
Vicious Cycles in Distributed Software Systems
Shangshu Qian
Purdue University

West Lafayette, USA
shangshu@purdue.edu

Wen Fan
Purdue University

West Lafayette, USA
fan372@purdue.edu

Lin Tan
Purdue University

West Lafayette, USA
lintan@purdue.edu

Yongle Zhang
Purdue University

West Lafayette, USA
yonglezh@purdue.edu

Abstract—A major threat to distributed software systems’
reliability is vicious cycles, which are observed when an event
in the distributed software system’s execution causes a system
degradation, and the degradation, in turn, causes more of such
events. Vicious cycles often result in large-scale cloud outages that
are hard to recover from due to their self-reinforcing nature.

This paper formally defines Vicious Cycle, and conducts the
first in-depth study of 33 real-world vicious cycles in 13 widely-
used open-source distributed software systems, shedding light on
the root causes, triggering conditions, and fixing strategies of
vicious cycles, with over a dozen concrete implications to combat
them. Our findings show that the majority of the vicious cycles
are caused by incorrect error handlers, where the handlers do
not obtain enough information to distinguish between 1) an error
induced by incoming requests and 2) an error induced by an
unexpected interference from another error handler.

This paper further performs a feasibility study by 1) building
a monitoring tool that prevents one type of vicious cycle by
collecting information to make a more informed decision in
error handling, and 2) investigating the effectiveness of one
commonly suggested practice—injecting exponential backoff—to
prevent vicious cycles induced by unconstrained retry.

Index Terms—distributed software systems, vicious cycles

I. Introduction

Internet services today live on data-intensive distributed
software systems such as distributed storage systems and
distributed computation frameworks. Such distributed software
systems are designed to be highly reliable by tolerating
component failures with technologies such as data replica-
tion [17], [31], [46] , and recomputation [96]. Unfortunately,
cascading component failures still happen and cause severe
consequences such as service outages. Such cascading failures
happen because software defects and design flaws propagate
failures from one component to another. Cascading failures
often manifest through a Vicious Cycle (VC), in which an
event in the distributed software system’s execution causes a
system degradation, and the degradation, in turn, causes more
of such events.

An incident [41] from Amazon Web Services (AWS) shows
how a temporary network failure disrupts the entire Amazon
Elastic Block Store (EBS) service through a vicious cycle:
Data stored on EBS are replicated on multiple storage servers.
When a temporary network failure causes some storage servers
to lose connection to their mirrors, they start replicating data to
other storage servers. Unfortunately, these replication requests
trigger a latent race condition that causes more storage servers
to crash, resulting in more replication requests. This forms a

TRPC TWatchDog

X
X

DN2 HeartBeat
timeout of DN1

DN3 HeartBeat
DN4 HeartBeat

handleHB

timeout of DN3

DNn HeartBeat

timeout of DN4handleHB

handleHB

NameNode

①

②

③ ④

⑤
⑥

⑦

...

XDN6 HeartBeat
XDN7 HeartBeat ⑧ timeout of DN6

timeout of DN7⑨

⑩

...
DN5 HeartBeat

Fig. 1: Hadoop-572: By clogging up the NameNode’s RPC
thread (TRPC), DataNode DN1’s timeout causes other DataN-
odes (i.e., DN3 and DN4) to time out, which further causes
additional DataNodes (i.e., DN6 and DN7) to time out, which
eventually causes the entire cluster to crash. DN is DataNode.
HB denotes HeartBeat.

self-reinforcing cycle that brought down the entire EBS service
and was only stopped by manually disabling EBS replication
requests and adding capacities to the cluster.

Vicious Cycles are prevalent in commercial distributed
software systems. At the time of writing, a third [40]–[44]
of the 15 severe incidents reported by AWS [13] in the past
12 years manifest as vicious cycles. In fact, some distributed
software system practitioner claims that once a system reaches
a certain level of reliability, most major incidents will involve
a vicious cycle [15]. Thus, there is high demand for a deep
understanding of such vicious cycles so that one can build
avoidance, testing, diagnosis, and recovery techniques for
them. Unfortunately, postmortem reports from cloud vendors
typically provide limited information. To fill this gap, we
conduct the first in-depth study of 33 vicious cycles on 13
open-source distributed software systems. Our source-code
level analysis reveals unique challenges in combating vicious
cycles, as illustrated below.

