions between the group id and the sensitive attribute galkieudas et al. [10] explore the permutation-based
anonymization approach and examine the anonymizatiorigmofsom the perspective of answering down-
stream aggregate queries.

3 Problem Formulation

In this section, we start with an example to illustrate thebpem of inference. We then describe our notion
of incremental dissemination and formally define a privaayuirement for it.

3.1 Motivating Examples

Let us revisit our previous scenario where a hospital is irequo provide the anonymized version of its
patient records to a disease control agency. As previoustussed, to assure data quality, the hospital
anonymizes the patient table whenever it is augmented veihnecords. To make our example more con-
crete, suppose that the hospital relies on a model wherelh@ihanonymity and-diversity are considered,;
therefore, a 'k, £)-anonymous’ dataset is a dataset that satisfies bott-#monymity and-diversity require-
ments. The hospital initially has a table like the one in Fégliand reports to the agency igs £)-anonymous
table shown in Figure 2. As shown, the probability of idgntiisclosure (i.e., the association between indi-
vidual and record) and attribute disclosure (i.e., the @asion between individual and diagnosis) are kept
underl/2 in the dataset, respectively. For example, even if an ataakows that the record of Tom, who
is a 21-year-old male, is in the released table, he cannot Eeout Tom’s disease with a probability greater
than1/2 (although he learns that Tom has either asthma or flu). Ates tahe, three more patient records
(shown inltalic) are inserted into the dataset, resulting the table in Ei§uiThe hospital then releases a new
(2,2)-anonymous table as depicted in Figure 4. Observe that Tprivacy is still protected in the newly
released dataset. However, not every patient’s privacsotepted from the attacker.

Example 1 “Alice has cancer!” Suppose the attacker knows that Alice, who is in her late iwenhas
recently been admitted to the hospital. Thus, he knows the¢’a record is not in the old dataset in Figure 2,
but in the new dataset in Figure 4. From the new dataset, heslealy that Alice has one dfAsthma, Flu,
Cancek. However, by consulting the previous dataset, he can edsilyce that Alice has neither asthma nor
flu (as they must belong to patients other than Alice). He nders that Alice has cancer.



Example 2 “Bob has alzheimer!"The attacker knows that Bob is 52 years old and has long beatett in
the hospital. Thus, he is sure that Bob’s record is in botaskis in Figures 2 and 4. First, by studying the
old dataset, he learns that Bob suffers from either alzheoandiabetes. Now the attacker checks the new
dataset and learns that Bob has either alzheimer or heagsgisHe can thus conclude that Bob suffers from
alzheimer. Note that three other records in the new datasetiso vulnerable to similar inferences.

As shown in the examples above, anonymizing a dataset wvtitamsidering previously released infor-
mation may enable various inferences.

3.2 Incremental data dissemination and privacy requiremen

Let T be a private table with a set of quasi-identifier attribufeand a sensitive attributé. We assume
thatT consists of person-specific records, each of which corredpto a unique real-world individual. We
also assume that continuously grows with new records and denote the stafeé aff timei as7;. For the
privacy of individuals, eacli; must be “properly” anonymized before being released toipuklur goal is
to address both identity disclosure and attribute discsand we adopt an anonymity motitiat combines
the requirements gf-anonymity and-diversity as follows.

Definition 1 ((k, ¢)-Anonymity) Let tableT be with a set of quasi-identifier attributés and a sensitive
attributeS. With respect ta, T' consists of a set of non-empty equivalence classes, where T', record
r € e = r[Q] = e[Q]. We say thafl" is (k, c)-anonymousvith respect tay if the following conditions are
satisfied.

1.VeeT,le| >k, wherek > 0.

Z.VeeT,VSeS,WLT[S]:S”Sc, where0 < ¢ < 1.

le

The first condition ensures tiieanonymity requirement, and the second condition enfaieediversity
requirement in the sensitive attribute. In its essences#vend condition dictates that the maximum confi-
dence of association between any quasi-identifier valueagmatticular sensitive attribute value Thmust
not exceed a threshold R

At a given timei, only an {, c)-anonymous version df;, denoted ag’;, is released to public. Thus,
users, including potential attackers, may have accessanes®f §, c)-anonymoustable§;, T3, . . ., where
|T;| < |T;|fori < j. As every released table i,(c)-anonymous, by observing each table independently, one
cannot associate a record with a particular individual witibability higher than /k or infer any individual’s
sensitive attribute with confidence higher thanHowever, as shown in Section 3.1, it is possible that one
can increase the confidence of such undesirable infereyagisderving the difference between the released
tables. For instance, if an observer can be sure that twaganiaed) records in two different versions indeed
correspond to the same individual, then he may be able tchisskrtowledge to infer more information than
what is allowed by thek c¢)-anonymity protection. If such a case occurs, we say thekths an inference
channel between the two versions.

Definition 2 (Cross-version inference channglLet © = {Tl, e ,Tn} be the set of all released tables for
private tabler, whereT} is an &, c)-anonymous version released attiine < i < n. Letd C © and7} € ©.
We say that there existsoss-version inference chanrfedm 6 to 7;, denoted a8 — T, if observing tables
in @ andT; collectively increases the risk of either identity diselosor attribute disclosure ifi; higher than
1/k or ¢, respectively.

