
Computer Security
CS 426
Lecture 11

Software Vulnerabilities: Input ValidationSoftware Vulnerabilities: Input Validation
Issues & Buffer Overflows

CS426 Fall 2010/Lecture 11 1

Steps in a standard break-in (Getting
in)in)
• Get your foot in the door• Get your foot in the door

– Steal a password file and run dictionary attack
Try to guess a password online– Try to guess a password online

– Sniff passwords off the network, social engineering
U i t l bilit i t k f i– Use input vulnerability in network-facing programs
(e.g., web server, ftp server, mail server, browser,
etc)etc.)

• Use partial access to gain root (admin) access
Break some mechanism on the system– Break some mechanism on the system

– Often involve exploiting vulnerabilities in some
local programs

CS426 Fall 2010/Lecture 11 2

local programs

Steps in a standard break-in (After
Getting in)Getting in)

S t t t• Set up some way to return
– Install login program or web server with back door

• Cover your tracks
– Disable intrusion detection, virus protection,
– Install rootkits,

• Perform desired attacks
– break into other machines
– taking over the machinetaking over the machine
– Steal useful information (e.g., credit card numbers)

CS426 Fall 2010/Lecture 11 3

Common Software Vulnerabilities

I t lid ti• Input validation
• Buffer overflows
• Format string problems
• Integer overflowsInteger overflows
• Race conditions…

CS426 Fall 2010/Lecture 11 4

Input Validationp

S f i t• Sources of input
– Command line arguments
– Environment variables
– Function calls from other modules
– Configuration files
– Network packets

• Sources of input for web applications
– Web form input
– Scripting languages with string input

CS426 Fall 2010/Lecture 11 5

Weak Input Validationp

• What are some things that the attacker may try to• What are some things that the attacker may try to
achieve?

Crash programs– Crash programs
– Execute arbitrary code

t id t id• setuid or setgid programs
– Obtain sensitive information

CS426 Fall 2010/Lecture 11 6

Command line

• User can set command line arguments to almost• User can set command line arguments to almost
anything

Using execve command– Using execve command
– Do not trust name of the program (it can be sent to

any value including NULL)y g)
• Do not check for bad things (blacklisting)
• Check for things that are allowed (whitelisting)Check for things that are allowed (whitelisting)
• Check all possible inputs

CS426 Fall 2010/Lecture 11 7

Simple examplep p

id i (i t h **) {void main(int argc, char ** argv) {
char buf[1024];
sprintf(buf,”cat %s”,argv[1]);
system (“buf”);y ();
}
C il dd thi t th dCan easily add things to the command
by adding ;

CS426 Fall 2010/Lecture 11 8

Environment variables

U t th i t i bl t• Users can set the environment variables to
anything
– Using execve
– Has some interesting consequences

• Examples:
– LD_LIBRARY_PATH
– PATH
– IFS

CS426 Fall 2010/Lecture 11 9

An example attackp

• Assume you have a setuid program that loads• Assume you have a setuid program that loads
dynamic libraries

• UNIX searches the environment variableUNIX searches the environment variable
LD_LIBRARY_PATH for libraries

• A user can set LD_LIBRARY_PATH to _ _
/tmp/attack and places his own copy of the
libraries here
M t d C ti lib i h fi d thi• Most modern C runtime libraries have fixed this
by not using the LD_LIBRARY_PATH variable
when the EUID is not the same as the UID or thewhen the EUID is not the same as the UID or the
EGID is not the same as the GID

CS426 Fall 2010/Lecture 11 10

More fun with environment variables

A t id h t ll t (l)• A setuid program has a system call: system(ls);

• The user sets his PATH to be . (current directory)
and places a program ls in this directory

• The user can then execute arbitrary code as the y
setuid program

• Solution: Reset the PATH variable to be aSolution: Reset the PATH variable to be a
standard form (i.e., “/bin:/usr/bin”)

CS426 Fall 2010/Lecture 11 11

Even more fun

H t l t th IFS i bl• However, you must also reset the IFS variable
– IFS is the characters that the system considers as

hite spacewhite space

• If not, the user may add “s” to the IFS
– system(ls) becomes system(l)
– Place a function l in the directory

CS426 Fall 2010/Lecture 11 12

What is Buffer Overflow?

