
Beyond Separation of Duty: An Algebra for Specifying
High-level Security Policies

Ninghui Li Qihua Wang
ninghui@cs.purdue.edu wangq@cs.purdue.edu

Center for Education and Research in Information Assurance and Security
and Department of Computer Science

Purdue University

ABSTRACT
A high-level security policy states an overall requirement for a sen-
sitive task. One example of a high-level security policy is a separa-
tion of duty policy, which requires a sensitive task to be performed
by a team of at leastk users. It states a high-level requirement
about the task without the need to refer to individual steps in the
task. While extremely important and widely used, separation of
duty policies state only quantity requirements and do not capture
qualification requirements on users involved in the task. In this
paper, we introduce a novel algebra that enables the specification
of high-level policies that combine qualification requirements with
quantity requirements motivated by separation of duty considera-
tions. A high-level policy associates a task with a term in the alge-
bra and requires that all sets of users that perform the task satisfy
the term. We give the syntax and semantics of the algebra and study
algebraic properties of its operators. We also study several compu-
tational problems related to the algebra.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Prob-
lems—Complexity of proof procedures

General Terms
Security, Theory, Languages

Keywords
Access Control, Separation of Duty, Policy Design

1. INTRODUCTION
Separation of Duty (SoD) is widely recognized as a fundamen-

tal principle in computer security [7, 18]. In its simplest form, the
principle states that a sensitive task should be performed by two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’06,October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

different users acting in cooperation. The concept of SoD has long
existed before the information age; it has been widely used in, for
example, the banking industry and the military, sometimes under
the name “the two-man rule”. More generally, an SoD policy re-
quires the cooperation of at leastk different users to complete the
task. SoD has been identified as a high-level mechanism that is
“at the heart of fraud and error control” [7]. An SoD policy is a
high-level policy in the sense that it does not restrict which users
are allowed to carry out the individual steps in a sensitive task, but
rather states an overall requirement that must be satisfied by any
set of users that together complete a task. In many situations, it
is not enough to require only thatk different users be involved in
a sensitive task; there are also minimal qualification requirements
for these users. For example, one may want to require users that are
involved to be physicians, certified nurses, certified accountants, or
directors of a company. Because a high-level SoD policy states
only a quantity requirement and does not express such qualifica-
tion requirements, existing work addresses this by specifying such
requirements at individual steps of a task. For example, if a pol-
icy requires a manager and two clerks to be involved in a task, one
may divide the task into three steps and require two clerks to each
perform step 1 and step 3, and a manager to perform step 2.

Specifying such requirements at the lower level of steps, how-
ever, results in the loss of the following important advantages of-
fered by a higher-level policy. First, as the specification abstracts
away details of how a task is implemented, a higher-level policy is
likely to be closer to organizational policy guidelines. It would thus
be easier for administrators to specify and understand such poli-
cies. Second, a high-level policy can be specified even before the
actual steps involved in a task are designed. In fact, a formal spec-
ification of task-level policies may help in the process of designing
steps to implement the task. Third, a task-level policy is often more
flexible than a corresponding step-level policy, which can be more
restrictive than necessary. For example, to enforce a task-level pol-
icy that requires a manager and two clerks, a step-level policy may
require a manager to execute a particular step, which is too restric-
tive. Finally, a higher-level policy specification allows flexibility in
the choice of the mechanism for enforcing the policy. For example,
one can use either static enforcement or dynamic enforcement. In
static enforcement, one ensures that any set of users that together
have enough permissions to perform the task satisfy the high-level
policy. In dynamic enforcement, one records the history of who
performs which steps in a task instance. When policies have to be
associated with steps in a task, all the advantages discussed above
are lost.

In this paper we introduce a novel algebra that enables the spec-
ification of high-level policies that combine qualification require-

ments with quantity requirements motivated by separation of duty
considerations. A term in our algebra specifies a requirement on
sets of users (we call these usersets). A high-level policy, rather
than referring to the steps, simply associates a task with a term in
the algebra. This policy requires that all sets of users that complete
an instance of the task satisfy the term. Our algebra has four binary
operators:t,u,¯,⊗, and two unary operators¬, +. An SoD pol-
icy that requires3 different users can be expressed using the term
(All ⊗ All ⊗ All), whereAll is a keyword that refers to the set of
all users. A policy that requires either a manager or two different
clerks is expressed using the term(Managert (Clerk⊗ Clerk)).

We define the syntax and semantics of terms in the algebra, and
study the algebraic properties of the operators. We show that all
four binary operators are commutative and associative. We also
show thatu andt distribute over each other and both̄and⊗
distribute overt. The four binary operators result in12 ordered
pair of operators. For the eight pairs other than the four mentioned
above, distributivity does not hold.

We then study the Term Satisfiability (TSAT) problem and the
Userset-Term Satisfaction (UTS) problem. TheTSAT problem
asks whether a given term is satisfiable at all. We show thatTSAT
is NP-complete in general and remainsNP-complete in certain
sub-algebras with only a subset of the operators. We also identify
a sub-algebra whose satisfiability problem is efficiently solvable.

The UTS problem asks whether a userset satisfies a term. We
show that theUTS problem isNP-complete in general. To better
understand the properties of the operators, we also study computa-
tional complexities for theUTS problem in all sub-algebras with
only a subset of the operators. We identify syntactic restrictions so
that even for terms with all six operators, as long as they satisfy
these restrictions,UTS can be solved efficiently. We also present a
heuristic algorithm for solvingUTS in the general case, and show
that for terms whose size is not very large, even if they do not satisfy
the syntactic restrictions,UTS can be solved in reasonable amount
of time.

Finally, some operators in our algebra are similar to the ones in
regular expressions. A regular expression describes a set of strings,
while a term in our algebra describes a set of sets. The relationships
between the two are discussed.

The remainder of the paper is organized as follows. We introduce
the syntax and semantics of the algebra in Section 2. We study the
TSAT problem in Sections 3 and theUTS problem in Section 4. In
Section 5, we discuss limitations of the algebra and extensions to
it, as well as the relationship with regular expressions. We discuss
related work in Section 6 and conclude with Section 7. Proofs not
included in the main body are included in the appendices.

2. THE ALGEBRA
In this section, we introduce our algebra for expressing high-

level security policies.

2.1 Syntax and Semantics
In our definition of the algebra, we use the notion of roles. We

use a role to denote a set of users that have some common qualifi-
cation or common job responsibility. We emphasize, however, that
the algebra is not restricted to Role-Based Access Control (RBAC)
systems [21]. In our algebra, a role is simply a named set of users.
The notion of roles can be replaced by groups or user attributes.
We useU to denote the set of all users, andR to denote the set of
all roles.

Definition 1 (Terms in the Algebra). Terms in the algebra are de-
fined as follows:

• An atomic termtakes one of the following three forms: a role
r ∈ R, the keywordAll, or a setS ⊆ U of users.

• An atomic term is aterm; furthermore, ifφ1 and φ2 are
terms, then¬φ1, φ+

1 , (φ1 t φ2), (φ1 u φ2), (φ1 ⊗ φ2), and
(φ1 ¯ φ2) are also terms, with the following restriction: For
¬φ1 or φ+

1 to be a term,φ1 must be aunit term, that is, it
must not contain+,⊗, or¯.

The unary operator¬ has the highest priority, followed by the unary
operator+, then by the four binary operators (namelyu, t,¯,⊗),
which have the same priority.

We now give several simple example terms to illustrate the intu-
ition behind the operators in the algebra. The term “(Manager u
Accountant)” requires a user that is both aManager and an
Accountant. The term “(Manager u ¬{Alice,Bob})” requires
a user that is a manager, but is neither Alice nor Bob; here,
the sub-term “¬{Alice,Bob}” implements a blacklist. The term
“(PhysiciantNurse)” requires a user that is either aPhysician
or aNurse. The term “(Manager¯Clerk)” requires a user who is
a Manager and a user who is aClerk; however, when one user is
both aManager and aClerk, that user by itself also satisfies the re-
quirement. The term “((All⊗All)⊗All)” requires3 different users.
The keywordAll allows us to refer to the set of all users. The term
“Accountant+” requires a set of one or more users, where each
user in the set is anAccountant.

To formally assign meanings to terms, we need to first assign
meanings to the roles used in the term. For this, we introduce the
notion of configurations.

Definition 2 (Configurations). A configurationis given by a pair
〈U,UR〉, whereU denotes the set of all users in the configuration,
andUR ⊆ U × R determines role memberships. When(u, r) ∈
UR, we say thatu is a member of the roler.

Note that in configuration〈U,UR〉, UR should not be confused
with the user-role assignment relationUA in RBAC. When an
RBAC system has bothUA and a role hierarchyRH , the two rela-
tionsUA andRH together determineUR.

Definition 3 (Satisfaction of a Term). Given a configuration
〈U,UR〉, we say that a usersetX satisfiesa termφ under〈U,UR〉
if and only if one of the following holds1:

• The termφ is the keywordAll, andX is a singleton set{u}
such thatu ∈ U .

• The termφ is a roler, andX is a singleton set{u} such that
(u, r) ∈ UR.

• The termφ is a setS of users, andX is a singleton set{u}
such thatu ∈ S.

• The termφ is of the form¬φ0 whereφ0 is a unit term, and
X is a singleton set that does not satisfyφ0.

• The termφ is of the formφ+
0 whereφ0 is a unit term, and

X is a nonempty userset such that for everyu ∈ X, {u}
satisfiesφ0.

• The termφ is of the form(φ1 t φ2), and eitherX satisfies
φ1 or X satisfiesφ2.

1We sometimes sayX satisfiesφ, and omit “under〈U,UR〉” when
it is clear from the context.

• The termφ is of the form(φ1 uφ2), andX satisfies bothφ1

andφ2.

• The termφ is of the form(φ1 ⊗ φ2), and there exist usersets
X1 andX2 such thatX1 ∪ X2 = X, X1 ∩ X2 = ∅, X1

satisfiesφ1, andX2 satisfiesφ2.

• The termφ is of the form(φ1 ¯ φ2), and there exist usersets
X1 andX2 such thatX1 ∪ X2 = X, X1 satisfiesφ1, and
X2 satisfiesφ2. This differs from the definition for⊗ in that
it does not requireX1 ∩X2 = ∅.

For example, given the term(Manager ¯ Clerk), and the con-
figuration〈U = {Alice,Bob,Carl}, UR〉, in whichUR is such
that: UManager = {Alice} and UClerk = {Alice,Carl}, where
Ur = {u | (u, r) ∈ UR}, we have{Alice} satisfies the term,
{Alice,Carl } also satisfies the term, but{Alice, Bob } and
{Bob,Carl } do not satisfy the term.

2.2 Examples
The following examples help illustrate the expressive power of

the algebra.

• {Alice,Bob,Carl} ⊗ {Alice,Bob,Carl}
This term requires any two users out of the list of three.

• (Accountant t Treasurer)+

This term requires that all participants must be either an
Accountant or a Treasurer. But there is no restriction
on the number of participants.

• ((Manager¯ Accountant)⊗ Treasurer)

This term requires aManager, an Accountant, and a
Treasurer; the first two requirements can be satisfied by
a single user.

• ((Physician t Nurse)⊗ (Manager u ¬Accountant))
This term requires two different users, one of which is either
a Physician or a Nurse, and the other is aManager, but
not anAccountant.

• ((Manager ¯ Accountant ¯ Treasurer) u (Clerk u
¬{Alice,Bob})+)

This term requires aManager, an Accountant and a
Treasurer. In addition, everybody involved must be a
Clerk and must not beAlice or Bob.