2A similar model is also introduced in [24].



When data are disseminated incrementally, it is criticarsure that there is no cross-version inference
channel among the released tables. In other words, the dawader must make sure that not only each
released table is free of undesirable inferences, but alseleased table creates cross-version inference
channels with respect to the previously released tablesofeally define this requirement as follows.

Definition 3 (Privacy-preserving incremental data disseminatiofjLet© = {TO, ceey Tn} be the set of all
released tables of private tatiffie whereT; is an (, c)-anonymous version df released attimg 0 < i < n.
O is said to beprivacy-preservingf and only if A (4, T;) such that C ©, T; € ©, andf — T;.

4 Cross-version Inferences

We first describe potential attackers and their knowledgé we assume in this paper. Then based on the
attack scenario, we identify three types of cross-versiference attacks in this section.

4.1 Attack scenario

We assume that the attacker has been keeping track of aletbased tables; he thus possesses a set of
released tableTy, ..., T, }. We also assume that the attacker has the knowledge of winalig/lao is not
contained in each table; that is, for each anonymized thplthe attacker also possesses a population table
U; which contains the explicit identifiers and the quasi-iifeas of the individuals iril;. This may seem to

be too farfetched at first glance; however, we assume thet wase, as we cannot rely on attacker’s lack of
knowledge. Also, such knowledge is not always difficult tojaice for a dedicated attacker. For instance,
consider medical records released by a hospital. Althohglattacker may not be aware of all the patients,
he may know when target individuals in whom he is interested.( local celebrities) are admitted to the
hospital. Based on this knowledge, the attacker can easilyce which tables may include such individuals
and which tables may not. Another, perhaps the worst, pdigsils that the attacker may collude with an
insider who has access to detailed information about thiermgat e.g., the attacker could obtains a list of
patients from a registration staff Thus, it is reasonable to assume that the attacker's kigwléncludes

the list of individuals contained in each table as well asrthaasi-identifier values. However, as all the
released tables aré,(c)-anonymous, the attacker cannot infer the individuales#eve attribute values with

a significant probability, even utilizing such knowledgeherfefore, the goal of the attacker is to increase
his/her confidence of attribute disclosure (i.e., abgvey comparing the released tables all together. In the
remainder of this section, we describe three types of cvession inferences that the attacker may exploit in
order to achieve this goal.

4.2 Notations

We first introduce some notations we use in our discussion.7lee a table with a set of quasi-identifer
attributes and a sensitive attributg. Let A be a set of attributes, where C (Q U S). ThenT[A] denotes
the duplicate-eliminating projection @f onto the attributesi. Lete; = {ro,...,r,} be an equivalence
class inT, wherem > 0. By definition, the records ip; all share the same quasi-identifier value, af{d)
represents the common quasi-identifier value;0fVe also use similar notations for individual records; that
is, for recordr € T', r[Q] represents the quasi-identifier valueraindr[S] the sensitive attribute value of

SNowadays, about 80% of privacy infringement is committedrtsjders.



In addition, we us@'(A) to denote the duplicate-preserving projectiofofFor instancee; (S) represents

the multiset of all the sensitive attribute valuegjnWe also uséN| to denote the cardinalities of s&f.
Regardless of recoding schemes, we consider a generaliheel @s a set of possible values. Suppose

thatv is a value from domai® andv a generalized value af. Then we denote this relation as< v, and

interpretv as a set of values whefe € v) A (Yu; € U, v; € D). Overloading this notation, we say ttais

a generalized version of recorddenoted as < 7, if (Vg; € Q, r[q:] < Flg]) A (r[S] = 7[S]). Moreover,

we say that two generalized valug&sandv, arecompatible denoted as; o< o5, if 01 N0z # 0. Similarly,

two generalized record§ andr; are compatible (i.er; > 73) if Vg, € Q, 7i[q;] N 75[q:] # 0. We also say

that two equivalence classesande; are compatible it¥q; € Q, e1[q:;] N ea|q;] # 0

4.3 Difference attack

Let ﬁ = {eo1,---s€om} andfj = {e11,...,e1,m} be two §, c)-anonymous tables that are released at
timed andj (i # j), respectively. As previously discussed in Section 4.1assume that an attacker knows
who is and who is not in each released table. Also knowing tresigidentifier values of the individuals in
T; andTj, for any equivalence classin eitherT; or T3, the attacker knows the individuals whose records
are contained im. Let I(e) represent the set of individuals én With this information, the attacker can now
perform difference attacks as follows. LBf andE; be two sets of equivalence classes, wheye_ ﬁ and

E; C fj. If Uecr,I(e) C Uecr, I(e), thensetD = U.cp, I(e) —Ueck, I (e) represents the set of individuals
whose records are ifi;, but notinE;. Furthermore, sefp = Uccr, e(S) — Ucer, e(S) indicates the set of
sensitive attribute values that belong to those indivislimD. Therefore, ifD contains less thah records,

or if the most frequent sensitive value #f, appears with a probability larger thanthe (k, ¢)-anonymity
requirement is violated.

