Computer Security
CS 426

L ecture 11

BN D EOE N R Eee

Software Vulnerabilities: Input Validation
Issues & Buffer Overflows

CS426 Fall 2010/Lecture 11 1

Steps in a standard break-1n (Getting
IN)
« Get your foot in the door

— Steal a password file and run dictionary attack

— Try to guess a password online

— Sniff passwords off the network, social engineering

— Use input vulnerability in network-facing programs
(e.g., web server, ftp server, mail server, browser,

etc.)
« Use partial access to gain root (admin) access
— Break some mechanism on the system

— Often involve exploiting vulnerabilities in some
local programs

CS426 Fall 2010/Lecture 11

Steps in astandard break-in (After
Getting In)

e Set up some way to return
— Install login program or web server with back door

e Cover your tracks
— Disable intrusion detection, virus protection,
— Install rootkits,

e Perform desired attacks
— break into other machines
— taking over the machine
— Steal useful information (e.g., credit card numbers)

CS426 Fall 2010/Lecture 11

Common Software Vulnerabilities

* |nput validation

e Buffer overflows
 Format string problems
 Integer overflows

« Race conditions...

CS426 Fall 2010/Lecture 11

Input Validation

e Sources of input
— Command line arguments
— Environment variables
— Function calls from other modules
— Configuration files
— Network packets

« Sources of input for web applications
— Web form input
— Scripting languages with string input

CS426 Fall 2010/Lecture 11

Weak Input Validation

 What are some things that the attacker may try to
achieve?
— Crash programs
— Execute arbitrary code
» setuid or setgid programs
— Obtain sensitive information

CS426 Fall 2010/Lecture 11 6

Command line

User can set command line arguments to almost
anything
— Using execve command

— Do not trust name of the program (it can be sent to
any value including NULL)

Do not check for bad things (blacklisting)

* Check for things that are allowed (whitelisting)

Check all possible inputs

CS426 Fall 2010/Lecture 11

Simple example

void main(int argc, char ** argv) {
char buf[1024];
sprintf(buf,”cat %”,argv|[1]);
system (“buf”);

}

Can easily add things to the conmmmand
by addi ng ;

CS426 Fall 2010/Lecture 11

Environment variables

« Users can set the environment variables to
anything
— Using execve
— Has some interesting consequences

« Examples:
— LD _LIBRARY_PATH

— PATH
— IFS

CS426 Fall 2010/Lecture 11

An example attack

« Assume you have a setuid program that loads
dynamic libraries

 UNIX searches the environment variable
LD LIBRARY_ PATH for libraries

« AusercansetlLD LIBRARY PATHto
/tmp/attack and places his own copy of the
libraries here

 Most modern C runtime libraries have fixed this
by not using the LD _LIBRARY_PATH variable
when the EUID is not the same as the UID or the
EGID is not the same as the GID

CS426 Fall 2010/Lecture 11 10

More fun with environment variables

* A setuid program has a system call: system(ls);

* The user sets his PATH to be . (current directory)
and places a program Is in this directory

* The user can then execute arbitrary code as the
setuid program

e Solution: Reset the PATH variable to be a
standard form (i.e., “/bin:/usr/bin”)

CS426 Fall 2010/Lecture 11 11

Even more fun

 However, you must also reset the IFS variable

— |IFS is the characters that the system considers as
white space

 If not, the user may add “s” to the IFS
— system(ls) becomes system(l)
— Place a function | in the directory

CS426 Fall 2010/Lecture 11

12

What 1s Buffer Overflow?

* A buffer overflow, or buffer overrun, is an anomalous
condition where a process attempts to store data beyond
the boundaries of a fixed-length buffer.

* The result is that the extra data overwrites adjacent
memory locations. The overwritten data may include
other buffers, variables and program flow data, and may
result in erratic program behavior, a memory access
exception, program termination (a crash), incorrect
results or — especially if deliberately caused by a
malicious user — a possible breach of system security.

* Most common with C/C++ programs

CS426 Fall 2010/Lecture 11 13

History

 Used in 1988’s Morris Internet Worm

* Alphe One’s "Smashing The Stack For Fun And
Profit” in Phrack Issue 49 in 1996 popularizes
stack buffer overflows

« Still extremely common today

CS426 Fall 2010/Lecture 11

14

What 1s nheeded to understand Buffer
Overflow

* Understanding C functions and the stack.
« Some familiarity with machine code.

« Know how systems calls are made.

* The exec() system call.

« Attacker needs to know which CPU and OS are running
on the target machine.