A buffer overflow or buffer overrun is an anomalous• A buffer overflow, or buffer overrun, is an anomalous
condition where a process attempts to store data beyond
the boundaries of a fixed-length buffer.the boundaries of a fixed length buffer.

• The result is that the extra data overwrites adjacent
memory locations. The overwritten data may include y y
other buffers, variables and program flow data, and may
result in erratic program behavior, a memory access

i i i (h) iexception, program termination (a crash), incorrect
results or ― especially if deliberately caused by a
malicious user ― a possible breach of system securitymalicious user ― a possible breach of system security.

• Most common with C/C++ programs

CS426 Fall 2010/Lecture 11 13

History y

U d i 1988’ M i I t t W• Used in 1988’s Morris Internet Worm

• Alphe One’s “Smashing The Stack For Fun And
Profit” in Phrack Issue 49 in 1996 popularizes p p
stack buffer overflows

• Still extremely common today

CS426 Fall 2010/Lecture 11 14

What is needed to understand Buffer
OverflowOverflow

U d t di C f ti d th t k• Understanding C functions and the stack.
• Some familiarity with machine code.
• Know how systems calls are made• Know how systems calls are made.
• The exec() system call.

• Attacker needs to know which CPU and OS are running
on the target machine.g
– Our examples are for x86 running Linux.
– Details vary slightly between CPU’s and OS:

• Stack growth direction.
• big endian vs. little endian.

CS426 Fall 2010/Lecture 11 15

Buffer Overflow

St k fl• Stack overflow
– Shell code
– Return-to-libc

• Overflow sets ret-addr to address of libc function
Off b– Off-by-one

– Overflow function pointers & longjmp buffers

• Heap overflowp

CS426 Fall 2010/Lecture 11 16

Linux process memory layoutp y y

User Stack
0xC0000000

User Stack
%esp

Shared libraries
0x40000000

Run time heap

Unused
0x08048000

Loaded
from exec

CS426 Fall 2010/Lecture 11 17

Unused 0

Stack Frame

Parameters

Return address

Stack Frame PointerStack Frame Pointer

Local variablesLocal variables

SP
Stack

Growth

CS426 Fall 2010/Lecture 11 18

What are buffer overflows?

Suppose a web server contains a function:• Suppose a web server contains a function:
void func(char *str) {

char buf[128];char buf[128];
strcpy(buf, str);
do-something(buf);

}
• When the function is invoked the stack looks like:

Wh t if * i 136 b t l ? Aft

strret-addrsfpbuf

• What if *str is 136 bytes long? After strcpy:

str*str ret

CS426 Fall 2010/Lecture 11 19

strstr ret

Basic stack exploitp

M i bl h ki i ()• Main problem: no range checking in strcpy().

• Suppose *str is such that after strcpy stack looks like:

top
of
t k

*str ret Code for P
stack

Program P: exec(“/bin/sh”)

• When func() exits the user will be given a shell !!

(exact shell code by Aleph One)

When func() exits, the user will be given a shell !!
• Note: attack code runs in stack.
• To determine ret guess position of stack when func() is called.

CS426 Fall 2010/Lecture 11 20

Some unsafe C lib functions

t (h *d t t h *)strcpy (char *dest, const char *src)
strcat (char *dest, const char *src)
gets (char *s)
scanf (const char *format, …)scanf (const char format, …)
sprintf (conts char *format, …)

CS426 Fall 2010/Lecture 11 21

Exploiting buffer overflowsp g

• Suppose web server calls func() with given
URL.

• Attacker can create a 200 byte URL to obtain
shell on web server.

• Some complications for stack overflows:
– Program P should not contain the ‘\0’ characterProgram P should not contain the \0 character.
– Overflow should not crash program before func()

exits.