A. A Motivating Example

Figure 1 shows Hadoop-572 [26], a real-world vicious cycle
in Hadoop Distributed File System (HDFS), which has a sim-

ilar characteristic as the AWS incident discussed above. The
failure happens in a large Hadoop cluster of 600 DataNodes,
where one DataNode holds over 10,000 data blocks, and a
NameNode stores the metadata. A NameNode has a watchdog
thread TWatchDog that periodically checks the timestamp of the
last heartbeat from each DataNode and a remote procedure
call (RPC) thread TRPC that receives and processes HeartBeat
messages from DataNodes.

The vicious cycle starts when NameNode misses DN1’s
HeartBeat message. Its TWatchDog detects DataNode DN1’s
timeout failure and marks blocks stored on DN1 as under-
replicated (1 in Figure 1). When the NameNode receives a
heartbeat from another DataNode DN2, the NameNode gener-
ates replication requests for these under-replicated blocks that
were stored on DN1, and wraps them in the heartbeat response
to DN2 (2). Unfortunately, generating replication requests
occupies the NameNode’s RPC thread (TRPC) and prevents
the delivery of heartbeats from other DataNodes (i.e., DN3 and
DN4) (3) to TRPC . Although the heartbeat timeout threshold
is configured as one minute to allow retries, a software defect
limits the number of heartbeat retries and renders the one-
minute timeout threshold ineffective. The watchdog thread
TWatchDog mistakenly marks the affected DataNodes (i.e., DN3
and DN4) as dead (4 and 5) and marks more blocks on DN3
and DN4 as under-replicated, causing more workload for the
NameNode itself (6 and 10).

Upon receiving a heartbeat message from DN5, the NameN-
ode generates and sends replication requests to DN5 for data
blocks on DN3 (6) and prevents the delivery of the heartbeat
from other DataNodes (i.e., DN6 and DN7) through the same
process described above (7), again causing more workload on
the NameNode (8 and 9). The entire Hadoop cluster then
falls into a vicious cycle and crashes.

The root cause of Hadoop-572 lies in the error handler
of DataNode failures (i.e., TWatchdog), whose recovery task
causes undesired interference that results in a HeartBeat
miss for another DataNode. The recovery task performed is
generating the replication requests, which interferes with the
delivery of the HeartBeat messages. The error handler does not
have enough information to distinguish between a DataNode
HeartBeat miss caused by 1) a real DataNode crash and 2) a
delayed HeartBeat delivery due to interference from a previous
recovery task. The confusion of the error handler makes the
system susceptible to vicious cycles.

To prevent this vicious cycle, developers apply a series of
fixes. They 1) fix the software defect that limits DataNode
heartbeat retries, 2) optimize the NameNode’s performance,
and 3) avoid unnecessary replication requests when a dead
DataNode is resurrected. Applying any of the fixes alone
cannot avoid the vicious cycle, demonstrating the complexity
of fixing vicious cycles (details below in “Hard to repair”).

This example shows that vicious cycles are particularly
difficult to tackle because of the following challenges:
1) Complex triggering conditions. Vicious cycles typically

require a unique combination of workload, cluster con-
figuration, and fault injection in cluster-level testing (e.g.,

integration testing [75]) to be triggered. For example, the
prolonged heartbeat handling in Figure 1 requires each
failed DataNode to hold over 10,000 data blocks. Unfortu-
nately, thoroughly exploring the input space, configuration
space, and fault injection space in cluster-level testing is
extremely challenging [61], which makes vicious cycles
difficult to be exposed before software release.

2) Hard to recover. A vicious cycle involves events and system
degradations that aggravate each other. Oftentimes, it is
the automated failure recovery stage itself aggravating the
degradation. In addition, this process could quickly develop
into a cluster outage due to amplification and leave little
chance for manual intervention and recovery. For example,
the vicious cycle in Figure 1 could result in a cluster outage
within a few heartbeat timeout intervals.

3) Hard to repair. A vicious cycle typically happens due to
both design flaws (e.g., poor fault isolation and perfor-
mance bug) and logic errors. Thus, fixing one of them often
fails to prevent similar failures in the future. For the vicious
cycle in Figure 1, although fixing the software defect
alone would allow the DataNode to retry the heartbeat
within the one-minute timeout interval, the generation of
the replication request could exceed this limit given enough
under-replicated data blocks, causing the entire cluster to
crash. With either of the latter two fixes alone (fixes 2) or
3)), the DataNode’s heartbeat would still be highly likely
to time out, because the number of retries is incorrectly
limited, reducing the probability of heartbeat delivery.