TheDirectedCheclprocedure in Figure 5 checks if the first table of the inputLiierable to difference
attack with respect to the second table. Two tatﬂesndT are vulnerable to difference attack if at least one
of DirectedCheck}, T ) anlerectedChec((Z}, T;) returns true.

The DirectedCheclprocedure enumerates all subsetdpfand for each sek, the procedure callet-
MinSetsprocedure in Figure 6 to get the minimum g€t of equivalence classes if; that contains all the
records inE. We call such®’ the minimum covering setf E. The procedure then checks whether there is
vulnerability between the two equivalence clasgeand E’. As the algorithm checks all the subsetSRgf
the time complexity is exponential (i.e, itd3(2™), wheren is the number of equivalence classeglm As
such, for large tables with many equivalence classes, thigtforce check is clearly unacceptable. In what
follows, we discuss a few observations that result in effedteuristics to reduce the space of the problem in
most cases.

Observation 1 Let F; and F» be two sets of equivalence classeéﬁn and E; and E, be their minimal
covering sets i, respectively. If£; and E; are not vulnerable to difference attack, aBid N EY, = (), then
we do not need to consider any subsetpivhich containg?; U Es.

The fact thatF; andE, are not vulnerable to difference attacks means that #ts-(£;) and (£ — E>»)
are both(k, ¢)-anonymous. As the minimum covering setlaf U Es is E] U E}, andE} andE}, are disjoint,
(E] U EL) — (E1 U E») is also(k, ¢)-anonymous. This also implies that if eaBh and F5 is not vulnerable
to difference attack, then neither is any set contaiding E>. Based on this observation, we can modify the
method in Figure 5 as follows. In each time we union one maemeht to a subset to create larger subsets,
we check if their minimum covering sets are disjoint. If tree, we do not insert the unioned subset to the
gueue. Note that this also prevents all the sets contaihigrioned set from being generated.



Observation 2 Let £y and E» be two sets of equivalence cIasseSf]n and E; and E, be their minimal
covering sets ifl;, respectively. IfE{ = EJ, then we only need to checki; U E; is vulnerable to
difference attack.

In other words, we can skip checking if eachiof and E is vulnerable to difference attack. This is
because unless; U E5 is vulnerable to difference attack;; andE5 are not vulnerable. Thus, we can save
our computational effort as follows. When we insert a newsstilinto the queue, we check if there exists
another set with the same minimum covering set. If such agetind, we simply merge the new subset with
the found set.

Observation 3 Consider the method in Figure 5. Suppose thatas released afté?’j; that is, 7; contains

some records that are not iﬁ If equivalence class € f,- contains all such records, then we do not need to
consider that equivalence class for difference attack.

It is easy to see that # € T; contains some record(s) thﬁ} do not, the minimum covering set ef
is an empty-set. Since itself must be(k, ¢)-anonymouse is safe from difference attack. Based on this
observation, we can purge all such equivalence classestfreimitial problem set.

4.4 Intersection attack

The key idea ok-anonymity is to introduce sufficient ambiguity into the@siation between quasi-identifier
values and sensitive attribute values. However, this anityignay be reduced to an undesirable level if the
structure of equivalence classes are varied in differdaases. For instance, suppose that the attacker wants
to know the sensitive attribute of Alice, whose quasi-idfearttvalue isq4. Then the attacker can select a
set of tablesg{, that all contain Alice’s record. As the attacker knows thiasi-identifier of Alice, he does
not need to examine all the records; he just needs to cortsideecords that may possibly correspond to
Alice. That s, in eachZ“ € 9 , the attacker only need to consider an equivalence elass Tl, where
ga = eQ)]. Let E4 = {eo,...,e,} be the set of all equivalence classes identified fmjnsuch that
g4 = €;]Q],0 <1 < n. As everye; is (k, c)-anonymous, the attacker cannot infer Alice’s sensittebaite
value with confidence higher tharby examining each; independently. However, as every equivalence class
in /4 contains Alice’s record, the attacker knows that Alice’'ssiive attribute values 4, must be present
in every equivalence class ii4; i.e.,Ve; € E4,sa € e;(S). This implies thats, must be found in set
SIa =, cp, €lS). Therefore, if the most frequent value$ii 4 appears with a probability greater than
¢, then the sensitive attribute value of Alice can be infemit confidence greater than

The pseudo-code in Figure 7 provides an algorithm for ctmeckine vulnerability to the intersection
attack for given two/, c)- anonymoustableﬁ}) andT;. The basic idea is to check every pair of equivalence
classeg; ¢ To ande; € T1 that contain the same record(s).

4.5 Record-tracing attack

Unlike the previous attacks, the attacker may be interastédowing who may be associated with a par-
ticular attribute value. In other words, instead of wantiognow what sensitive attribute value a particular
individual has, the attacker now wants to know which indixts possess a specific sensitive attribute value;
e.g., the individuals who suffer from ‘HIV+'. Let, be the sensitive attribute value in which the attacker is

interested and}; € © be the table in which (at least) one record with sensitivae/a} appears. AIthougEﬁ



may contain more than one record with, suppose, for simplicity, that the attacker is interested partic-
ular recordr, such that(r,[S] = sp) A (1, € e;). As T is (k, c)-anonymous, when the attacker queries the
population tablé/; with r,[Q], he obtains at leadtindividuals who may correspond ig. Let I, be the set

of such individuals. Suppose that the attacker also possessubsequently released taﬁ)e(i < j) which
includesr,. Note that in each of these tables the quasi-identifier,ahay be generalized differently. This
means that if the attacker can identify frcﬁa the record corresponding i@, then he may be able to learn
additional information about the quasi-identifier of theliindual corresponding te,, and possibly reduce
the size ofl,,. There are many cases where the attacker can iden;;tifyfj. However, in order to illustrate
our point clearly, we show some simple cases in the folloveixgmple.