CS426 Fall 2010/Lecture 11 22

Other control hijacking opportunitiesOther control hijacking opportunities

• Stack smashing attack:
– Override return address in stack activation record by

fl i l l b ff i bloverflowing a local buffer variable.
• Function pointers: (used in attack on PHP 4.0.2)

H

O fl i b f ill id f ti i t

Heap
or

stack
buf[128] FuncPtr

– Overflowing buf will override function pointer.

L j b ff l j () (d i tt k P l 5 003)• Longjmp buffers: longjmp(pos) (used in attack on Perl 5.003)

– Overflowing buf next to pos overrides value of pos.

CS426 Fall 2010/Lecture 11 23

return-to-libc attack

“B i t bl t k d i• “Bypassing non-executable-stack during
exploitation using return-to-libs” by c0ntex

*str ret Code for P

Shell code attack: Program P: exec(“/bin/sh”)

*str ret fake ret

system() in libc

*str ret fake_ret

Return to libc attack: “/bin/sh”

CS426 Fall 2010/Lecture 11 24

Return-to-libc attack: /bin/sh

Off by one buffer overflowy

S l d• Sample code
func f(char *input) {

char buf[LEN];
if (strlen(input) <= LEN) {

strcpy(buf, input)
}

}

CS426 Fall 2010/Lecture 11 25

Heap Overflowp

• Heap overflow is a general term that refers to overflow in• Heap overflow is a general term that refers to overflow in
data sections other than the stack
– buffers that are dynamically allocated, e.g., by malloc
– statically initialized variables (data section)
– uninitialized buffers (bss section)

• Heap overflow may overwrite other date allocated on
heapp

• By exploiting the behavior of memory management
routines, may overwrite an arbitrary memory location with
a small amount of dataa small amount of data.
– E.g., SimpleHeap_free() does

• hdr->next->next->prev := hdr->next->prev;

CS426 Fall 2010/Lecture 11 26

p p ;

Finding buffer overflowsg

• Hackers find buffer overflows as follows:
– Run web server on local machine.
– Fuzzing: Issue requests with long tags.

All long tags end with “$$$$$”.
– If web server crashes,

search core dump for “$$$$$” to find
overflow locationoverflow location.

• Some automated tools exist. ().
• Then use disassemblers and debuggers (e..g IDA-Pro)

to construct exploit.

CS426 Fall 2010/Lecture 11 27

Preventing Buffer Overflow AttacksPreventing Buffer Overflow Attacks

U t f l ()• Use type safe languages (Java, ML).
• Use safe library functions
• Static source code analysis.
• Non-executable stack
• Run time checking: StackGuard, Libsafe, SafeC,

(Purify).
• Address space layout randomization.
• Detection deviation of program behaviorp g
• Access control to control aftermath of attacks…

(covered later in course)

CS426 Fall 2010/Lecture 11 28

()

Static source code analysisy

• Statically check source code to detect buffer overflows.
– Several consulting companies.

M i id t t th d i• Main idea: automate the code review process.
• Several tools exist:

Coverity (Engler et al): Test trust inconsistency– Coverity (Engler et al.): Test trust inconsistency.
– Microsoft program analysis group:

• PREfix: looks for fixed set of bugs (e g null ptr ref)• PREfix: looks for fixed set of bugs (e.g. null ptr ref)
• PREfast: local analysis to find idioms for prog errors.

– Berkeley: Wagner, et al. Test constraint violations.y g ,
• Find lots of bugs, but not all.

CS426 Fall 2010/Lecture 11 29

Bugs to Detect in Source Code
Analysis

• Some examples

Analysis
• Some examples

• Crash Causing Defects
• Null pointer dereference

• Uninitialized variables
• Invalid use of negative values• Null pointer dereference

• Use after free
• Double free
• Array indexing errors

• Invalid use of negative values
• Passing large parameters by value
• Underallocations of dynamic data
• Memory leaks• Array indexing errors

• Mismatched array new/delete
• Potential stack overrun
• Potential heap overrun

• Memory leaks
• File handle leaks
• Network resource leaks
• Unused valuesPotential heap overrun

• Return pointers to local variables
• Logically inconsistent code

Unused values
• Unhandled return codes
• Use of invalid iterators

CS426 Fall 2010/Lecture 11 30

Marking stack as non-executeg

• Basic stack exploit can be prevented by marking
stack segment as non-executable.
– Support in Windows SP2. Code patches exist for

Linux, Solaris.
Problems:

– Does not defend against `return-to-libc’ exploit.
– Some apps need executable stack (e.g. LISP

interpreters).
– Does not block more general overflow exploits:

• Overflow on heap, overflow func pointer.