— Our examples are for x86 running Linux.
— Details vary slightly between CPU’s and OS:
 Stack growth direction.
* big endian vs. little endian.

CS426 Fall 2010/Lecture 11 15

Buffer Overflow

» Stack overflow
— Shell code

— Return-to-libc
* QOverflow sets ret-addr to address of libc function

— Off-by-one
— Overflow function pointers & longimp buffers

« Heap overflow

CS426 Fall 2010/Lecture 11

16

LInux process memory layout

OxC0000000
%%esp
0x40000000
Loaded
from exec

0x08048000
0

CS426 Fall 2010/Lecture 11 17

Stack Frame

CS426

Fall 2010/Lecture 11

Stack
Growth

18

What are buffer overflows?

e Suppose a web server contains a function:

void func(char *str) {
char buf[128];

strcpy(buf, str);
do- sonet hi ng(buf) ;

}
« When the function is invoked the stack looks like:

[bt [efpfretadar[sr|

<
« Whatif *str is 136 bytes long? After strcpy:

*str ret -
<<

CS426 Fall 2010/Lecture 11 19

Basic stack exploit

« Main problem: no range checking in strcpy().

 Suppose “sir is such that after strcpy stack looks like:

/3

*str

ret | Code for P

<

Program P:

« When func() exits, the user will be given a shell !!

exec(“/bin/sh”)

top
of
stack

(exact shell code by Aleph One)

« Note: attack code runs in stack.
* To determine ret guess position of stack when func() is called.

CS426

Fall 2010/Lecture 11

20

Some unsafe C lib functions

strcpy (char *dest, const char *src)
strcat (char *dest, const char *src)
gets (char *s)

scanf (const char *format, ...)
sprintf (conts char *format, ...)

CS426 Fall 2010/Lecture 11

21

Exploiting buffer overflows

« Suppose web server calls func() with given
URL.

« Attacker can create a 200 byte URL to obtain
shell on web server.

« Some complications for stack overflows:

— Program P should not contain the \O' character.

— Overflow should not crash program before func()
exits.

CS426 Fall 2010/Lecture 11

22

« Stack smashing attack:

— Override return address in stack activation record by
overflowing a local buffer variable.

* Function pointers: (used in attack on PHP 4.0.2)

Heap

buf[128] FuncPtr S{;Lk

— Overflowing buf will override function pointer.

* Longjmp buffers: longjmp(pos) (used in attack on Perl 5.003)
— Overflowing buf next to pos overrides value of pos.

CS426 Fall 2010/Lecture 11 23

return-to-libc attack

« “Bypassing non-executable-stack during
exploitation using re%to-libs” by cOntex

*str ret | Code for P

<

Shell code attack: Program P: exec(“/bin/sh”)

system() in libc
*str ‘ | ret ‘ fake ret
—— ¢
Return-to-libc attack: “/bin/sh”

CS426 Fall 2010/Lecture 11

24

Off by one buffer overflow

« Sample code
func f(char *input) {
char buf[LEN];
if (strlen(input) <= LEN) {
strcpy(buf, input)
}
}

CS426 Fall 2010/Lecture 11

25

Heap Overflow

* Heap overflow is a general term that refers to overflow in
data sections other than the stack
— buffers that are dynamically allocated, e.g., by malloc
— statically initialized variables (data section)
— uninitialized buffers (bss section)

* Heap overflow may overwrite other date allocated on
heap

* By exploiting the behavior of memory management
routines, may overwrite an arbitrary memory location with
a small amount of data.

— E.g., SimpleHeap free() does
* hdr->next->next->prev := hdr->next->prev;

CS426 Fall 2010/Lecture 11 26

Finding buffer overflows

 Hackers find buffer overflows as follows:
— Run web server on local machine.

— Fuzzing: Issue requests with long tags.
All long tags end with “$3$$%$9%".

— |If web server crashes,
search core dump for “$$$$$” to find

.
PR PR Ry

overflow location.
« Some automated tools exist. ().

* Then use disassemblers and debuggers (e..g IDA-Pro)
to construct exploit.

CS426 Fall 2010/Lecture 11

27

0 Buffer Overflow Att

cke

Preven

c':z

« Use type safe languages (Java, ML).
« Use safe library functions

« Static source code analysis.

* Non-executable stack

* Run time checking: StackGuard, Libsafe, SafeC,
(Purify).

« Address space layout randomization.
« Detection deviation of program behavior

* Access control to control aftermath of attacks...
(covered later in course)

CS426 Fall 2010/Lecture 11 28

Static source code analysis

- Statically check source code to detect buffer overflows.