B. Contribution

This paper defines the concept of the vicious cycle (§II)
and provides the first comprehensive, in-depth analysis of
the vicious cycle in real-world distributed software systems.
Specifically, we study 33 real-world vicious cycles from
13 widely-used, open-source distributed software systems,
namely, Apache Cassandra [3], HDFS [34], HBase [6],
ZooKeeper [12], Hadoop [5], Kafka [8], Flink [4], Solr [10],
Ignite [1], ActiveMQ [2], Storm [11], Accumulo [1], and
Ratis [9]. For each case, we carefully analyzed its report and
source code to thoroughly understand the root cause of the
vicious cycle, the triggering condition, and the fix strategy. In
addition, we reproduced eight of the cases to better understand
them. This paper makes the following contributions:

• A symptom study (§IV). We show that vicious cycles have
severe consequences.
– Most (82%) vicious cycles result in node failures (58%)

and elevated queue size (24%).
– A majority (55%) of vicious cycles amplify the error,

causing it to grow exponentially.
• A root-cause study (§V). We find that vicious cycles are

formed either 1) (Unexpected Error) when an undetected or
unhandled error propagates along a global cycle (40%) or
2) (Unexpected Cycle) when error handlers unexpectedly
interfere with request handling and cause other requests to
fail (60%).

– Unexpected Error: 18% of the vicious cycles are caused
by undetected errors, which are highly diverse and
system-specific. Another 22% are caused by unhandled
errors, all happen when retrying an error-inducing input.

– Unexpected Cycle: More than a third (36%) of vicious
cycles happen due to incorrect decisions when recovering
from system degradation. The remaining 24% of vicious
cycles are formed due to unconstrained retries.

• A triggering-condition study (§VI). We find that vicious
cycles have unique requirements to be triggered.
– Many (42%) vicious cycles require a heavy workload.
– A large portion (36%) of vicious cycles are non-

deterministic, and a non-negligible amount (18%) re-
quires timing constraints with very small time windows.

– 24% of vicious cycles can only be triggered when the
cluster is in a special state, such as during a rolling
upgrade or when nodes are holding large amounts of data.

• A fixing-strategy study (§VII). We find that vicious cycles
are difficult to fix.
– A significant portion (61%) of the vicious cycles are

fixed by major redesigns, including 1) reducing the work-
load (18%), 2) separating heavy workload (6%), and 3)
system-specific redesigns (37%).

– A surprising amount (27%) of fixes are considered
workarounds by developers but not complete fixes.

• A feasibility study (§VIII) to prevent vicious cycles through
well-informed error handling and exponential backoff.

• The first data set [45] of 33 real-world vicious cycle bugs,
from 13,455 bug reports, in 13 open-source projects.

• Actionable implications and guidelines to prevent vicious
cycles. These include suggestions for runtime detection
and prevention techniques, testing techniques, and good
practices in software development to avoid vicious cycles.

II. Definitions

In this section, we give a concrete definition of the vicious
cycle, as, to the best of our knowledge, such a definition does
not exist in any previous works. This definition is necessary
to identify vicious cycles and is applied to each studied case.
An example of applying our definition to Hadoop-572 (§I) is
presented later in this section.

Definition 1 A vicious cycle is a global iterative execution in
which each iteration results in a system degradation and the
degradation in turn causes one or multiple future iterations.

When one iteration in a vicious cycle causes multiple (as
opposed to one) future iterations (through the degradation), the
vicious cycle has an amplification behavior. A vicious cycle
with an amplification behavior typically has the most severe
consequences.

A global iterative execution is defined using a causality
graph that represents the execution of the entire distributed
software system and captures the causal relationships between
system degradations and iterative executions. We first the
define causality graph as follows:

Definition 2 A causality graph, G(V, E), is a directed acyclic
graph with each vertex v ∈ V representing an event that hap-
pened during the execution and each edge e ∈ E representing
a causal relationship between a pair of events. Each vertex is
labeled with the corresponding event, and each edge is labeled
with the corresponding causal relationship.

Events and causal relationships are defined with enumera-
tive definitions in §II-A. One example of an event is receiving
a network message. One example of the causal relationship is
the happens-before relationship [72] between a pair of sending
and receiving a network message.

With the definition of causality graph, we define global
iterative execution as follows:

Definition 3 An iterative execution is formed in a causality
graph when there are multiple isomorphic subgraphs con-
nected through edges. Each subgraph is called an iteration.
The isomorphism comparison considers subgraphs’ structure,
as well as their vertices’ and edges’ labels. A global iterative
execution is an iterative execution in which events of each
isomorphic subgraph are spread across multiple threads or
nodes.