Definition 4 (Value of a term). Given a configuration〈U,UR〉 and
a termφ, we useS〈U,UR〉(φ) to denote the set of all usersets that
satisfyφ under〈U,UR〉, and call this thevalueof termφ under the
configuration.

Consider the termφ = ((Manager ¯ Accountant ¯
Treasurer)u (Clerku¬{Alice,Bob})+) and the configuration
〈U = {Alice,Bob,Carl ,Doris,Elaine,Frank}, UR〉, in which
UR is such that:

UManager = {Alice,Doris,Elaine}
UAccountant = {Doris,Frank}
UTreasurer = {Bob,Carl ,Doris}
UClerk = {Alice,Bob,Carl ,Doris,Frank}.

The sub-term(Clerku¬{Alice,Bob})+ means that only subsets
of {Carl ,Doris,Frank } may satisfyφ. We have

S〈U,UR〉(φ) = { {Doris}, {Carl ,Doris}, {Doris,Frank},
{Carl ,Doris,Frank} }

That is, there are four usersets that satisfy the termφ.

2.3 Algebraic Properties
We now introduce the notion of equivalence among terms, which

enables us to study the algebraic properties of the operators in the
algebra.

Definition 5 (Term Equivalence). We say that two termsφ1 and
φ2 areequivalent(denoted byφ1 ≡ φ2) when for every usersetX
and every configuration〈U,UR〉, X satisfiesφ1 under〈U,UR〉 if
and only ifX satisfiesφ2 under〈U,UR〉. In other words,φ1 ≡ φ2

if and only if ∀〈U,UR〉 �S〈U,UR〉(φ1) = S〈U,UR〉(φ2)
�
.

Using a straightforward induction on the structure of terms, one
can show that ifφ1 ≡ φ2, then, for any termφ in whichφ1 occurs,
let φ′ be the term obtained by replacing inφ one or more occur-
rences ofφ1 with φ2, we haveφ ≡ φ′.

Theorem 1. The operators have the following algebraic proper-
ties:

1. The operatorst,u,¯,⊗ are commutative and associative.
That is, for each op ∈ {t,u,¯,⊗}, and any terms
φ1, φ2, and φ3, we have(φ1 op φ2) ≡ (φ2 op φ1) and
((φ1 op φ2) op φ3) ≡ (φ1 op (φ2 op φ3)).

2. The operatorst andu distribute over each other. That is,
(φ1t (φ2uφ3)) ≡ ((φ1tφ2)u (φ1tφ3)) and(φ1u (φ2t
φ3)) ≡ ((φ1 u φ2) t (φ1 u φ3)).

3. The operator̄ distributes overt. That is, (φ1 ¯ (φ2 t
φ3)) ≡ ((φ1 ¯ φ2) t (φ1 ¯ φ3)).

4. The operator⊗ distributes overt. That is, (φ1 ⊗ (φ2 t
φ3)) ≡ ((φ1 ⊗ φ2) t (φ1 ⊗ φ3)).

5. No other ordered pair of binary operators have the distribu-
tive property. (There are 12 such pairs altogether; the four
of them listed above have the distributive property.)

6. (φ1 u φ2)
+ ≡ (φ+

1 u φ+
2)

7. DeMorgan’s Law:¬(φ1uφ2) ≡ (¬φ1t¬φ2),¬(φ1tφ2) ≡
(¬φ1 u ¬φ2)

See Appendix A for the proof of the above theorem, which also
gives a counter example for each case that the distributive property
does not hold.

Because of the associativity properties, in the rest of this paper
we omit parentheses in a term when doing so does not cause any
confusion.

We now describe some other facts about the operators, to further
illustrate the operators and their relationships.

• Any userset that satisfies(φ1 u φ2) also satisfies(φ1 t φ2),
but not the other way around.

• Any userset that satisfies(φ1 u φ2) also satisfies(φ1 ¯ φ2),
but not the other way around.

• Any userset that satisfies(φ1 ⊗ φ2) also satisfies(φ1 ¯ φ2),
but not the other way around.

• Any userset that satisfiesφ+
1 t φ+

2 also satisfies(φ1 t φ2)
+,

but not the other way around.

If X satisfies(φ+
1 t φ+

2), thenX satisfies eitherφ+
1 or φ+

2 .
Without loss of generality, assume thatX satisfiesφ+

1 . Then,
for everyu ∈ X, {u} satisfiesφ1 and thus satisfies(φ1tφ2).
Hence,X satisfies(φ1 t φ2)

+. For the other direction, if
{u1} satisfiesφ1 but notφ2, and{u2} satisfiesφ2 but not
φ1, then{u1, u2} satisfies(φ1 t φ2)

+ but notφ+
1 t φ+

2 .

2.4 Rationale of the Design of the Algebra
We now discuss the rationale for some of the design decisions

for the algebra.

Monotonicity SoD policies satisfy the property of monotonicity;
that is, if an SoD policy requires two users to perform a task, then
having three or more users certainly satisfies this policy. Simi-
larly, one may want a security algebra like ours to also satisfy the
monotonicity property; that is, if a usersetX satisfies a termφ,
then any superset ofX also satisfiesφ. McLean [15] adopts this
property in his security algebra forN -person policies.

Our algebra is designed to support both monotonic policies
and policies that are not monotonic. for example, the term
(Accountant ⊗ Accountant) can be satisfied only by a set of
two users; a set that contains more than two users cannot satisfy
the term. More generally, in Definition 3, term satisfaction is de-
fined in such a way that every user in the userset is used to satisfy
certain component of the term. No “extra” user is allowed.

We have considered a design having monotonicity property, in
which we call the notion of satisfaction in Definition 3 “strict sat-
isfaction” and define a usersetX satisfies a termφ if and only
if X contains a subset that strictly satisfiesφ. The monotonicity
property follows directly. We chose our current design over the
one that has monotonicity because it is more expressive. Consider
the following example. When one says that “a task requires two
Accountants”, this may mean one of the following three policies:

1. The task must be performed by a set of two users, both of
who areAccountants. A group containing more (or less)
than two people is not allowed.

2. The task must be performed by a set that contains two
Accountants. In particular, a userset that contains two
Accountants and a third user who is not anAccountant
is allowed to perform the task.

3. The task must be performed by a set of two or more
Accountants. In particular, a set of threeAccountants can
perform the task, but a set of twoAccountants and one non-
Accountant cannot. This ensures that everyone involved in
the task has the qualification of anAccountant.

Policies 1 and 3 cannot be expressed using an algebra that has
the monotonicity property. Suppose that one tries to use a termφ to
express policy 1 (or policy 3) in an algebra that has the monotonic-
ity property, then a setX of two Accountants satisfiesφ. By
monotonicity property, any superset ofX also satisfiesφ. This vio-
lates the intention of policies 1 and 3. More generally, a monotonic
algebra cannot express policies that disqualify usersets that contain
extra users, nor can it express security requirements in the form of
“all involved users must satisfy certain requirements”.

By dropping the monotonicity property, our algebra is able to
express all the three policies. Policy 1 is expressed using the term
(Accountant⊗Accountant). Policy 2 is expressed using the term
((Accountant ⊗ Accountant) ¯ All+). Note that the termAll+

can be satisfied by any nonempty userset. Policy 3 is expressed
using the term(Accountant⊗ Accountant+).

Restrictions on “¬” and “ +” The syntax of our algebra (Defini-
tion 1) restricts that the two operators “¬” and “+” be applied only
to unit terms, i.e., those terms that do not contain¯, ⊗, or +. The
motivation for this design decision is the psychological acceptabil-
ity principle [18]. We would like each operator to have a clear and
intuitive meaning so that when one writes down a policy as a term,

there is less chance for making mistakes and one is more confident
that the term expresses the intended policy.

When¬ is applied to a unit term, it expresses negative qualifica-
tion about one user; this has a clear meaning; the term¬φ0 means a
user that does not satisfyφ0. However, if¬ is applied to a term that
involves¯,⊗, or +; then the meaning becomes unclear. Consider
the term¬(Accountant ¯ Manager). Any userset of size three
does not satisfy(Accountant ¯ Manager); therefore, it should
satisfy¬(Accountant¯ Manager), even if every user in the user-
set is both anAccountant and aManager. It is unclear to us what
kind of real-world security policies such a term expresses.

The termφ+
0 , whenφ0 is a unit term, has a clear meaning; it

means that every user must satisfyφ0. The same term, whenφ0

involves operators such as̄and⊗, has at least two possible mean-
ings. One is to interpret+ as the closure operator of̄, that is, a
usersetX satisfiesφ+

0 if and only if X can be divided into a num-
ber of (possibly overlapping) subsets such that each subset satisfies
φ0. The other is to interpret+ as the closure operator for⊗, that
is, a usersetX satisfiesφ+

0 if and only if X can be divided into a
number ofdisjoint subsets such that each subset satisfiesφ0. The
two meanings coincide whenφ0 is a unit term. We could use two
operators, one for each meaning, and allow them to be applied to
non-unit terms. However, this adds complexity to the algebra and
we have not seen the need for this. For simplicity and usability, we
chose to allow+ only be applied on unit terms. The algebra can
be extended to have two closure operators that can be applied to
non-unit terms, if the need for them arises in the future.

2.5 Enforcing Policies Specified in the Algebra
To use the algebra to specify high-level security policies, the ad-

ministrators first identify sensitive tasks and then for each sensitive
task, specify a term such that every set of users that together per-
form the task must satisfy the term. For instance, a simple SoD
policy that requires at least two users to perform the task can be
specified as(All ⊗ All+). Our algebra also allows the specifica-
tion of more sophisticated policies based on user qualifications. In
summary, a security policy is a pair〈task , φ〉, whereφ is a term; it
means that only usersets that satisfyφ can performtask .

Once a policy is specified, it needs to be enforced. Enforcement
techniques for policies in this algebra can benefit from research in
enforcement techniques for Separation of Duty policies [8, 13, 16,
20, 22]. We say that a policy〈task , φ〉 is monotonic if the term
φ is monotonic, i.e., if a usersetX satisfiesφ, then any superset
of X also satisfiesφ. A monotonic policy can be enforced either
statically or dynamically, whereas a policy that is not monotonic
cannot be enforced statically.

To statically enforce a policy〈task , φ〉, one identifies the set
of all permissions that are needed to perform the task, and re-
quires that any userset such that users in the set together possess
all these permissions satisfies the termφ. That is, one definessta-
tic safety policies, each of which takes the formsp〈P, φ〉, where
P = {p1, · · · , pn} is a set of permissions. Such a policy means
that any userset such that all users in the set together have all per-
missions inP must satisfyφ. Note that if a userset has all permis-
sions inP , then its superset also has all permissions inP ; therefore,
static enforcement is only for monotonic policies.

To dynamically enforce a policy〈task , φ〉, one identifies the
steps in performing the task. And the system maintains a history
of each instance of a task, which includes information on who has
performed which step. For any task instance, one can compute the
set of users (denoted asUpast) who have performed at least one
step on the instance. Before a useru performs a step on the in-
stance, the system checks to ensure that there exists a superset of

Upast∪{u} that can satisfyφ upon finishing all steps of the task. In
particular, ifu is about to perform the last step of the task instance,
it is required by the policy thatUpast∪{u} satisfiesφ. An example
on dynamic enforcement of policy〈task , φ〉 is given as follow:

A company has a high-level policy〈Purchase, (Manager ¯
(Clerk ⊗ Clerk))〉 which states that aManager and two
Clerks are required to purchase supplies for the company. The
task Purchase consists of three steps which areMakeOrder ,
PrepareCheck and SignCheck . Step-specific requirements
state thatMakeOrder must be performed byManager, while
PrepareCheck and SignCheck may be performed by either
Manager or Clerk. SupposeAlice is a Manager who made an
order and now tries to prepare a check for the order. IfAlice is
a Clerk, then the system will allow her to do so. The reason
is that as long as aClerk different fromAlice (sayBob) signs
the check later,{Alice,Bob} satisfies the high-level requirement
(Manager¯ (Clerk⊗ Clerk)). If Alice is not aClerk, then she
is not allowed to sign the check she prepared. The reason is that no
matter who signs the check in future,Alice plus that person cannot
satisfy the high-level requirement(Manager¯ (Clerk⊗ Clerk)).
Note that ifAlice performed both the first step and the second step,
then she is precluded from performing the last step as two different
Clerks are required to complete the task.