Example 3 The attacker knows thai, must be contained in the equivalence cIas@A“]ofhat is compatible
with r,,[Q]. Suppose that there is only one compatible equivalencs,elas in fj (see Figure 8 (i)). Then
the attacker can confidently combine his knowledge on thaigdantifier ofr,; i.e., r,[Q] — r,[Q] N
e;+1[Q]. Suppose now that there are more than one compatible egnéstlasses iiiiA“iH, saye; 1 and
eip1- I sp € eir1[S] ands, ¢ e;,[S], then the attacker can be sure thate e;,; and updates his
knowledge ofr, [Q] asr,[Q] N e;41[Q]. However, ifs, € e;1[S] ands, € e;,,[S], thenr, could be in
eithere; 1 ande; , (see Figure 8 (ii)). Although the attacker may or may not aetee which equivalence
class contains,, he is sure that, € e; 11 U e] ,; thereforey,[Q] «— 7,[Q] N (ei11[Q] U e, [Q]).

After updatingr,[Q] with T“, the attacker can reexamidg and eliminate individuals whose quasi-
identifiers are no longer compatible with the updatgfd)]. When the size of, becomes less than the
attacker can infer the association between the individnals andr,, with a probability higher that /.

In the above example, when there are more than one compadjbiealence class€®;1 1, ..., €i11,-} iN
ﬁ+1, we say that the attacker updatefQ] asr,[Q] N (U< <reit1,;). While correct, this is not a sufficient
description of what the attacker can do, as there are casagwhie attacker can notice that some equivalence
classes |rﬂ1+1 cannot contairr,. For example, let; € €i,1 andry € e; 2 be two records |ril”1, both
takings,. as the sensitive value (see Figure 9(i)). Supposé]t,hatcontams a single equivalence class; ;
that is compatible te; and two compatible equivalence classes; ; ande;; » that are compatible te;.
Althoughr, has two compatible equivalence classes, the attacker csurbéhat-; is included ine;; 2, as
the record withs,. in e; 1,1 must correspond te,. Figure 9(ii) illustrates another case of which the attacke
can take advantage. As shown, there are two recorelg;ithat takes, as the sensitive value. Although the
attacker cannot be sure that each of these records is cedtaie; 1 ; or e; 11 2, he is sure that one record is
in e;+1,1 and the other ir,; 11 2. Thus, he can make an arbitrary choice and update his kngeladout the
quasi-identifiers of the two records accordingly. Usingrstechniques, the attacker can make more precise
inference by eliminating equivalence classe%:ip; that are impossible to contaif.

We now describe a more thorough algorithm that checks hye){anonymous tables for the vulnerability
to the record-tracing attack. First, we construct a bipagiraphG = (V, E), whereV = V; U V5 and each
vertex inV; represents a record iﬁ and each vertex iy represents a record ﬁ+1 that is compatible
with at least one record @ We defineE as the set of edges from verticeslip to vertices inl;, which
represents possible matching relationships. That isgeffetlis an edge from; € V; tor; € Vs, this means
that records;; andr; may both correspond to the same record although they areajizee into different
forms. We create such edges betwégrandV; as follows. For each vertexe Vi, we find fromV; the set
of recordsRk whereVr; € R, (r[Q] > r;[Q]) A (r[S] = r;[S]). If |[R| = 1 andr’ € E, then we create an
edge fromr to ' and mark it with(d), which indicates that definitelycorresponds te’. If |[R| > 1, then
we create an edge fromand everyr, € R and mark it with(p) to indicate that plausiblycorresponds to
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r,. Now given the constructed bipartite graph, the pseud@ @o&igure 10 removes plausible edges that are
not feasible and discovers more definite edges by scanniaggh the edges.

Note that the algorithm above does not handle the caserdbest in Figure 9(ii). In order to address
such cases, we also performs the following. For each eauiealclass; ; € T;, we find fromT the set of
equivalence classds whereVe, ; € E, eq ;[Q] > ez ;[Q]. If the same number of records W|th any sensitive
values appear in botfe; ; and E, we remove unnecessary plausible edges such that eachiofesiords in
e1,; has a definite edge to a distinct recordiin

After all infeasible edges are removed, each reegrde V; is associated with a set of possibly matching
records{rz ;,...,7r2,m} (7 < m)in V2. Now we can follow the edges and compute for each recpyd= ﬁ
the inferrable quasi-identifiet, ,[Q] = 71:[Q] N (U,—,. . 72,[Q]). If any inferred quasi-identifer maps

to less thark individuals in the population tablg;, then tableT; is vulnerable to the record-tracing attack
with respect tdl’;.