The notion of system degradation involved in a vicious
cycle could range from general notions such as an increasing
number of crashed nodes to system-specific notions such as an
increasing number of missing file blocks in a distributed file
system. We define a system degradation using a set point and
a measurement function, both of which can be system-specific.

Definition 4 A set point (nsp) is a numeric value correspond-
ing to a property that the system should satisfy in an ideal
state. This property is in the form of a predicate over a
measurable system state (nst) and the set point: nst == nsp.
A measurement function (fm()) measures the distance between
the current system state and the set point: fm() = nst − nsp. A
system degradation happens when the result of executing fm()
over the current state is larger than that of a previous state:
fm() − f ′m() > 0.

In Hadoop-572 [26] (§I), the property that the system should
satisfy in an ideal state is crashed nodes.size() == 0 (i.e.,
nst = crashed nodes.size()), and the set point nsp == 0. The
measurement function is fm() = crashed nodes.size() − 0.

A. Events and Causal Relationships

Events. Events in a causality graph belong to the following
two categories:
1) Errors event that results in system degradation. Such events

could be system-specific and should be handled properly
by an error handler.

2) Normal execution logic such as request handling, RPC call
procedures, etc.

Causal relationships. Causal relationships in a distributed
software system refer to the happens-before relationship [72]
and its variants [77], [78], [84]. Specifically, the causal rela-
tionships include the following four categories:

1) Inter-node network communication Sending a network
message through sockets happens before its reception.

2) Intra-node multi-thread communication Submitting a task
to a thread pool happens before its execution, and its
execution happens before its join. Similarly, multi-thread
communication includes the happens-before relationship
between thread creation, thread execution, and thread join.

3) Intra-thread happens-before An event happens before an-
other event that occurs later in the same thread. When the
thread is an event handler thread, this relationship only
applies to events in the same invocation of the handler.

4) Resource contention A task submission to a thread pool has
a potential resource contention with later task submissions.

B. Identifying Vicious Cycles

To determine whether a studied case involves a vicious
cycle, we construct its causality graph and analyze whether
its causality graph contains a global iterative execution with
a system degradation. We illustrate this process with the real-
world vicious cycle in our introduction (§I): Hadoop-572 [26].

Figure 1 shows a simplified causality graph we constructed
for Hadoop-572. Events are presented with boxes (e.g., the
timeout error event of DataNodes) labeled with the event
name. Some event boxes (e.g., the heartbeat from DataNodes)
are omitted due to space limitations. Causal relationships are
presented with lines and arrows. Solid lines represent happens-
before relationships. Solid arrows are constructed from inter-
node (e.g., DataNode heartbeat triggering RPC handler) and
inter-thread communication (e.g., timeout error of a DataNode
cause RPC handler to replicate the DataNode’s blocks). Red
cross with dashed arrows represent resource contention (e.g.,
heartbeat from a DataNode is not delivered due to contention
and causing its timeout error).

With this causality graph, we identify two isomorphic
subgraphs: [1 , 2 , 3] and [4 , 6 , 7], and the execution in
each subgraph involves the NameNode and multiple DataN-
odes. Therefore, Hadoop-572 is a global iterative execution
(Definition 3), and each subgraph makes up of one iteration.
Note that three more incomplete iterations exist in Figure 1:
[5 , 10], [8], and [9].

The system degradation (Definition 4) is quantified by the
number of crashed nodes in the cluster, with the set point
being 0. Within each iteration, one more DataNode is marked
as dead by the NameNode. Therefore, each global iteration
results in a system degradation (Definition 1), and Hadoop-
572 is a vicious cycle by our definition.

III. ExperimentalMethods

We conducted the study on 33 vicious cycles from a wide
range of popular open-source distributed software systems,
as shown in Table I, including distributed databases [3], [6],
[7], key-value stores [1], [12], filesystem [34], streaming pro-
cessing systems [2], [4], [8], [11], computing framework [5],
consensus library [9], and search platform [10].

We selected the set of failures from the issue trackers
of the distributed software systems above. We search for

TABLE I: The number of vicious cycles in each system.