Dynamic enforcement can enforce both monotonic policies and
policies that are not monotonic. It is also more flexible than static
enforcement. Enforcement of high-level policies specified in the
algebra generates many interesting open technical problems.

3. TWO TERM SATISFIABILITY PROB-
LEMS

Given the definitions of terms and term satisfaction, the follow-
ing problems naturally arise.

The Term Satisfiability (TSAT) Problem: Given a termφ, de-
termine whether there exists a configuration〈U,UR〉 and a
usersetX such thatX satisfiesφ under〈U,UR〉.
This asks whether the termφ is satisfiable at all. This pro-
vides a basic level of sanity check, as a term that cannot be
satisfied in any configuration is probably not what a policy
author intended.

The Term-Configuration Satisfiability (TCSAT) Problem:
Given a termφ and a configuration〈U,UR〉, determine
whether there exists a usersetX that satisfiesφ under
〈U,UR〉.
This asks whether a termφ is satisfiable under a given con-
figuration. This is useful when determining whether a term
is meaningful in the current configuration.

The Userset-Term Satisfaction (UTS) Problem: Given a term
φ, a configuration〈U,UR〉, and a usersetX, determine
whetherX satisfiesφ under〈U,UR〉.
This is probably the most fundamental problem related to
the algebra. When an administrator specifies a policy that
associates a sensitive task with a term; this means that every
set of users that together perform an instance of the task must
satisfy the term. To enforce this policy, one needs to check
whether a userset satisfies the term and to forbid users in
the set to finish the task if it does not satisfy the term. This
requires solving theUTS problem.

In this section we will studyTSAT andTCSAT. TheUTS prob-
lem will be studied in Section 4.

3.1 The Term Satisfiability (TSAT) Problem
As the algebra supports negation, it is not surprising that un-

satisfiable terms exist. A simple example of a term that is not
satisfiable is(r u ¬r). Another source of unsatisfiable terms
is the use of explicit sets of users in a term. For example, the
term ({Alice,Bob} u {Carl}) is not satisfiable. However, even
if a term does not contain negation or explicit sets of users, it
may still be unsatisfiable. An example of such a term isφ =
(r1 u (r2 ⊗ r3)), wherer1, r2 andr3 are roles. In the example,
r1 is satisfiable only by a singleton userset, and(r2 ⊗ r3) is satis-
fiable only by a userset of cardinality2. Therefore, there does not
exist any userset that satisfiesφ.

In this section, we show thatTSAT is NP-complete in general.
We identify the source of intractability by identifying two special
cases that areNP-hard. One special case involves the negation
operator, and the other involves explicit sets of users. In the next
section, we show that for terms that are free of negation and explicit
sets of users,TSAT can be efficiently solved.

Lemma 2. TSAT for unit terms using only roles and the operators
¬, u, andt is NP-hard.

Lemma 3. TSAT for terms using only usersets and the operators
u, t, and¯ is NP-hard.

Theorem 4. TSAT is NP-complete.

See Appendix B.1 for the proofs of Lemmas 2 and 3 and Theo-
rem 4.

3.2 TSAT for the Sub-Algebra Free of Nega-
tion and Explicit Sets of Users

Lemmas 2 and 3 show that if a term involves negation or ex-
plicit sets of users, then determining whether it is satisfiable or not
may be intractable. We now study the term satisfiability problem
for terms that are free of explicit sets of users and negation. For
convenience, we call such termsUNF (Userset-and-Negation Free)
terms.

One property of UNF terms is that if a usersetX satisfies a
term φ under configuration〈U,UP〉, thenX also satisfiesφ un-
der〈U ′,UP ′〉, whereU ⊆ U ′ andUP ⊆ UP ′. That is, because a
UNF term does not have the negation operator, then ifX satisfies
the term under a configuration, enlarging the configuration will not
makeX fail to satisfy the term.

A key observation is that, in order to satisfy a term, a userset
must be of certain size. For example,(r1 ¯ (r2 ⊗ r3)) can be
satisfied by a set of2 or 3 users, but not by a set of1 or 4 users.
This observation leads us to introduce the notion of characteristic
numbers of a UNF term.

Definition 6 (Characteristic Numbers). Given a UNF termφ and
a positive integerk, we say thatk is a characteristic numberof
φ when there exists a userset of sizek that satisfiesφ under some
configuration. A termφ may have more than one characteristic
numbers. We useC(φ) to denote the set of all characteristic num-
bers ofφ and call it thecharacteristic setof φ.

It follows from the definition that a UNF termφ is satisfiable if
and only ifC(φ) 6= ∅.
Theorem 5. The characteristic set of a UNF term can be computed
as follows:

• C(All) = C(r) = {1}, wherer is a role

• C(φ1 t φ2) = C(φ1) ∪ C(φ2)

• C(φ1 u φ2) = C(φ1) ∩ C(φ2)

• C(φ+) = {i | i ∈ [1,∞)}, whereφ is a unit term free of
usersets and negations

• C(φ1 ¯ φ2) = {i | ∃ c1 ∈ C(φ1) ∃ c2 ∈ C(φ2)

[max(c1, c2) ≤ i ≤ c1 + c2]}
• C(φ1 ⊗ φ2) = { c1 + c2 | c1 ∈ C(φ1) ∧ c2 ∈ C(φ2) }

The proof for the theorem is in Appendix B.2. We now illustrate
the computation of characteristic set according to the theorem using
some examples.

• C(All⊗ All⊗ All) = {3}
• C(Manager¯ Accountant)⊗ Treasurer) = {2, 3}

The term(Manager¯ Accountant) can be satisfied by two
users as well as by a single user who is both aManager

and anAccountant. An additional user is needed to satisfy
Treasurer.

• C((Clerk t Accountant)⊗ (Clerk u Manager)) = {2}
Only one user is required for both(Clerk t Accountant)
and (Clerk u Manager), and the⊗ mandates that these
users must be different from one another.

• C((Manager¯ Accountant¯ Treasurer) u Clerk+) =
{1, 2, 3} ∩ {i|i ∈ [1,∞)} = {1, 2, 3}

For the unsatisfiable term considered earlier in this section,
namely(r1 u (r2 ⊗ r3)), we observe thatC(r1 u (r2 ⊗ r3)) =
{1} ∩ {2} = ∅.

In Appendix B.3 we show that computingC(φ) using a straight-
forward algorithm that follows Theorem 5 takes at most quadratic
time.

One can useC(φ) to determine whetherφ satisfies some mini-
mal SoD requirements. If the smallest characteristic number of a
term is at leastk, then we know that nok − 1 users can satisfy the
term.

We can extend the method of calculating the characteristic
set stated in Theorem 5 to non-UNF terms as well, by defin-
ing C(¬φ) = {1}, whereφ is a unit term, andC(S) = 1,
whereS is a set of users. But in that case, it is no longer true
that for every integerk ∈ C(φ), there is a userset of sizek
that satisfiesφ. For example,C ({Alice,Bob} u {Carl}) =
C({Alice,Bob}) ∩ C({Carl}) = {1}, even though the term
({Alice,Bob} u {Carl}) is not satisfiable. It remains true that
for any usersetX that satisfies a termφ, |X| ∈ C(φ). In other
words,C(φ) gives an upperbound on the actual set of characteris-
tic numbers ofφ.

3.3 The Term-Configuration Satisfiability
(TCSAT) Problem

We have discussed theTSAT problem, which asks whether a
term is satisfiable at all. We now examine theTCSAT problem,
which asks whether a term is satisfiable under a certain configura-
tion. When a company comes up with a new security requirement
for a task, it may want to know whether there exists a set of users
that satisfies the new requirement and hence can perform the task
under the current configuration of the company.

Observe thatTCSAT is equivalent toTSAT for the terms using
explicit sets of users but not roles or the keywordAll. Given an
instance ofTCSAT, which consists of a termφ and a configuration
〈U,UR〉; one can replace each role (or the keywordAll) in φ with

the corresponding set of users in the configuration, which results
in a new termφ′. In this case,φ′ is independent of configuration,
andφ is satisfiable under〈U,UR〉 if and only if φ′ is satisfiable.
Therefore, it follows from Lemma 3 and Theorem 4 thatTCSAT is
NP-complete; this is stated in the following theorem.

Theorem 6. TCSAT is NP-complete.

4. THE USERSET-TERM SATISFACTION
(UTS) PROBLEM

In Section 3, we have studied the problems of determining
whether a term is satisfiable at all, as well as whether a term is
satisfiable under a given configuration. In this section, we study
the Userset-Term Satisfaction (UTS) Problem, which asks given a
configuration〈U,UR〉, a usersetX, and a termφ, whetherX sat-
isfiesφ under〈U,UR〉. We will show thatUTS in the most gen-
eral case (i.e., arbitrary terms in which all operators are allowed)
is NP-complete. In order to understand how the operators af-
fect the computational complexity, we consider all sub-algebras in
which only some subset of the six operators{¬, +,u,t,¯,⊗} is
allowed. For example,UTS〈¬, +,t,u〉 denotes the sub-case of
UTS whereφ does not contain operators̄ or ⊗, while UTS〈⊗〉
denotes the sub-case ofUTS where⊗ is the only kind of operator
in φ. UTS〈¬, +,t,u,¯,⊗〉 denotes the general case. Observe
that unlike in the case ofTSAT, whether or not to allow explicit
sets of users in a term does not affect the computational complexity
of UTS, because a fixed configuration is given inUTS and one can
always replace each role with the corresponding set of users.

Theorem 7. The computational complexities forUTS and its sub-
cases are given in Figure 1.

The proof of Theorem 7 is done in three parts. First, in Ap-
pendix C.1, we prove that the five casesUTS〈t,¯〉, UTS〈u,¯〉,
UTS〈t,⊗〉, UTS〈u,⊗〉, andUTS〈¯,⊗〉 areNP-hard by reduc-
ing theNP-complete problemsSET COVERING, DOMATIC NUM-
BER, andSET PACKING to them. Second, in Appendix C.2, we
prove that the general caseUTS〈¬, +,t,u,¯,⊗〉 is in NP. Fi-
nally, the tractable cases are discussed in Section 4.1, where we
identify a wide class of syntactically restricted terms for which the
UTS problem is tractable. The class of restricted terms subsumes
all the cases listed as inP in Figure 1.

4.1 UTS is Tractable for Terms in Canonical
Forms

From Figure 1,UTS is NP-complete in general in all but one
sub-algebras that contain at least two binary operators; however,
using any one binary operator by itself remains tractable. In this
subsection, we show that if a term satisfies certain syntactic restric-
tions, then even if all operators appear in the term, one can still
efficiently determine whether a userset satisfies the term.

Definition 7 (Canonical Forms for Terms). The canonical forms
for terms are defined as follows:

• A term is in level-1 canonical form(called an 1CF term) if it
is t or t+, wheret is a unit term. Recall that a unit term can
use the operators¬, u, andt. We callt thebaseof the 1CF
term.

• A term is in level-2 canonical form(called a 2CF term) if it
consists of one or more sub-terms that are 1CF terms, and
(when there are two or more sub-terms) these sub-terms are
connected only by the operatoru.