It is worth noting that the key problem enabling the recaomting attack arises from the fact that the
sensitive attribute value of a record, together with itsegatized quasi-identifier, may uniquely identify the
record in different anonymous tables. This issue can becalpecritical for records with rare sensitive
attribute values (e.g., rare diseases) or tables wherg éwdividual has a unique sensitive attribute value
(e.g., DNA sequence).

5 Inference Prevention

In this section, we describe our incremental data anonytioizavhich incorporates the inference detection
techniques in the previous section. We first describe ow/kistory management strategy which aims to
reduce the computational overheads. Then, we describertipenpies of our checking algorithms which
make them suitable for existing data anonymization teamscsuch as full-domain generalization [11] and
multidimensional anonymization [12].

5.1 Data/history management

Consider a newly anonymized tab@,, which is about to be released. In order to check whéfhe’s vul-
nerable to cross-version inferences, it is essential totaiai some form of history about previously released
datasetsp = {TO, ..., T;—1}. However, checking the vulnerability (i‘ﬂ against each table i® can be
computationally expenswe To avoid such inefficiency, wantain a history tablef; at timei, which has
the following attributes.

e RID: is a unique record ID (or the explicit identifier of the capending individual). Assuming that
eachT also contain®RID (which is projected out before being releaserl)) is used to joinH; and
T..

e TS(Time Stamp) : represents the time (or the version numbeewthe record is first released.

e IS(Inferable Sensitive values) : stores the set of sensitivibate values with which the record can be
associated. Forinstance, if recoris released in equivalence clasof T;, thenr[1S]; «— (r[IS];—1N
e;(S)). This field is used for checking vulnerability to intersectiattack.

e 1Q (Inferable Quasi-identifier) : keeps track of the quashttfeers into which the record has previously
been generalized. For instance, for record T;, r[IQ]; < r[IQ]i—1 N r[Q]. This field is used for
checking vulnerability to record-tracing attack.
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The main idea off; is to keep track of the attacker’s accumulated knowledgeamh eeleased record.
For instance, value[IS] of recordr € H;_; indicates the set of sensitive attribute values that theckdtr
may be able to associate withprior to the release df;. This is indeed the worst case as we are assuming
that the attacker possesses every released tabl&)i.elowever, as discussed in Section 4.1, we need to be
conservative when estimating what the attacker can do.dJ8inthe cost of checking; for vulnerability
can be significantly reduced; for intersection and recoading attacks, we check; againstH; 1, instead
of everyT; € ©%

5.2 Incorporating inference detection into data anonymizéon

We now discuss how to incorporate the inference detectmgorihms into secure anonymization algorithms.
We first consider the full-domain anonymization, where albes of an attribute are consistently generalized
to the same level in the predefined generalization hieratoHy 1], LeFevre et al. propose an algorithm that
finds minimal generalizations for a given table. In its essethe proposed algorithm is a bottom-up search
approach in that it starts with un-generalized data and tadind minimal generalizations by increasingly
generalizing the target data in each step. The key propaniyhich the algorithm relies is the generalization
property: given a tabl& and two generalization strategi€s, G2 (G1 =X Gs), if G1(T) is k-anonymous,
thenG»(T) is alsok-anonymoud Although intuitive, this property is critical as it guatags the optimality

to the discovered solutions; i.e., once the search finds argkration level that satisfies tlkeanonymity
requirement, we do not need to search further.

Observation 4 Given a tableT and two generalization strategi€s,, G2 (G1 = G2), if G1(T) is not
vulnerable to any inference attack, then neithefig(7T').

The proof is simple. As each equivalence clas&#tT) is the union of one or more equivalence classes
in G1(T), the information about each record@(7T') is more vague than that i, (T'); thus,G» does not
create more inference attacks th@n Based on this observation, we modify the algorithm in [1sliadlows.

In each step of generalization, in addition to checking(the:)-anonymity requirement, we also check for
the vulnerability to inference. If either check fails, th@a need to further generalize the data.

Next, we consider the multidimensionialanonymity algorithm proposed in [12]. Specifically, thg@
rithm consists of the following two steps. The first step ifitdl a partitioning scheme of th&dimensional
space, wherd is the number of attributes in the quasi-identifier, such &agh partition contains more than
k records. In order to find such a partitioning, the algoritTursively splits a partition at the median value
(of a selected dimension) until no more split is allowed wikpect to thé:-anonymity requirement. Note
that unlike the previous algorithm, this algorithm is a @an search approach, and the quality of the search
relies on the following property given a partitiorp, if p does not satisfy the-anonymity requirement, then
any sub-partition op does not satisfy the requirement.

Observation 5 Given a partitionp of records, ifp is vulnerable to any inference attack, then so is any sub-
partition of p.

Suppose that we have a partitipn of the dataset, in which some records are vulnerable toenfar
attacks. Then, any further cut pf will lead to a dataset that is also vulnerable to inferentacs. This

4In our current implementation, difference attack is stilecked against every previously released table.
5This property is also used in [16] fdrdiversity and is thus applicable fok (c)-anonymity.
S|t is easy to see that the property also holds for any diwersijuirement.