CS426 Fall 2010/Lecture 11 31

Run time checking: StackGuardRun time checking: StackGuard

• There are many run-time checking techniques …

St kG d t t f t k i t it• StackGuard tests for stack integrity.
– Embed “canaries” in stack frames and verify their

i t it i t f ti tintegrity prior to function return.

strretsfplocal
top
ofcanastrretsfpl l

Frame 1Frame 2

strretsfplocal of
stack

canarystrretsfplocal canary

CS426 Fall 2010/Lecture 11 32

Canary Typesy yp

R d• Random canary:
– Choose random string at program startup.

Insert canary string into every stack frame– Insert canary string into every stack frame.
– Verify canary before returning from function.
– To corrupt random canary attacker must learn– To corrupt random canary, attacker must learn

current random string.

Terminator canary:• Terminator canary:
Canary = 0, newline, linefeed, EOF

– String functions will not copy beyond terminator– String functions will not copy beyond terminator.
– Hence, attacker cannot use string functions to corrupt

stack.

CS426 Fall 2010/Lecture 11 33

StackGuard (Cont.)()

• StackGuard implemented as a GCC patch.
– Program must be recompiled.
– Minimal performance effects: 8% for Apache.

• Newer version: PointGuard.
– Protects function pointers and setjmp buffers by

placing canaries next to them.
– More noticeable performance effects.

• Note: Canaries don’t offer fullproof protection.
– Some stack smashing attacks can leave canaries untouched.

CS426 Fall 2010/Lecture 11 34

R d i ti M ti tiRandomization: Motivations.
• Buffer overflow and return-to-libc exploits need to

know the (virtual) address to which pass control
– Address of attack code in the buffer
– Address of a standard kernel library routine

• Same address is used on many machines
– Slammer infected 75,000 MS-SQL servers using same , g

code on every machine

• Idea: introduce artificial diversityIdea: introduce artificial diversity
– Make stack addresses, addresses of library routines, etc.

unpredictable and different from machine to machine

CS426 Fall 2010/Lecture 11 35

unpredictable and different from machine to machine

Address Space Layout Randomizationp y

Arranging the positions of key data areas randomly in a• Arranging the positions of key data areas randomly in a
process' address space.
– e g the base of the executable and position of libraries (libc)e.g., the base of the executable and position of libraries (libc),

heap, and stack,
– Effects: for return to libc, needs to know address of the key

functions.
– Attacks:

• Repetitively guess randomized address
• Spraying injected attack code

• Vista has this enabled, software packages available for
Linux and other UNIX variants

CS426 Fall 2010/Lecture 11 36

Instruction Set Randomization

• Instruction Set Randomization (ISR)
– Each program has a different and secret instruction

set
– Use translator to randomize instructions at load-time
– Attacker cannot execute its own code.

• What constitutes instruction set depends on the p
environment.
– for binary code, it is CPU instructiony ,
– for interpreted program, it depends on the interpreter

CS426 Fall 2010/Lecture 11 37

Instruction Set Randomization

A i l t ti f 86 i th B h• An implementation for x86 using the Bochs
emulator
– network intensive applications doesn’t have too much

performance overhead
CPU i t i li ti h t t d f– CPU intensive applications have one to two orders of
slow-down

Not yet used in practice• Not yet used in practice

CS426 Fall 2010/Lecture 11 38

Readings for This Lectureg

• Wikipedia
• Privilege escalation

B ff fl• Buffer overflow
• Stack buffer overflow
• Buffer overflow protectionBuffer overflow protection

CS426 Fall 2010/Lecture 11 39

Coming Attractions …g

Oth S ft l biliti• Other Software vulnerabilities

CS426 Fall 2010/Lecture 11 40