UTS〈¬, +,t,u,¯,⊗〉
NP-complete

. .

UTS〈¬, +,t,u〉
in P

. .

UTS〈t,¯〉
NP-complete

...
...

...
...

.

UTS〈u,¯〉
NP-complete

...
...

...
...

.

UTS〈t,⊗〉
NP-complete

............................

UTS〈u,⊗〉
NP-complete

...

UTS〈¯,⊗〉
NP-complete

..
..

..
..

..
..

.

..
..

..
..

..
..

.

. .

UTS〈¬, +,t〉
in P

.................................

..
..
..
..
..

. .

UTS〈¬, +,u〉
in P

...

.........................

. .

UTS〈¬, +,¯〉
in P

.............................

..
..

..
..

..
..

.

..
..

..
..

..
..

.

UTS〈¬, +,⊗〉
in P

Figure 1: Various sub-cases of the Userset Term Satisfaction (UTS) problem and the corresponding time-complexity. Some sub-cases
are omitted from the figure, as their time-complexities are implied from what are in the figure.

• A term is in level-3 canonical form(called a 3CF term) if it
consists of one or more sub-terms that are 2CF terms, and
(when there are two or more sub-terms) these sub-terms are
connected only by the operator⊗.

• A term is in level-4 canonical form(called a 4CF term) if it
consists of one or more sub-terms that are 3CF terms, and
these sub-terms are connected only by the operator¯.

• A term is in level-5 canonical form(called a 5CF term) if it
consists of one or more sub-terms that are 4CF terms, and
these sub-terms are connected only by operators in the set
{t,u}.

We say that a term isin canonical formif it is in level-5 canonical
form. Observe that any term that is in level-i canonical form is also
in level-(i + 1) canonical form for anyi ∈ [1, 4].

Theorem 8. Given a termφ in canonical form, a setX of users,
and a configuration〈U,UR〉, checking whetherX satisfiesφ under
〈U,UR〉 can be done in polynomial time.

PROOF. We first recall that, by definition,X satisfiesφ1 u φ2

if and only if X satisfies bothφ1 andφ2, andX satisfiesφ1 t φ2

if and only if X satisfies eitherφ1 or φ2. Therefore, to determine
whetherX satisfies a 5CF term, one can first determine whetherX
satisfies each of the 4CF sub-terms, and then combine these results
using logical conjunction and disjunction.

For a 1CF termφ, if it is a unit term, then it is straightforward
to determine whetherX satisfiesφ, because a unit term can be
satisfied only by a singleton set, and because of the definitions ofu
andt. If φ is of the formt+, wheret is a unit term, then one just
needs to determine whether each user inX satisfiest. Therefore,
one can efficiently check whetherX satisfies an 1CF term.

Given a 2CF term, if at least one sub-term is a unit term, then
one can get an equivalent 1CF term by removing all occurrences
of +. For example,(t1 u t+2) is equivalent tot1 u t2. Given a
2CF term where all sub-terms have+, from the algebraic property,
it is equivalent a 1CF term. For example,(t+1 u t+2) is equivalent
to (φ1 u φ2)

+. Hence, any 2CF term can be revised to an equiva-
lent 1CF term. We assume that the revision is performed whenever
applicable so that we don’t need to consider 2CF terms explicitly.

Given a 3CF termP = (φ1 ⊗ · · · ⊗ φm), where eachφi is an
1CF term. Let us first consider a special case that eachφi is a unit
term ti. In this case, one can determine whetherX satisfiesφi

by solving the following bipartite graph maximal matching prob-
lem. One constructs a bipartite graph such that one set of nodes
consists of users inX and the other consists of them unit terms
t1, t2, · · · , tm; and there is an edge betweenu ∈ X andti if and
only if {u} satisfiesti. One then computes a maximal matching of
the graph (which can be done in polynomial time); if it has size the
same asmax(|X|, m), thenX satisfiesP ; otherwise,X does not
satisfyP .

The case that a 3CF term contains+ is more complicated, so is
the case for a 4CF term. Because of space limitation, we give the
proof for the case of a 4CF term (which subsumes the case for a
3CF term) in Appendix C.3.

Terms in canonical form appear to be general enough to specify
many high-level security policies in practice. We arrive at these
canonical forms by excluding the intractable cases involving com-
binations of multiple operators in different ordering, and by study-
ing how to handle each binary operator individually and examining
how combinations of them can still be handled efficiently.

4.2 An Algorithm for UTS
We have shown that for terms that are in canonical forms, it is ef-

ficient to check whether a userset satisfies them or not. However, it
is not necessary to restrict the use of the algebra to only such terms.
Even if one writes policies that use terms that are not in canonical
forms, these terms may not be in the pathological cases that lead
to intractability, or they may not be very large. We now present
a heuristic algorithm forUTS that works for all terms. We show
through experimental results that this algorithm works well for in-
stances ofUTS with complicated terms and relative large usersets.

To determine whether a usersetX satisfies a termφ under a con-
figuration〈U,UR〉, our algorithm first computes the syntax treeT
of φ. Given the syntax tree, there are two approaches. The first one
is top-down processing. One starts withX and the root of the syn-
tax tree; if the root is the operator̄, then for each subsetX1 ⊆ X,
one recursively checks whetherX1 satisfies the left child, and if it
does, one tries allX2 ⊆ X such thatX1 ∪ X2 = X and checks
whetherX2 satisfies the right child. Other operators can be han-
dled similarly. The second approach is bottom-up processing. One
starts with unit terms. For each unit term, one calculates all subsets
of X that satisfy the term. One then goes bottom-up to calculate
those for each node in the syntax tree.

Our algorithm combines top-down processing with bottom-up
processing. It first performs bottom-up processing until encounter-

ing nodes such that bottom-up processing becomes too expensive.
For example, if each user in a setY can satisfyt, then nodet+

can be satisfied by the2|Y | − 1 non-empty subsets ofY ; so we
avoid bottom-up processing fort+. After the bottom-up phase,
the algorithm performs top-down search. When the search encoun-
ters a node that has been bottom-up processed, it can perform a
lookup. Our algorithm also includes several optimizations to im-
prove top-down search. For example, it computes the characteristic
set for each sub-term so as to prune the subsets ofX that need to be
checked; it also sorts sub-terms ofφ according to the size of their
characteristic sets so that sub-terms that are “harder to be satisfied”
are processed first.

We prototyped both the above algorithm and the algorithm for
terms in canonical forms, and have performed some experiments.
Our prototypes are written in Java, and our experiments were car-
ried out on a Workstation with a 3.2GHz Pentium 4 CPU and
512MB RAM. Some of our experimental results are presented in
Table 1. As we can see in Table 1,UTS is efficiently solvable for
terms in canonical form. Furthermore, our algorithm for canonical
form scales well over the size of userset, as in Test 2 and Test 3,
increasing userset size from 25 to 50 only results in 1 millisecond’s
increment on runtime. Finally, experimental data in Test 4 and Test
5 indicates thatUTS can be solved quickly even for complicated
terms that are not in canonical form.

Further improvements and optimizations can be made to our al-
gorithms and prototypes; they are beyond the scope of this paper.
Our goal here is to verify thatUTS can be solved in reasonable
amount of time for complicated terms, even though the problem is
NP-complete in general.

5. DISCUSSIONS AND OPEN PROBLEMS
In this section we discuss a few small extensions to the alge-

bra, the similarities and differences with regular expressions, and
expressive power limitations of the algebra.

5.1 Extensions to the Algebra
In this paper, we have defined the basic operators in the algebra

and examined their properties. We now discuss some additional
operators that could be added to the algebra as syntactic sugars.

As discussed in Section 2.4, SoD policies are monotonic, as are
policies in McLean’s formulation ofN -person policies [15]; our
algebra supports both monotonic policies and policies that are not
monotonic. To express a monotonic policy that requires a task to
be performed by a userset that either satisfies a termφ or contains
a subset that satisfiesφ, one can use(φ ¯ All+). As monotonic
policies may be quite common, we introduce a unary operator5
as a syntactic sugar. That is,5φ is defined to be(φ¯ All+).

Besides monotonic policies, another type of policies mentioned
in Section 2.4 is policies stating that every user involved in a task
must satisfy certain requirement and there need to be at least a cer-
tain number of users involved. Letφ be a unit term that expresses
the requirement. A policy that requires2 or more users that sat-
isfy φ can be expressed as((φ ⊗ φ) ¯ φ+). To simplify the ex-
pression of these policies, we defineφ2+ as a syntactic sugar for
((φ ⊗ φ) ¯ φ+). In general,φk+ means that at leastk (k ≥ 2)
users are required and every user involved must satisfyφ.

Similar to the above,φk is a syntactic sugar for a term using op-
erator⊗ to connectk unit termsφ. For instance,Accountant3 is
defined as(Accountant ⊗ Accountant ⊗ Accountant). More
generally,φk states that exactlyk users are required and every user
involved must satisfyφ. Usingφk rather than(φ⊗· · ·⊗φ) explic-
itly states that all thek sub-terms connected together by⊗ are the
same. This makes the policy more succinct and easier to process.

5.2 Relationship with Regular Expressions

The syntax of terms in our algebra may remind readers of reg-
ular expressions. A regular expression is a string that describes or
matches a set of strings, while a term in the algebra is a string that
describes or matches a set of sets. Given an alphabet, a regular
expression evaluates toa set of strings. Given a configuration, a
term in our algebra evaluates toa set of sets. In the following, we
compare our algebra with regular expressions.

For example, the regular expression “a(b|c)[̂ abc]+” matches all
strings that start with the lettera, followed by eitherb or c, and
then by one or more symbols that are not in{a, b, c}. A term that
is close in spirit to the regular expression is{a} ⊗ ({b} t {c}) ⊗
(¬{a, b, c})+, which is satisfied by all sets that containa, eitherb
or c, and one or more symbols that are not in{a, b, c}.

From the example, one can draw some analogies between the
operators in regular expressions and the ones in our algebra. The
operator| in regular expressions is similar tot. Concatenation in
regular expression may seem related to⊗. One clear difference is
that concatenation is order sensitive, whereas⊗ is not, because a
string is order sensitive but a set is not. A more subtle difference
comes from the property that⊗ requires the two sub-terms be satis-
fied by disjoint sets. For instance,{a}⊗{a} cannot be satisfied by
any set. The usage of negation in regular expressions is similar to
negation in the algebra; in both cases, negation can be applied only
to an expression corresponds to a single element. In regular expres-
sion, the closure operator (∗ or +) can be applied to arbitrary sub-
expressions. Our algebra requires that repetition (using operator+)
can only be applied to unit terms. As we discussed in Section 2.4,
since the algebra is proposed for security policy specification, we
impose such restriction so as to clearly capture real-word security
requirements. If the algebra is used in areas other than security pol-
icy specification, it is certainly possible to relax such restriction so
that the algebra can define a wider range of sets. The remaining bi-
nary operators̄ andu have flavor of set intersection, which does
not have counterparts in regular expressions.

Observe that determining whether a string satisfies a regular ex-
pression is inNL-complete, whereNL stands for Nondeterminis-
tic Logarithmic-Space, and is contained inP. On the other hand,
determining whether a userset satisfies a term isNP-complete,
even if the term uses onlyt and⊗ or only t and¯. It appears
that this increase in complexity is due to the unordered nature of
sets. Checking a string against a regular expression can be per-
formed from the beginning of a string to its end; on the other hand,
there is no such order in checking a set against a term in the algebra.

As a fundamental tool for defining sets of strings, regular expres-
sion is used in many areas. Analogically, because our algebra is
about the fundamental concept of defining sets of sets, we conjec-
ture that, besides expression of security policies, the algebra could
be used in other areas where set specification is desired.