12



is based on the fact that any further cutianleads to de-generalization of the dataset; thus, it revaate
information about each record than Based on this observation, we modify the algorithm in [12{alow.

In each step of partition, in addition to checking ftfie ¢)-anonymity requirement, we also check for the
vulnerability to inference. If either check fails, then we nbot need to further partition the data.

6 Experiments

The main goal of our experiments is to show that our approfiebtaely prevents the previously discussed
inference attacks when data is incrementally disseminatedalso show that our approach produces datasets
with good data quality. We first describe our experimenttirsgs and then report our experimental results.

6.1 Experimental Setup
6.1.1 Experimental Environment

The experiments were performed o8.66 GHz Intel IV processor machine withGB of RAM. The oper-
ating system on the machine was Microsoft Windows XP Pradaess Edition, and the implementation was
built and run in Java 2 Platform, Standard Edition 5.0. Farexperiments, we used the Adult dataset from
the UC Irvine Machine Learning Repository [18], which is simered a de facto benchmark for evaluating
the performance of anonymization algorithms. Before theeeinents, the Adult data set was prepared as
described in [3, 9, 12]. We removed records with missing e@sland retained only nine of the original at-
tributes. In our experiments, we considefedie work class education marital statusrace, gender native
country, salary} as the quasi-identifier, aratcupatiorattribute as the sensitive attribute.

6.1.2 Data quality metrics

The quality of generalized data has been measured by vametrsc. In our experiment, we measure the
data quality mainly based ofwerage Information Los6AI L, for short) metric proposed in [4]. The basic
idea of AT L metric is that the amount of generalization is equivalerthtbexpansion of each equivalence
class (i.e., the geometrical size of each partition). Nb#g &s all the records in an equivalence class are
modified to share the same quasi-identifer, each regiorethdepresents the generalized quasi-identifier of
the records contained in it. Thus, data distortion can besarea naturally by the size of the region covered
by each equivalence class. Following this idea, Infornmatioss (L for short) measures the amount of data
distortion in an equivalence class as follows.

Definition 4 (Information loss) [4] Let e={ry,...,r,} be an equivalence class whape{ay,...,am}.
Then the amount of data distortion occurred by generalizirdenoted byAI L(e), is defined as:

G .
AIL(e) = lel X X2y om 12
wherele| is the number of records in and| D, | the domain size of attributg;. |G| represents the amount of
generalization in attribute; (e.g., the length of the shortest interval which contaihthala; values existing

in e).

Based on/L, the AIL of a given tablel is computed asAIL(T) = (Xeeq IL(e)) / |IT|. The key
advantage ofA] L metric is that it precisely measures the amount of geneatidiz (or vagueness of data),
while being independent from the underlying generalizaioheme (e.g, anonymization technique used or

generalization hierarchies assumed). For the same reasaiso use the Discernibility Metrid(}) [3] as
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another quality measure in our experiment. Intuitivél/ measures the quality of anonymized data based
on the size of the equivalence classes, which indicates hoehmecords are indistinguishable from each
other.

6.2 Experimental Results

We first measured how many records were vulnerable in sigt@aonymized datasets with respect to the
inference attacks we discussed. For this, we modifieditvamonymization algorithms, Incognito [11] and
Mondrian [12], and used them as aiatic (%, ¢)-anonymization algorithms. Using these algorithms, we firs
anonymized 5K records and obtained the first “publishedaskats. We then generated five more subsequent
datasets by adding 5K more records each time. Then we usedutnarability detection algorithms to
count the number of records among these datasets that aer&hle to each of inference attack. Figure 11
shows the result. As shown, much more records were found twlnerable in the datasets anonymized by
Mondrian. This is indeed unsurprising, as Mondrian, takingultidimensional approach, produces datasets
with much less generalization. In fact, for Incognito, etka initial dataset was highly generalized. This
clearly illustrates the unfortunate reality; that is, thermprecise data are, the more vulnerable they are to
undesirable inferences.

The next step was to investigate how effectively our appgreeauld work with a real dataset. The main
focus was its effect on the data quality. As previously désew, in order to prevent undesirable inferences,
one needs to hide more information. In our case, it meansghbagiven data must be generalized until there
is no vulnerability to any type of inference attack. We maatifthe stati¢k, c)-anonymization algorithms as
discussed in Section 5 and obtained mifircchecked k, ¢)-anonymization algorithms. Note that although we
implemented the full-featured algorithms for differencel antersection attacks, we took a simple approach
for record-tracing attack. That is, we considered all thgesdvithout removing infeasible/unnecessary edges
as discussed in Section 4.5. We also implementaseegeapproach where we anonymize each dataset
independently and merge it with the previously releasedsgdt Although this approach is secure from any
type of inference attacks, we expected that the data quedityd be the worst, as merging would inevitably
have a significant effect on generalization (recoding) sthe

With these algorithms as well as the static anonymizatigorithms, we repeated our experiment. As
before, we started with 5K records and increased the ddigse each time. We then checked the vulnera-
bility and measured the data quality of such datasets. Wesumned the data quality both with/ L and DM,
and the results are illustrated in Figures 12 and 13, relspéctlt is clear that in terms of data quality the
inf-checked algorithm is much superior than the merge #lgor Although the static algorithms produced
the best quality datasets, these data are vulnerable teende attacks as previously shown. The datasets
generated by our in€hecked algorithm and the merge algorithm were not vuldetalany type of inference
attack.