— Several consulting companies.

- Main idea: automate the code review process.

- Several tools exist:
— Coverity (Engler et al.): Test trust inconsistency.
— Microsoft program analysis group:

- PREfix: looks for fixed set of bugs (e.g. null ptr ref)
. 3\) \U.v. 11IGALL PLI IUI/

- PREfast: local analysis to find idioms for prog errors.

— Berkeley: Wagner, et al. Test constraint violations.
- Find lots of bugs, but not all.

CS426 Fall 2010/Lecture 11

29

Bugs to Detect in Source Code
Analysis

 Some examples

 Crash Causing Defects * Uninitialized variables

 Null pointer dereference * Invalid use of negative values

» Use after free » Passing large parameters by value
* Double free » Underallocations of dynamic data
* Array indexing errors * Memory leaks

« Mismatched array new/delete * File handle leaks

* Potential stack overrun * Network resource leaks

* Potential heap overrun * Unused values

 Return pointers to local variables * Unhandled return codes

* Logically inconsistent code Use of invalid iterators

CS426 Fall 2010/Lecture 11

30

Marking stack as non-execute

« Basic stack exploit can be prevented by marking
stack segment as non-executable.

— Support in Windows SP2. Code patches exist for
Linux, Solaris.
Problems:
— Does not defend against return-to-libc’ exploit.

— Some apps need executable stack (e.g. LISP
interpreters).

— Does not block more general overflow exploits:
« Overflow on heap, overflow func pointer.

CS426 Fall 2010/Lecture 11 31

Run time checking: StackGuard

GQ

« There are many run-time checking techniques ...
« StackGuard tests for stack integrity.

— Embed “canaries” in stack frames and verify their
integrity prior to function return.

Frame 2 Frame 1
top
of

<

CS426 Fall 2010/Lecture 11 32

Canary Types

« Random canary:
— Choose random string at program startup.
— Insert canary string into every stack frame.
— Verify canary before returning from function.

— To corrupt random canary, attacker must learn
current random string.

 Terminator canary:
Canary = 0, newline, linefeed, EOF

— String functions will not copy beyond terminator.

— Hence, attacker cannot use string functions to corrupt
stack.

CS426 Fall 2010/Lecture 11 33

StackGuard (Cont.)

« StackGuard implemented as a GCC patch.
— Program must be recompiled.

— Minimal performance effects: 8% for Apache.

» Newer version: PointGuard.

— Protects function pointers and setjmp buffers by
placing canaries next to them.

— More noticeable performance effects.

* Note: Canaries don't offer fullproof protection.

— Some stack smashing attacks can leave canaries untouched.

CS426 Fall 2010/Lecture 11

34

Randomization: Motivations.

« Buffer overflow and return-to-libc exploits need to
know the (virtual) address to which pass control

— Address of attack code in the buffer
— Address of a standard kernel library routine

« Same address is used on many machines

— Slammer infected 75,000 MS-SQL servers using same
code on every machine

 |dea: introduce artificial diversity

— Make stack addresses, addresses of library routines, etc.
unpredictable and different from machine to machine

CS426 Fall 2010/Lecture 11 35

Address Space Layout Randomization

* Arranging the positions of key data areas randomly in a

process' address space.

— e.g., the base of the executable and position of libraries (libc),
heap, and stack,

— Effects: for return to libc, needs to know address of the key
functions.

— Attacks:
* Repetitively guess randomized address

« Spraying injected attack code

* Vista has this enabled, software packages available for
Linux and other UNIX variants

CS426 Fall 2010/Lecture 11 36

| nstruction Set Randomization

 |Instruction Set Randomization (ISR)
— Each program has a different and secret instruction
set
— Use translator to randomize instructions at load-time
— Attacker cannot execute its own code.

* What constitutes instruction set depends on the
environment.
— for binary code, it is CPU instruction
— for interpreted program, it depends on the interpreter

CS426 Fall 2010/Lecture 11 37

| nstruction Set Randomization

* An implementation for x86 using the Bochs
emulator

— network intensive applications doesn’t have too much
performance overhead

— CPU intensive applications have one to two orders of
slow-down

NI o

* Not yet used in practice

CS426 Fall 2010/Lecture 11 38

Readings for This Lecture

» Wikipedia

Privilege escalation
Buffer overflow

Stack buffer overflow
Buffer overflow protection

CS426 Fall 2010/Lecture 11

/\
—/

39

Coming Attractions ...

 Other Software vulnerabilities

CS426 Fall 2010/Lecture 11

40