5.3 Limitations of the Algebra’s Expressive
Power

It is well-known that using regular expression, one cannot ex-
press languages that require counting to an unbounded number; for
example, one cannot express all strings over the alphabet{0, 1}
that contain the same number ofa’s as ofb’s.

Similarly, the algebra as defined in Section 2.1 cannot express a
policy that requires equal number of users who arer1 as those that
arer2. However, if we allow the application of+ to non-unit terms
and define it as follows:

φ+ def
= φ t (φ⊗ φ) t (φ⊗ φ⊗ φ) t · · ·

Term In CF? Userset Size Runtime (ms)
1 ((r1 u r2)⊗ (r1 t r3)⊗ ¬r4 ⊗ r5 ⊗ All) Yes 5 < 1
2 ((((r1 u r2)⊗ r3 ⊗ (r1 t r5)

+)¯ (r4 ⊗ (¬r1)
+))) Yes 25 15

3 ((((r1 u r2)⊗ r3 ⊗ (r1 t r5)
+)¯ (r4 ⊗ (¬r1)

+))) Yes 50 16
4 ((((r1 ⊗ r2) u (r3 ¯ r5))¯ (r1 t r3))⊗ All+) No 15 16

5
(((r1 u r2)

+ ¯ r3 ¯ All+)⊗ (r6 u r1) ⊗ No 50 219
((r+

2 ¯ (¬r1 ⊗ r2)
+ ¯ r4) u (r2 t ¬r5)

+))

Table 1: A table that shows the runtime of testing whether a userset satisfies a term.

then we can express the policy that requires equal number of users
who arer1 as those that arer2 using the term

(r1 u r2)
+ ⊗ ((r1 u ¬r2)⊗ (r2 u ¬r1))

+ ⊗ (¬r1 u ¬r2)
+.

Even with the extension, there are sets of usersets that cannot be
expressed. For example, it seems unlikely that one can express a
policy that requires that the number of users who are member of
r1 is the same as the square of the number of users who arer2.
Further discussions of expressive power and more general algebras
are interesting future research topics and are beyond the scope of
this paper.

6. RELATED WORK
The concept of SoD has long existed in the physical world, some-

times under the name “the two-man rule”, for example, in the bank-
ing industry and the military. To our knowledge, in the information
security literature the notion of SoD first appeared in Saltzer and
Schroeder [18] under the name “separation of privilege.” Clark
and Wilson’s commercial security policy for integrity [7] identified
SoD along with well-formed transactions as two major mechanisms
of fraud and error control. Nash and Poland [16] explained the dif-
ference between dynamic and static enforcement of SoD policies.
In the former, a user may perform any step in a sensitive task pro-
vided that the user does not also perform another step on that data
item. In the latter, users are constrained a-priori from performing
certain steps.

Sandhu [19, 20] presented Transaction Control Expressions, a
history-based mechanism for dynamically enforcing SoD policies.
A transaction control expression associates each step in the trans-
action with a role. By default, the requirement is such that each
step must be performed by a different user. One can also specify
that two steps must be performed by the same user. In Transaction
Control Expressions, user qualification requirements are associated
with individual steps in a transaction, rather than a transaction as a
whole.

There exists a wealth of literature [1, 2, 8, 10, 11, 12, 22, 23]
on constraints in the context of RBAC. They either proposed and
classified new kinds of constraints [10, 22] or proposed new lan-
guages for specifying sophisticated constraints [1, 2, 8, 12, 23].
Most of these constraints are motivated by SoD and are variants
of role mutual exclusion constraints, which may declare two roles
to be mutually exclusive so that no user can be a member of both
roles.

There has also been recent interest in static and dynamic con-
straints to enforce separation of duty in workflow systems. Atluri
and Huang [3] proposed an access control model for workflow en-
vironments, which supports temporal constraints. Bertino et al. [4]
proposed a language for specifying static and dynamic constraints
for separation of duty in role-based workflow systems. In these
works, security requirements are associated with individual steps
in the workflows.

McLean [15] introduced a framework that includes various
mandatory access control models. These models differ in which
users are allowed to change the security levels. They form a
boolean algebra. McLean also looked at the issue ofN -person poli-
cies, where a policy may allow multiple subjects acting together to
perform some action. McLean adopted the monotonicity require-
ment in suchN -person policies.

Several algebras have been proposed for combining security
policies. These include the work by Bonatti et al. [5, 6], Wije-
sekera and Jajodia [24], Pincus and Wing [17]. These algebras are
designed for purpose that are different from ours; therefore, they
are quite different from our algebra. Each element in their algebra
is a policy that specifies what subjects are allowed to access which
resources, whereas each element in our algebra maps to a user.

The two operators̄ and⊗ in our algebra are taken from the
RT family of role-based trust-management languages designed by
Li et al. [14]. In [14], the notion of manifold roles was introduced,
which are roles that have usersets, rather than individual users, as
their members. The two operators⊗ and¯ are used to define man-
ifold roles. This paper differs in that we propose to combine these
two operators together with four other operatorst, u, ¬, and+
(which are not inRT) in an algebra for specifying high-level secu-
rity policies. In addition, we also study the algebraic properties of
these operators, the satisfaction problems, and the term satisfiabil-
ity problem related to the algebra.

7. SUMMARY
While separation of duty policies are extremely important and

widely used, they state only quantity requirements and cannot cap-
ture qualification requirements on users involved in the task. We
have introduced a novel algebra that enables the specification of
high-level policies that combine qualification requirements with
quantity requirements motivated by separation of duty considera-
tions. A high-level policy associates a task with a term in the alge-
bra and requires that all sets of users that perform the task satisfy
the term. Specifying security policies at the task level has a number
of advantages over the current approach of specifying such policies
at the individual step level. Our algebra has two unary and four
binary operators, and is expressive enough to specify a large num-
ber of diverse policies. We have also studied algebraic properties
of these operators and several computational problems related to
the algebra, including determining whether a term is satisfiable at
all, determining whether a term is satisfiable under a given config-
uration, and determining whether a userset satisfies a term under a
given configuration. As our algebra is about the general concept of
sets of sets, we conjecture that it will prove to be useful in other
contexts as well.

Acknowledgement
This work is supported by NSF CNS-0448204 (CAREER: Access
Control Policy Verification Through Security Analysis And Insider

Threat Assessment), and by sponsors of CERIAS. We thank Ma-
hesh V. Tripunitara for helpful discussions. We also thank the
anonymous reviewers for their helpful comments.

8. REFERENCES
[1] G.-J. Ahn and R. S. Sandhu. The RSL99 language for

role-based separation of duty constraints. InProceedings of
the 4th Workshop on Role-Based Access Control, pages
43–54, 1999.

[2] G.-J. Ahn and R. S. Sandhu. Role-based authorization
constraints specification.ACM Transactions on Information
and System Security, 3(4):207–226, Nov. 2000.

[3] V. Atluri and W. Huang. An authorization model for
workflows. InProceedings of the 4th European Symposium
on Research in Computer Security (ESORICS), pages 44–64,
1996.

[4] E. Bertino, E. Ferrari, and V. Atluri. The specification and
enforcement of authorization constraints in workflow
management systems.ACM Transactions on Information and
System Security, 2(1):65–104, Feb. 1999.

[5] P. Bonatti, S. de Capitani di Vimercati, and P. Samarati. A
modular approach to composing access control policies. In
Proceedings of the 7th ACM conference on Computer and
Communications Security (CCS), pages 164–173, Nov. 2000.

[6] P. Bonatti, S. de Capitani di Vimercati, and P. Samarati. An
algebra for composing access control policies.ACM
Transactions on Information and System Security (TISSEC),
5(1):1–35, Feb. 2002.

[7] D. D. Clark and D. R. Wilson. A comparision of commercial
and military computer security policies. InProceedings of
the 1987 IEEE Symposium on Security and Privacy, pages
184–194. IEEE Computer Society Press, May 1987.

[8] J. Crampton. Specifying and enforcing constraints in
role-based access control. InProceedings of the Eighth ACM
Symposium on Access Control Models and Technologies
(SACMAT 2003), pages 43–50, Como, Italy, June 2003.

[9] M. R. Garey and D. J. Johnson.Computers And
Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, 1979.

[10] V. D. Gligor, S. I. Gavrila, and D. F. Ferraiolo. On the formal
definition of separation-of-duty policies and their
composition. InProceedings of IEEE Symposium on
Research in Security and Privacy, pages 172–183, May
1998.

[11] T. Jaeger. On the increasing importance of constraints. In
Proceedings of ACM Workshop on Role-Based Access
Control, pages 33–42, 1999.

[12] T. Jaeger and J. E. Tidswell. Practical safety in flexible
access control models.ACM Transactions on Information
and System Security, 4(2):158–190, May 2001.

[13] N. Li, Z. Bizri, and M. V. Tripunitara. On mutually-exclusive
roles and separation of duty. InProceedings of the 11th ACM
Conference on Computer and Communications Security
(CCS-11), pages 42–51. ACM Press, Oct. 2004.

[14] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust management framework. InProceedings of
the 2002 IEEE Symposium on Security and Privacy, pages
114–130. IEEE Computer Society Press, May 2002.

[15] J. McLean. The algebra of security. InProceedings of IEEE
Symposium on Security and Privacy, pages 2–7, Apr. 1988.

[16] M. J. Nash and K. R. Poland. Some conundrums concerning
separation of duty. InProceedings of IEEE Symposium on

Research in Security and Privacy, pages 201–209, May
1990.

[17] J. Pincus and J. M. Wing. Towards an algebra for security
policies (extended abstract). InProceedings of ICATPN
2005, number 3536 in LNCS, pages 17–25. Springer, 2005.

[18] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems.Proceedings of the IEEE,
63(9):1278–1308, September 1975.

[19] R. Sandhu. Separation of duties in computerized information
systems. InProceedings of the IFIP WG11.3 Workshop on
Database Security, Sept. 1990.

[20] R. S. Sandhu. Transaction control expressions for separation
of duties. InProceedings of the Fourth Annual Computer
Security Applications Conference (ACSAC’88), Dec. 1988.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models.IEEE Computer,
29(2):38–47, February 1996.

[22] T. T. Simon and M. E. Zurko. Separation of duty in
role-based environments. InProceedings of The 10th
Computer Security Foundations Workshop, pages 183–194.
IEEE Computer Society Press, June 1997.

[23] J. Tidswell and T. Jaeger. An access control model for
simplifying constraint expression. InProceedings of ACM
Conference on Computer and Communications Security,
pages 154–163, 2000.

[24] D. Wijesekera and S. Jajodia. A propositional policy algebra
for access control.ACM Transactions on Information and
Systems Security (TISSEC), 6(2):286–325, May 2003.

APPENDIX

A. PROOFS FOR THEOREMS IN SEC-
TION 2

Proof for Theorem 1 on Algebraic Properties

1. The operatorst,u,⊗,¯ are commutative and associative.

This is straightforward from Definition 3.

2. The operatort distributes overu.

If a usersetX satisfies(φ1t(φ2uφ3)), then eitherX satisfies
φ1, or X satisfies bothφ2 andφ3. It follows thatX satisfies
((φ1 t φ2) u (φ1 t φ3)).

If X satisfies((φ1 tφ2)u (φ1 tφ3)), thenX satisfies(φ1 t
φ2) and(φ1 t φ3). There are only two cases: (1)X satisfies
φ1; and (2)X satisfies bothφ2 andφ3. In either case,X
satisfies(φ1 t (φ2 u φ3)).

The operatoru distributes overt.