We also note that the quality of datasets generated by thehiéked algorithm is not optimal. This was
mainly due to the complexity of checking for difference akta Even though our heuristics to reduce the
size of subsets (see Section 4.3) were highly effective istroases, there were some cases where the size of
subsets grew explosively. As such cases not only causethieagecution times, they caused memaory blow-
ups. In order to avoid such cases, we set an upper limit thiégbr the size of subsets in this experiment.
For example, while our modified algorithm of Incognito is pessing a node in the generalization lattice, if
the size of subsets needed to be checked exceeds the thiasbastop the iteration and consider the node as
a vulnerable node. Similarly, when we encounter such a cage sonsidering a split in Mondrian, we stop
the check and do not consider the split. Note that this ambrdaes not affect the security of data, although
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it may negatively affect the overall data quality. Even & tbptimality cannot be guaranteed, we believe that
the data quality seems to be still acceptable, considehimgesults shown in Figures 12 and 13.

Another important comparison was the computational effityeof these algorithms. Figure 14 shows
our experimental result for each algorithm. The merge dlgoris highly efficient with respect to execution
time (although it was very inefficient with respect to dataliy). As the merge algorithm anonymizes the
same sized dataset each time and merging datasets can beedgpmgiickly, the execution time is closely
constant. While equipped the heuristics and the data steictiscussed in Sections 4.3 and 5.1, the inf-
checked algorithm is still slow. However, considering thevously discussed results, we believe that this is
the price you have to pay for better data quality and religbleacy. Also, when compared to our previous
implementation without any heuristics, this is a very prsimg result.

7 Related Work

The problem of information disclosure [6] has been studirtresively in the framework of statistical
databases. A number of information disclosure limitatiechnhiques [7] have been designed for data pub-
lishing, including Sampling, Cell Suppression, Roundeugd Data Swapping and Perturbation. These tech-
nigues, however, compromised data integrity of the tat3asnarati and Sweeney [20, 22, 21] introduced the
k-anonymity approach and used generalization and suppnegzhniques to preserve information truthful-
ness. A number of static anonymization algorithms [3, 8,19,1R, 14, 21] have been proposed to achieve
k-anonymity requirement. Optimal k-anonymity has beervpdao be NP-hard fok > 3 [17].

While static anonymization has been extensively investdian the past few years, only a few approaches
address the problem of anonymization in dynamic envirortmén [22], Sweeney identified possible infer-
ences when new records are inserted and suggested two Soipt®ns. The first solution is that once
records in a dataset are anonymized and released, in angyogLdrg release of the dataset, the records must
be the same or more generalized. As previously mentionsdapiproach may suffer from unnecessarily low
data quality. Also, this approach cannot protect newlyriteserecords from difference attack, as discussed
in Section 4. The other solution suggested is that once @elaigreleased, all released attributes (includ-
ing sensitive attributes) must be treated as the quastifinn subsequent releases. This approach seems
reasonable as it may effectively prevent linking betweaords. However, this approach has a significant
drawback in that every equivalence class will inevitableeha homogeneous sensitive attribute value; thus,
this approach cannot adequately control the risk of atteillisclosure.

Yao et al. [28] addressed the inference issue when a sifglkeitareleased in the form of multiple views.
They proposed several methods to check whether or not a g@terf views violates the-anonymity require-
ment collectively. However, they did not address how to éatld such violations. Wang and Fung [23] fur-
ther investigated this issue and proposed a top-down dizatian approach to prevent record-linking across
multiple anonymous tables. However, their work focuseserhbrizontal growth of databases (i.e., addition
of new attributes), and does not address vertically-grgwliatabases where records are inserted. Recently,
Xiao and Tao [27] proposed a new generalization principknvariancefor dynamic dataset publishing.
The m-invarianceprinciple requires that each equivalence class in evepasel contains distinct sensitive
attribute values and for each tuple, all equivalence ctassataining that tuple have exactly the same set
of sensitive attribute values. They also introduceddbanterfeit generalizatiotechnique to achieve the
m-invariancerequirement.

In [5], we presented a preliminary limited investigatiomcerning the inference problem of dynamic
anonymization with respect to incremental datasets. \Wetiitkd some inferences and also proposed an
approach where new records are directly inserted to thaquely anonymized dataset for computational
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efficiency. However, compared to this current work, our yas work has several limitations.The key differ-
ences of this work with respect to [5] are as follows. In [5§ fwcused only on thiaference enabling sethat
may exist between two tables, while in this work we consideremobust and systematic inference attacks in
a collection of released tables. The inference attacksigésa in this work subsume attacks using inference
enabling sets and address more sophisticated inferenmeisiskance, our study of the record-tracing attack is
a new contribution in this work. We also provide a detailedaliptions of attacks and algorithms for detect-
ing them. Our previous approach was also limited to the whiuiénsional generalization. By contrast, our
current approach considers and is applicable to both thedmhain and multidimensional approaches; there-
fore it can be combined with a large variety of anonymizattgorithms. In this paper we also address the
issue of computational costs in detecting possible infegenWe discuss various heuristics to significantly
reduce the search space, and also suggest a scheme to stoistahy (of previously released tables).