If X satisfies(φ1 u (φ2 t φ3)), thenX satisfies bothφ1 and
(φ2tφ3), which meansX satisfies eitherφ2 or φ3. It follows
thatX satisfies((φ1 u φ2) t (φ1 u φ3)).

If X satisfies((φ1 u φ2) t (φ1 u φ3)), then either (1)X
satisfies(φ1uφ2) or (2)X satisfies(φ1uφ3). In both cases,
X satisfiesφ1; furthermore,X satisfies eitherφ2 or φ3. It
follows thatX satisfies(φ1 u (φ2 t φ3)).

3. The operator̄ distributes overt.

If X satisfies(φ1 ¯ (φ2 t φ3)), then there existX1 andX2

such thatX1 ∪ X2 = X, X1 satisfiesφ1, andX2 satisfies
(φ2 t φ3). By Definition 3,X2 satisfiesφ2 or satisfiesφ3. In
the former case,X satisfies(φ1 ¯ φ2), which implies thatX
satisfies((φ1 ¯ φ2) t (φ1 ¯ φ3)), as desired. The argument
is analogous ifX2 satisfiesφ3 but notφ2.

If X satisfies((φ1¯φ2)t (φ1¯φ3)), then eitherX satisfies
(φ1¯φ2) orX satisfies(φ1¯φ3). Without loss of generality,
assume thatX satisfies(φ1 ¯ φ2), then there existX1, X2

such thatX1 ∪ X2 = X, X1 satisfiesφ1 andX2 satisfies
φ2. Therefore,X2 satisfies(φ2 t φ3), and consequently,X
satisfies(φ1 ¯ (φ2 t φ3)) as desired.

4. The operator⊗ distributes overt.

If X satisfies(φ1 ⊗ (φ2 t φ3)), X can be partitioned into
two disjoint setsX1 andX2 such thatX1 satisfiesφ1 and
X2 satisfiesφ2 or φ3. In this case, by definition,X satisfies
(φ1⊗φ2) or (φ1⊗φ3), which meansX satisfies((φ1⊗φ2)t
(φ1 ⊗ φ3)).

For the other direction, ifX satisfies((φ1⊗φ2)t(φ1⊗φ3)),
it satisfies either(φ1 ⊗ φ2) or (φ1 ⊗ φ3). Without loss of
generality, assume thatX satisfies(φ1 ⊗ φ2). Then,X can
be partitioned into two disjoint setsX1 andX2 such thatX1

satisfiesφ1 andX2 satisfiesφ2. By definition,X2 satisfies
(φ2 t φ3). Therefore,X satisfies(φ1 ⊗ (φ2 t φ3)).

5. No other ordered pair of operators have the distributive prop-
erty.

We show a counter example for each case. In the following,
Ur = {u|(u, r) ∈ UR}.
(a) The operator̄ does not distribute overu.

If X satisfies(φ1 ¯ (φ2 u φ3)), thenX also satisfies
((φ1 ¯ φ2) u (φ1 ¯ φ3)).
However, the other direction of implication does not
hold. Counter example: LetUr1 = {u1, u2}, Ur2 =
{u1}, andUr3 = {u2}, then{u1, u2} satisfies((r1 ¯
r2) u (r1 ¯ r3)), but does not satisfy(r1 ¯ (r2 u r3)).

(b) The operatoru does not distribute over̄ . Neither direc-
tion holds.
Counter example: LetUr1 = Ur3 = {u1} andUr2 =
Ur4 = {u2}, let φ1 = (r1 ¯ r2), then{u1, u2} satisfies
(φ1 u (r3¯ r4)), but does not satisfy((φ1 u r3)¯ (φ1 u
r4)).
Counter example: LetUr1 = {u1, u2}, Ur2 = {u1},
andUr3 = {u2}, then{u1, u2} satisfies((r1 u r2) ¯
(r1 u r3)), but does not satisfy(r1 u (r2 ¯ r3)).

(c) The operatort does not distribute over̄ .
If X satisfies(φ1 t (φ2 ¯ φ3)), thenX satisfies((φ1 t
φ2)¯ (φ1 t φ3)).
However, the other direction of implication does not
hold. Counter example: LetUr1 = {u1, u2}, Ur2 = ∅
andUr3 = ∅, then{u1, u2} satisfies((r1 t r2)¯ (r1 t
r3)), but does not strictly satisfy(r1 t (r2 ¯ r3)).

(d) The operatort does not distribute over⊗. Neither direc-
tion holds.
Counter example: LetUr1 = {u1, u2}, Ur2 = ∅ and
Ur3 = ∅, then{u1, u2} satisfies((r1 t r2)⊗ (r1 t r3))
, but does not satisfy(r1 t (r2 ⊗ r3)).
Counter example: LetUr1 = {u1}, Ur2 = ∅ andUr3 =
∅, then{u1} satisfies(r1t(r2⊗r3)), but does not satisfy
((r1 t r2)⊗ (r1 t r3)).

(e) The operator⊗ does not distribute overu.
If X satisfies(φ1 ⊗ (φ2 u φ3)), thenX satisfies((φ1 ⊗
φ2) u (φ1 ⊗ φ3)).
However, the other direction of implication does not
hold. Counter example: LetUr1 = {u1, u2}, Ur2 =
{u1} andUr3 = {u2}, then{u1, u2} satisfies((r1 ⊗
r2) u (r1 ⊗ r3)), but does not satisfy(r1 ⊗ (r2 u r3)).

(f) The operatoru does not distribute over⊗. Neither direc-
tion holds.
Counter example: LetUr1 = {u1, u2}, Ur2 = {u1} and
Ur3 = {u2}, then{u1, u2} satisfies((r1 u r2)⊗ (r1 u
r3)), but does not satisfy(r1 ⊗ (r2 u r3)).
Counter example: LetUr1 = Ur3 = {u1} andUr2 =
Ur4 = {u2}, and letφ1 = (r1 ¯ r2), then{u1, u2}
satisfies(φ1 u (r3 ⊗ r4)), but does not satisfy((φ1 u
r3)⊗ (φ1 u r4)).

(g) The operator̄ does not distribute over⊗. Neither di-
rection holds.
Counter example: LetUr1 = {u1, u4}, Ur2 = {u2} and
Ur3 = {u3}, then{u1, u2, u3, u4} satisfies((r1¯r2)⊗
(r1 ¯ r3)), but does not satisfies(r1 ¯ (r2 ⊗ r3)).
Counter example: LetUr1 = {u1}, Ur2 = {u1} and
Ur3 = {u2}, then{u1, u2} satisfies(r1 ¯ (r2 ⊗ r3)),
but does not satisfy((r1 ¯ r2)⊗ (r1 ¯ r3)).

(h) The operator⊗ does not distribute over̄ .
If X satisfies(φ1 ⊗ (φ2 ¯ φ3)), thenX satisfies((φ1 ⊗
φ2)¯ (φ1 ⊗ φ3)).
However, the other direction of implication does not
hold. Counter example: LetUr1 = {u1, u2}, Ur2 =
{u2} andUr3 = {u1}, then{u1, u2} satisfies((r1 ⊗
r2)¯ (r1 ⊗ r3)), but does not satisfy(r1 ⊗ (r2 ¯ r3)).

6. (φ1 u φ2)
+ ≡ (φ+

1 u φ+
2).

If a usersetX satisfies(φ1 u φ2)
+, then for everyu ∈ X,

{u} satisfies(φ1uφ2) and thus satisfiesφ1 andφ2. Hence,X
satisfiesφ+

1 andφ+
2 , which means thatX satisfies(φ+

1 uφ+
2).

If X satisfies(φ+
1 u φ+

2), thenX satisfies bothφ+
1 andφ+

2 .
For everyu ∈ X, {u} satisfies bothφ1 andφ2. Hence,X
satisfies(φ1 u φ2)

+.

7. DeMorgan’s Law:¬(φ1uφ2) ≡ (¬φ1t¬φ2),¬(φ1tφ2) ≡
(¬φ1 u ¬φ2)

The proof is straight forward by definition of¬,u andt.

B. PROOF FOR THEOREMS IN SEC-
TION 3

In the following proofs,(opkφ) denotesk copies ofφ connected
together by operatorop and(opn

i=1ri) denotes(r1 op · · · op rn).
GivenR = {r1, · · · , rm}, (opR) denotes(r1 op · · · op rm).

B.1 Proof for Lemma 2, Lemma 3, and Theo-
rem 4

Proof for Lemma 2: TSAT with just role, ¬, u, and t is NP-
hard.

We reduce theNP-completeSAT problem toTSAT problem
of terms consisting of just role,¬, u, andt. Given a propositional
logic formulae, let {v1, · · · , vn} be the set of propositional vari-
ables that appear ine. Construct a unit termφ by substituting every
occurrence ofvi (i ∈ [1, n]) in e with atomic termri, every occur-
rence of¬vi (i ∈ [1, n]) with ¬ri, and replacing logicalANDwith
u and logicalORwith t. By Definition 3, a term without̄ ,⊗ and
+ can be satisfied by singletons only. Ifφ is satisfiable, then there
exists a configuration〈U,UR〉 and a useru such that{u} satisfies
φ. We can then construct a truth assignmentT in whichvi is TRUE
if and only if (u, ri) ∈ UR. It is clear thate evaluates toTRUE
underT . Similarly, if there exists a truth assignmentT such that
e evaluates toTRUEunderT , we can constructUR in which u is
a member ofri if and only if vi is TRUEin T . In that case,{u}

satisfiesφ under〈U,UR〉. Therefore,e is satisfiable if and only if
φ is satisfiable.

Proof for Lemma 3: TSAT with just userset, u, t, and ¯ is
NP-hard.

We reduce theNP-completeSET COVERING problem to the
TSAT problem of terms consisting of just sets of users,u, t, and
¯. In the set covering problem, we are given a finite setU =
{u1, · · · , un}, a familyF = {U1, · · · , Um} of subsets ofU , and
an integerk no larger thanm, and we ask whether there arek sets
in family F whose union isU .

We view each element inU as a user. For everyj ∈ [1, m]
we construct a termφj =

J{{ui} | ui ∈ Uj}; that is,φj =
{uj1} ¯ {uj2} ¯ · · · ¯ {ujx}, whereUj = {uj1 , uj2 , · · · , ujx}.
It is clear thatφi can only be satisfied byUi. Finally, we construct
a termφ = ((

J
k(
Fn

i=1 φi))u (
Jm

i=1{ui})). Since(
Jm

i=1{ui})
can be satisfied only byU , U is the only userset that could satisfy
φ.

We now demonstrate thatφ is satisfiable if and only if there are
no more thank sets in familyF whose union isU . On the one
hand, if φ is satisfiable, then it must be satisfied byU . In this
case,U satisfies(

J
k(
Fn

i=1 φi)), which means that there existk

setsU ′1, · · · , U ′k such that
Sk

i=1 U ′i = U and eachU ′i satisfies
(
Fn

i=1 φi). Sinceφi can be satisfied only byUi ∈ F , we have
U ′j ∈ F for everyj ∈ [1, k]. The answer to theSET COVERING

problem is thus “yes”. On the other hand, without loss of gener-
ality, assume that

Sk
i=1 Ui = U . We have, for anyi ∈ [1, k],

Ui satisfiesφi and thus satisfies(
Fn

i=1 φi). Therefore,U satisfies
(
J

k(
Fn

i=1 φi)). SinceU also satisfies(
Jm

i=1{ui}), U satisfies
((
J

k(
Fn

i=1 φi)) u (
Jm

i=1{ui})).
Proof for Theorem 4: TSAT is NP-complete.

Since we have already proved that certain subcases ofTSAT is
NP-hard, to prove the theorem, we just need to show that the prob-
lem is inNP.

To prove that the problem is inNP, we need to show that there
exists a nondeterministic Turing machineM that is able to generate
a usersetX and a configuration〈U,UR〉 and then check whether
X satisfiesφ under〈U,UR〉 in polynomial time. In Lemma 15,
we show that checking whether a userset satisfies a term under a
given configuration is inNP. In other words, one can design a
nondeterministic Turing machineN that checks whether a userset
satisfies a term in polynomial time. Here,M is the same asN
except thatM nondeterministically generates usersetX and con-
figuration 〈U,UR〉 at the very beginning. It is obvious that the
additional stepsM taken can be done in polynomial time.

B.2 Proof for Theorem 5

• C(All) = C(r) = {1} is straightforward.

• ThatC(φ1 t φ2) = C(φ1)∪C(φ2) follows from the defini-
tion of satisfaction (Definition 3).

• ThatC(φ1 u φ2) = C(φ1)∩C(φ2) follows from the defini-
tion of satisfaction (Definition 3).

• C(φ+) = {i | i ∈ [1,∞)}: It follows from the computation
of C(All), C(r), C(φ1 t φ2), C(φ1 u φ2) that the character-
istic set of any unit termφ free of usersets and negations is
{1}. Given a configuration〈U,UR〉 and a singleton{u1}
such that{u1} satisfiesφ, we can maken − 1 copies ofu1

for any n ≥ 2 so that then users together satisfiesφ+. In
other words,φ+ may be satisfied byn users for anyn ≥ 1.

• C(φ1 ¯ φ2) = { i | ∃ c1 ∈ C(φ1) ∃ c2 ∈ C(φ2)

[max(c1, c2) ≤ i ≤ c1 + c2]}

LetX be a userset that satisfies(φ1¯φ2). There existX1 and
X2 such thatX1 satisfiesφ1, X2 satisfiesφ2, andX1∪X2 =
X. By definition of characteristic set, there existc1 ∈ C(φ1)
andc2 ∈ C(φ2) such that|X1| = c1 and|X2| = c2. Hence,
max(c1, c2) ≤ |X| ≤ c1 + c2.
Givenc1 ∈ C(φ1) andc2 ∈ C(φ2), there existX1 andX2

such thatX1 satisfiesφ1 under〈U1,UR1〉, X2 satisfiesφ2

under〈U2,UR2〉, |X1| = c1 and|X2| = c2. For any integer
k ∈ [max(c1, c2), c1+c2], we may name users in such a way
that |X1 ∩X2| = c1 + c2 − k. In this case,X = X1 ∪X2

satisfies(φ1¯φ2) under〈U1∪U2,UR1∪UR2〉 and|X| = k.

• C(φ1 ⊗ φ2) = { c1 + c2 | c1 ∈ C(φ1) ∧ c2 ∈ C(φ2) }
A usersetX satisfies(φ1 ⊗ φ2) if and only if there existX1

andX2 such thatX1 ∪X2 = X, X1 ∩X2 = ∅ andX1, X2

satisfyφ1, φ2 respectively. By definition of characteristic set,
|X1| ∈ C(φ1) and|X2| ∈ C(φ2). Therefore,|X| = (|X1|+
|X2|) ∈ { c1 + c2 | c1 ∈ C(φ1) ∧ c2 ∈ C(φ2) }.
On the other hand, given anyc1 ∈ C(φ1) andc2 ∈ C(φ2), by
definition of characteristic number, there existX1 andX2 that
satisfyφ1 andφ2 under〈U1,UR1〉 and 〈U1,UR1〉 respec-
tively, such that|X1| = c1 and|X2| = c2. Name the users
in such a way thatX1 ∩ X2 = ∅. We haveX = X1 ∪ X2

satisfies(φ1 ⊗ φ2) under〈U1 ∪ U2,UR1 ∪ UR2〉, where
|X| = |X1|+ |X2| = c1 + c2.

B.3 Proof that computing the characteristic
set takes quadratic time

A straightforward algorithm to computeC(φ) is to follow The-
orem 5. We now show that this can be done in time quadratic to
the size ofφ, denoted by|φ|, which is defined to be the number of
occurrences of atomic terms inφ. Using induction on the structure
of φ, it is easy to show that|φ| is equal to the number of binary
operators inφ plus1. We need the following lemma to prove this.

Lemma 9. C(φ) either is equal to a subset of{1, 2, · · · , |φ|} or
W ∪ {i|i ∈ [|φ|,∞)}, whereW is a subset of{1, 2, · · · , |φ|}.

PROOF. Proof by induction on the structure of termφ.
Based case: Whenφ is a unit term,C(φ) = {1} is a subset of

{1, 2, · · · , |φ|}. Otherwise, whenφ is in the form ofφ+
1 , where

φ1 is a unit term, from Theorem 5,C(φ) = {i|i ∈ [1,∞)} =
W ∪ {i|i ∈ [|φ|,∞)}, whereW = {1, 2, · · · , |φ|}.

Induction case: Whenφ is in the form of(φ1 op φ2), assume
that the lemma holds forφ1 andφ2. Let W1 denote a subset of
{1, 2, · · · , |φ1|} andW2 denote a subset of{1, 2, · · · , |φ2|}. We
have the following three cases:

Case 1:C(φ1) = W1 andC(φ2) = W2. Since|φ| = |φ1| +
|φ2|, it follows from Theorem 5 thatC(φ) = W , whereW is a
subset of{1, 2, · · · , |φ|}.

Case 2: Exactly one ofC(φ1) andC(φ2) is an infinite set. With-
out loss of generality, assume thatC(φ1) = W1 andC(φ2) =
W2 ∪ {i | i ∈ [|φ2|,∞)}. We computeC(φ) according toop :

• op = t: C(φ) = C(φ1) ∪ C(φ2) = W1 ∪ W2 ∪ {i|i ∈
[|φ2|,∞)} = W1 ∪ W2 ∪ {i | i ∈ [|φ2|, |φ|)} ∪ {i | i ∈
[|φ|,∞)}, in whichW1∪W2∪{i | i ∈ [|φ2|, |φ|)} is a subset
of {1, 2, · · · , |φ|}.

• op = u: C(φ) = C(φ1) ∩ C(φ2) which is a subset ofW1.

• op = ¯: C(φ) = {i | ∃c1 ∈ W1 ∃c2 ∈ W2 [max(c1, c2) ≤
i ≤ c1 + c2]} ∪ {i | i ∈ [max(min(W1), |φ2|),∞)} = {i |
∃c1 ∈ W1 ∃c2 ∈ W2 [max(c1, c2) ≤ i ≤ c1 + c2]} ∪ {i |
i ∈ [max(min(W1), |φ2|), |φ|]} ∪ {i | i ∈ [|φ|,∞)}. Note
that {i | ∃c1 ∈ W1 ∃c2 ∈ W2 [max(c1, c2) ≤ i ≤ c1 +

c2]} ∪ {i | i ∈ [max(min(W1), |φ2|), |φ|]} is a subset of
{1, 2, · · · , |φ|}.

• op = ⊗: C(φ) = {c1 + c2|c1 ∈ W1 ∧ (c2 ∈ W2 ∨ c2 ∈
[|φ2|,∞))} = {c1 + c2|c1 ∈ W1 ∧ c2 ∈ W2} ∪ {i|i ∈
[min(W1) + |φ2|,∞)} = {c1 + c2|c1 ∈ W1 ∧ c2 ∈ W2} ∪
{i|i ∈ [min(W1) + |φ2|, |φ|]} ∪ {i|i ∈ [|φ|,∞)}. Note
that{c1 + c2|c1 ∈ W1 ∧ c2 ∈ W2} ∪ {i|i ∈ [min(W1) +
|φ2|, |φ|]} is a subset of{1, 2, · · · , |φ|}.

Case 3: BothC(φ1) andC(φ2) are infinite sets, whereC(φ1) =
W1 ∪ {i|i ∈ [|φ1|,∞)} andC(φ2) = W2 ∪ {i|i ∈ [|φ2|,∞)}.
The argument is similar to Case 2.

GivenC(φ1) andC(φ2), Lemma 9 states thatC(φi) contains at
most|φi| (i ∈ {1, 2}) distinct numbers plus a consecutive numer-
ical range, where the range may be treated as a unit during com-
putation. Therefore, calculatingC(φ1 op φ2) takes time at most
linear in |φ1| + |φ2|. Thus, for each operator inφ, the algorithm
takes timeO(|φ|); therefore, it takes time at most quadratic in|φ|
to calculateC(φ). Becauseφ is satisfiable if and only ifC(φ) 6= ∅,
it follows that one can decide whetherφ is satisfiable or not in time
O(|φ|2).

C. PROOFS FOR THEOREMS IN SEC-
TION 4

In the following proofs,(opkφ) denotesk copies ofφ connected
together by operatorop and(opn

i=1ri) denotes(r1 op · · · op rn).
GivenR = {r1, · · · , rm}, (opR) denotes(r1 op · · · op rm).

C.1 The five intractability subcases of UTS

Lemma 10. UTS 〈t,¯〉 is NP-hard.

PROOF. We use a reduction from theNP-completeSET COV-
ERING problem [9]. In the set covering problem, we are given
a finite setS = {e1, · · · , en}, family of S’s subsetsF =
{S1, · · · , Sm}, and an integerk < m, and we ask whether there
are k sets in familyF whose union isS. Given such an in-
stance, our reduction maps each element inS to a user and to
a role. We construct a configuration〈U,UR〉 such thatU =
{u1, · · · , un} and UR = {(ui, ri) | i ∈ [1, n]}, and a term
φ = (

J
k(
Fm

i=1(
J

Ri))), whereRi is a set of roles such that
rj ∈ Ri if and only if ej ∈ Si.

We now demonstrate thatU satisfiesφ under〈U,UR〉 if and
only if there existk sets in familyF whose union isS. On the one
hand, ifU satisfiesφ, by definition,U hask subsetsU1, · · · , Uk

such that
Sk

i=1 Ui = U and everyUi satisfies(
Fm

i=1(
J

Ri)).
Ui satisfies(

Fm
i=1(

J
Ri)) if and only if Ui satisfies a certain

(
J

Rxi), wherexi ∈ [1, m]. From the construction ofRxi , Ui

satisfies(
J

Rxi) if and only if Ui = {ua | ea ∈ Sxi}. SinceSk
i=1 Ui = U , we have

Sk
i=1 Sxi = S. The answer to the set

covering problem is “yes”. On the other hand, ifk subsets inF
coverS, without loss of generality, assume that

Sk
i=1 Si = S. In

this case, we divideU into k setsU1, · · · , Uk such thatUi = {uj |
ej ∈ Si}. Since

Sk
i=1 Si = S, we have

Sk
i=1 Ui = U . Further-

more, sinceUi = {uj | ej ∈ Si}, from the construction ofRi,
we haveUi satisfies(

J
Ri) for every i ∈ [1, k]. Therefore,U

satisfiesφ = (
J

k(
Fm

i=1(
J

Ri))).

Lemma 11. UTS 〈u,¯〉 is NP-hard.

PROOF. We use a reduction from theNP-completeSET COV-
ERING problem [9]. GivenS = {e1, · · · , en}, a family of S’s
subsetsF = {S1, · · · , Sm}, and an integerk < m, our reduction

maps each elementej ∈ S to a rolerj and each subsetSi ∈ F
to a userui. We construct a configuration〈U,UR〉 such that
U = {u1, · · · , um} andUR = {(ui, rj) | ej ∈ Si}, and a term
φ = (((

J
k All) u (

Jn
i=1 ri))¯ (

J
m All)).