8 Conclusions

In this paper, we discussed inference attacks against thieyamzation of incremental data. In particular,
we discussed three basic types of cross-version inferataska and presented algorithms for detecting each
attack. We also presented some heuristics to address tbierdiy of our algorithms. Based on these ideas,
we developed secure anonymization algorithms for increahetatasets using two existing anonymization
algorithms. We also empirically evaluated our approachdmaring to other approaches. Our experimental
result showed that our approach outperformed other appesdn terms of privacy and data quality.

For the future work, we are working on essential propergeg, (correctness) of our methods and analysis.
Another interesting direction for the further work is to $ithere are other types of inferences. For instance,
one can devise an attack where more than one type of infeaeageintly utilized. We also plan to investigate
inference issues in more dynamic environments where daktind updates of records are allowed.
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[ NAME | AGE [ Gender]| Diagnosis | [ AGE [ Gender| Diagnosis |

Tom 21 Male Asthma [21 — 25] Male Asthma

Mike 23 Male Flu [21 — 25] Male Flu

Bob 52 Male | Alzheimer [50 — 60] | Person | Alzheimer

Eve 57 | Female| Diabetes [50 — 60] | Person| Diabetes
Figure 1: Patient table Figure 2: Anonymous patient table

[ AGE [ Gender| Diagnosis |

[ NAME | AGE | Gender| Diagnosis | 21— 30] | Person| Asthma
Tom 21 Male Asthma [21 —30] | Person Flu
Mike 23 Male Flu [21 — 30] | Person| Cancer
Bob 52 Male | Alzheimer [61 — 55] Male | Alzheimer
Eve 57 | Female| Diabetes [51 — 55] Male Hepatitis
Alice 27 Female | Cancer [56 — 60] | Female Flu
Hank 53 Male Hepatitis [56 — 60] | Female| Diabetes
Sal 59 Female Flu

Figure 4. Updated anonymous pa-
Figure 3: Updated patienttable  tjent table
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DirectedCheck N R R N
Input: Two (k, c)-anonymous tableq; and T;, whereT; = {e;1,...,e;m} andT; =
{ejyl,...,ej_,n} R R
Output: trueif T; is vulnerable to difference attack with respecftoandfalseotherwise
Q={(,0)}
while Q # 0
Remove the first elemept= (E, index) from Q
if B0 R
E' — GetMinSet(E,T;)
if |E' — E| < k, return true
else if(E'(S) — E(S)) does not satisfy-diversity,return true
foreach ¢ € {index + 1,...,m} I/ generates subsets with siZg| + 1
insert(E Ue; g, £)into Q
return false

Figure 5: Algorithm for checking if one table is vulnerabdedifference attack with respect to another table
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GetMinSet N
Input:  An equivalence class sétand a table”
Output: An equivalence class sé&t' C 7' that is minimal and contains all recordsih
E' =0
while E Z F’

choose a tuplein £ thatis not inE’

find the equivalence clagsC T that containg

E'=F U{e}
return

Figure 6: Algorithm for obtaining a minimum equivalencessaet that contains all the records in the given
equivalence class set
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Check Intersection_Attack R R
Input: Two (k, ¢)-anonymous table€s, andT}
Output: trueif the two tables are vulnerable to intersection attack fafgkotherwise
for each equivalence class ; in T
foreache; ; € Tl that contains any record i ;
if (e0,:(S) Ne1 ;(S)) does not satisfy-diversity,return true
return false

Figure 7: Algorithm for checking if given two tables are vetable to intersection attack

22



€411 €T
&) > Sﬂ 8.1

/' —~
=]
® ® €in3 €2 *
J ] } s s
L s o Z “
i+1,i| PR 2 .
€7 ' Y -~
3 e enj S x eliﬂ?
a3 ;l%/ J s
(i) TS| ens _ _
‘~~._<-3“'L+1§3‘J S!Z|
] 0] (ii)
Ti Tin Tn

. . Figure 9: More inference in record-tracin
Figure 8: Record-tracing attacks g g

23



Removelnfeasible_.Edges
Input: A bipartite graphG = (V, E) whereV = V; U V; and E is a set of edges representing
possible matching relationships.
Output: A bipartite graphG’ = (V, E’) whereE’ C E with infeasible edges removed
E'=F
while true
changel— false, change2- false
foreachr; € V,
e < all the incoming edges of;
if e contains both definite and plausible edge(s)
remove all plausible edges infrom E’, changeXk— true
if changel =true
foreachr; €
e < all the outgoing edges of
if e contains only a single plausible edge
mark the edge ir as definite, change2 true
if change?2 = falsdyreak
return (V. E')

Figure 10: Algorithm for removing infeasible edges from pditite graph
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Figure 11: Vulnerability to Inference Attacks
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Average Information Loss
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Figure 12: Data Quality: Average Information Loss
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Discernability Metric (unit = 1M)
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Figure 13: Data Quality: Discernibility Metric
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Execution Time (unit = sec)
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Figure 14: Execution Time
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