We now demonstrate thatU satisfiesφ under〈U,UR〉 if and
only if there existk sets in familyF whose union isS. On one
hand, assumeU satisfiesφ. Since(

J
m All) can be satisfied by

any nonempty userset with no more thanm users,U always sat-
isfies (

J
m All) and it satisfiesφ if and only if there is a sub-

setU ′ of U such thatU ′ satisfies((
J

k All) u (
Jn

i=1 ri)). U ′

satisfying(
J

k All) indicates that|U ′| ≤ k, while U ′ satisfying
(
Jn

i=1 ri) indicates that users inU ′ together have membership
of all roles in{r1, · · · , rn}. Without loss of generality, suppose
U ′ = {u1, · · · , ut}, wheret ≤ k. As (ui, rj) ∈ UR if and only if
ej ∈ Si, the union of{S1, · · · , St} isS. The answer to the set cov-
ering problem is “yes”. On the other hand, ifk subsets inF cover
S, without loss of generality, assume that

Sk
i=1 Si = S. From

the construction ofUR, usersu1, · · · , uk together have member-
ship of all roles in{r1, · · · , rn}. In this case,{u1, · · · , uk} sat-
isfies(

Jn
i=1 ri). Also, {u1, · · · , uk} satisfies(

J
k All). Hence,

{u1, · · · , uk} satisfies((
J

k All)u (
Jn

i=1 ri)). (
J

m All) is also
satisfied byU . Therefore,U satisfiesφ.

Lemma 12. UTS 〈¯,⊗〉 is NP-hard.

PROOF. We use a reduction from theNP-completeDOMATIC

NUMBER problem [9]. Given a graphG(V, E), the Domatic Num-
ber problem asks whetherV can be partitioned intok disjoint non-
empty setsV1, V2, · · · , Vk, such that eachVi is a dominating set
for G. V ′ is a dominating set forG = (V, E) if for every nodeu
in V − V ′, there is a nodev in V ′ such that(u, v) ∈ E.

Given a graphG = (V, E) and a thresholdk, let U =
{u1, u2, · · · , un} andR = {r1, r2, · · · , rn}, wheren is the num-
ber of nodes inV . Each user inU corresponds to a node inG, and
v(ui) denotes the node corresponding to userui. UR = {(ui, rj) |
i = j or (v(ui), v(uj)) ∈ E}. Let φ = (

N
k(
Jn

i=1 ri)).
A dominating set inG corresponds to a set of users that together

have membership of all then roles.U satisfiesφ under〈U,UR〉 if
and only if U can be divided intok pairwise disjoint sets, each
of which has role membership ofr1, r2, · · · , rn. Therefore, the
answer to the Domatic Number problem is “yes” if and only ifU
satisfiesφ under〈U,UR〉.
Lemma 13. UTS 〈⊗,t〉 is NP-hard.

PROOF. We use a reduction from theNP-completeSET PACK-
ING problem [9], which asks, given a finite setS = {e1, · · · , en},
a family of S’s subsetsF = {S1, · · · , Sm}, and an integerk,
whether there arek subsets in familyF such that thesek sets
are pairwise disjoint. Without loss of generality, we assume that
Si 6⊆ Sj if i 6= j. (If Si ⊆ Sj , one can removeSj without affect-
ing the answer.) LetU = {u0, u1, · · · , un}, R = {r1, · · · , rn}
and UR = {(ui, ri) | 1 ≤ i ≤ n}. In particular,u0 is a
user that is not assigned to any role. We then construct a term
φ = ((

N
k

�Fm
i=1 (

N
Rj)
�
) ⊗ φnonempty), whereRj = {ri |

ei ∈ Sj} andφnonempty = (All t (All⊗ All) t · · · t (
N

m All)).
We show thatU satisfiesφ under〈U,UR〉 if and only if there

arek pairwise disjoint sets in familyF . As the only member ofri

is ui, the only userset that satisfiesφi = (
N

Rj) is Uj = {ui |
ei ∈ Sj}. Hence, a usersetX satisfiesφ′ = (

Fm
i=1 φi) if and only

if X equals to someUj .
Without loss of generality, assume thatS1, · · · , Sk arek pair-

wise disjoint sets. Then,U1, · · · , Uk arek pairwise disjoint sets of
users.U1 satisfiesφ1, and thus satisfiesφ′. Similarly, we haveUi

satisfiesφ′ for every i from 1 to k. Furthermore, sinceu0 6∈ Ui

for any i ∈ [1, k], we have
Sk

i=1 Ui ⊂ U . Hence,U can be di-
vided into two nonempty subset

Sk
i=1 Ui andU ′ = U −Sk

i=1 Ui

such that
Sk

i=1 Ui satisfies(
N

k

�Fm
i=1 (

N
Rj)
�
) andU ′ satisfies

φnonempty. In other words,U satisfiesφ.
On the other hand, supposeU satisfiesφ. Then,U has a strict

subsetU ′ with u0 6∈ U ′, such thatU ′ can be divided intok pairwise
disjoint setsÛ1, · · · , Ûk, such that eacĥUi satisfiesφ′. In order to
satisfyφ′, Ûi must satisfy a certainφai and hence be equivalent to
Uai , whereai ∈ [1, m]. The assumption that̂U1, · · · , Ûk are pair-
wise disjoint indicates thatUa1 , · · · , Uak are also pairwise disjoint.
Therefore, their corresponding setsSa1 , · · · , Sak are pairwise dis-
joint. The answer to the Set Packing problem is “yes”.

Lemma 14. UTS 〈u,⊗〉 is NP-hard.

PROOF. We use a reduction from the NP-completeSET COV-
ERING problem, which asks, given a familyF = {S1, · · · , Sm} of
subsets of a finite setS and an integerk no larger thanm, whether
there arek sets in familyF whose union isS.

Given S = {e1, · · · , en} and a family of S’s subsets
F = {S1, · · · , Sm}, let U = {u1, u2, · · · , um}, R =
{r1, r2, · · · , rn} and UR = {(ui, rj) | ej ∈ Si}. Let φ =

((un
i=1

�
ri ⊗

�N
k−1 All

��
) ⊗ (

N
m−k All)). We now demon-

strate thatU satisfiesφ under〈U,UR〉 if and only if there are
k sets in familyF whose union isS. Without loss of generality,
assume thatk < m.

Assume thatU satisfiesφ. Since(
N

m−k All) can be satisfied
by any userset withm−k users,U satisfiesφ if and only if there is
a size-k subsetU ′ of U that satisfies

�
ri ⊗

�N
k−1 All

��
for every

i from 1 ton. This means that users inU ′ together have member-
ship of all roles in{r1, · · · , rn}. SupposeU ′ = {ua1 , · · · , uak},
whereai ∈ [1, m]. As (ui, rj) ∈ UR if and only if ej ∈ Si, the
union of {Sa1 , · · · , Sak} is S. The answer to the Set Covering
problem is “yes”.

On the other hand, without loss of generality, assume thatSk
i=1 Si = S. From the construction ofUR, usersu1, · · · , uk to-

gether have membership ofr1, · · · , rn. In this case,{u1, · · · , uk}
satisfies

�
ri ⊗

�N
k−1 All

��
for everyi from 1 ton. Sincek < m,

{u1, · · · , uk} is a strict subset ofU . Therefore,U can be divided
into two nonempty subset{u1, · · · , uk} andU − {u1, · · · , uk}
such that{u1, · · · , uk} satisfies(un

i=1

�
ri ⊗

�N
k−1 All

��
) and

U − {u1, · · · , uk} satisfies(
N

m−k All). In other words,U satis-
fiesφ.

C.2 Proof that UTS is in NP

Lemma 15. UTS 〈¬, +,t,u,¯,⊗〉 is in NP.

PROOF. To determine whether a usersetX satisfies a termφ
under a configuration〈U,UR〉, we first compute the syntax treeT
of φ. When constructingT , an 1CF term (i.e., a term of the form
φ or φ+, whereφ is a unit term, see Definition 7) is treated as a
unit and is not further decomposed. In other words, the leaves in
T correspond to sub-terms ofφ that are 1CF terms and the inner
nodes correspond to binary operators connecting these sub-terms.
If X satisfiesφ, then for each node in the tree, there exists a subset
of X that satisfies the term rooted at that node, and the root of
T corresponds to the setX. After these subsets are guessed and
labeled with each node, verifying that they indeed satisfy the terms
can be done efficiently. Verifying that a userset satisfies a 1CF
term can be done efficiently. (See Proof of Theorem 8.) When the
two children of a node are verified, checking that node is labeled
correctly can also be done efficiently. Therefore, the problem is in
NP.

C.3 The tractable cases

Lemma 16. UTS for 4CF terms is inP.

PROOF. Given a 4CF termφ = P1 ¯ · · · ¯ Pn, where for each
k such that1 ≤ k ≤ n, Pk is a 3CF term of the formφk,1⊗φk,2⊗
· · · ⊗ φk,mk , and eachφk,j is an 1CF term. Lettk,j be the base
unit term inφk,j . Let Tk be the multiset of base unit terms inPk,
that is,Tk = {tk,1, tk,2, · · · , tk,mk}, and|Tk| = mk.

Given a usersetX = {u1, · · · , un} and configuration〈U,UR〉,
we present an algorithm that determines whetherX satisfiesφ un-
der〈U,UR〉.
Step 1The first step checks that eachPk is satisfied by some subset
of X. For eachk such that1 ≤ k ≤ n, do the following. Con-
struct a bipartite graphG(X, Tk), in which one partition consists
of users inX and the other consists of all thetk,j ’s in Tk; and there
is an edge betweenu ∈ X and tk,j if and only if {u} satisfies
tk,j . Compute a maximal matching of the graphG(X, Tk), if the
matching has size less thanmk, returns “no”, as this means thatX
does not contain a subset that satisfiesPk; thusX does not satisfy
φ.

Step 2The second step checks that each user inX can be “con-
sumed” by some unit term inφ. Let G(A, B) denote the bipartite
graph in which one partition,A, consists of users inX, and the
other partition,B, consists of all thetk,j ’s in T1 ∪ T2 ∪ · · · ∪ Tn.
Furthermore, for any unit termt that occurs ast+ in φ, we make
sure thatB has at least|X| copies oft, by adding additional copies
of t if necessary. There is an edge betweenu ∈ A andt ∈ B if and
only if {u} satisfiest. Compute a maximal matching of the graph
G(X, T), if the matching has size less than|X|, returns “no”.

Step 3Return “yes”.
It is not difficult to see that if the algorithm returns “no”, then

X does not satisfyφ. We now show that if the algorithm returns
“yes”, thenX satisfiesφ. If the algorithm returns “yes”, then for
eachk, the graphG(X, Tk) has a matching of sizemk; let Xk be
the set of users involved in the matching, thenXk satisfiesPk. Let
X ′ = X1 ∪X2 ∪ · · · ∪Xn. If X ′ = X, then clearlyX satisfies
φ. If X ′ ⊂ X, then find a useru in X \X ′, and do the following:
Find the termt that is matched withu in the maximal matching
computed in step 2. Such a term must exist, since the matching has
size|X|. Without loss of generality, assume thatt appears inP1,
andX1 contains a userw that is matched witht; then changeX1 by
replacingw with u. Clearly, the newX1 still satisfiesP1. Compute
X ′ again, and ifX ′ ⊂ X, find another user inX \X ′ and repeat
the above process. Note thatX ′ will grow if w appears in some
otherXk. Also observe that, the newly added matching betweenu
andt will never be removed again in future, because no other user
is matched witht in the maximal matching computed in step 2; as a
result,u will always remain inX ′. Therefore, after each step, one
new user will be added toX ′ and will never be removed. After at
most|X| steps, we will haveX ′ = X.