System # System # System #

HBase [6] 6 Solr [10] 3 Accumulo [1] 1
HDFS [34] 6 Flink [4] 2 Ignite [7] 1
Hadoop [5] 4 Storm [11] 1 ZooKeeper [12] 1
Kafka [8] 3 Ratis [9] 1 ActiveMQ [2] 1
Cassandra [3] 3 Total 33

resolved and valid issues whose bug report contains a list of
keywords, including “vicious cycle, vicious circle, cascade,
spiral, feedback loop, multiplying effect, amplify, overwhelm,
storm, bounce, snowball, chain reaction, and domino”.

Our keywords are selected using a multi-round boosting
strategy combined with manual review: We start with a small
set of reasonable keywords and collect all the bug candidates
(filtering step). Then, we manually go through the bug can-
didates collected by the filtering step, excluding cases that
are not a vicious cycle, and identify new keywords based
on the title, description, and discussion associated with each
candidate (reviewing step). With the new set of keywords, we
start a new round of the filtering process. With such boosting
strategy, we are able to expand the number of bugs in each
round and keep the representativeness of the keywords. This
process stops when we could not identify new keywords. Our
manual filtering exhausted all the bug reports containing these
keywords. In the end, we get 33 vicious cycles as shown in
Table I from 13,455 bug reports in total.

Among the 33 cases, about one-third (30%) are reported
within recent five years. A majority (91%) of them have a
priority of major or higher in the bug tracking system. One
bug (HBase-27149 [30]) was reported in 2022 and another bug
(Kafka-10888 [35]) was not resolved until 2022, showing that
vicious cycles are still present in recent systems.

Our analysis results for all 33 vicious cycles are available
in an anonymous repository [45]. The threats to validity of our
filtering process are discussed in §IX.

IV. Symptoms of Vicious Cycles

We first investigate the manifestations of vicious cycles,
focusing on their symptoms and propagation.

Finding 1: Most (82%) vicious cycles result in easily
observable symptoms such as node failures (58%) and
elevated queue size (24%). The remaining (18%) has
system-specific degradation. Majority (55%) of vicious
cycles have amplification behavior.

As defined in §II, one iteration of a vicious cycle with am-
plification behavior can cause multiple subsequent iterations.
A vicious cycle with the amplification behavior is the most
severe subtype as it is usually hard to recover from and can
quickly propagate the system degradation to the entire cluster.
For example, Hadoop-572 [26] (§I) has an amplification
behavior, where the timeout of one DataNode could result in
timeouts of multiple DataNodes.

TABLE II: An overview of error handler’s role in the formation of vicious cycle. Definitions of each type and subtype of
vicious cycles are italicized. The number in the parenthesis indicates the percentage of vicious cycles in each category.

Vicious Cycle Type Subtype Interference

Unexpected Error (40%)
An error that hinders the task completion
is propagated along a global cycle.

Undetected Error (18%)
The error in the cycle is silent,
thus no error handler is implemented.

N/A

Unhanded Error (22%)
The error in the cycle is observed,
but not properly handled.

N/A

Unexpected Cycle (60%)
The error handlers unexpectedly interfere with
request handling and cause other requests to fail.

Incorrect Degradation Recovery (36%)
The interference from the degradation
recovery tasks causes further degradation.

Performance Interference (21%)

Functional Interference (15%)

Unconstrained Retry (24%)
Previous retries of a request interfere with the
current retry, causing the current one to fail.

Performance Interference (24%)

ErrorTrigger

Vicious Cycle VC-Free Env.

Normal Task

(a) Conceptual graph of a UE vicious cycle. The red arrows indicate
a vicious cycle. The green arrow indicate a VC-free environment.

Error Recovery Task

Interference

Trigger

Vicious Cycle

Normal Task

(b) Conceptual graph of a UC vicious cycle. The red arrows indicate
a vicious cycle.

Fig. 2: Conceptual graph of vicious cycles.

Implication: Most vicious cycles can grow exponentially
in the cluster, propagating the system degradation rapidly
across the cluster. Detection and prevention techniques need
to intervene as soon as possible to prevent a potential whole-
cluster collapse.

V. Root Causes of Vicious Cycles

The key component forming a vicious cycle is the error
handlers. Thus, depending on error handlers’ interaction with
the global iterative execution or the absence of error handlers,
we categorize vicious cycles based on their root causes into
two types – Unexpected Error (UE), an error in a global
cycle is undetected or unhandled, and Unexpected Cycle
(UC), when error handlers unexpectedly interfere with request
handling and cause other requests to fail.

Figure 2a and Figure 2b illustrate the UE and UC vicious
cycles respectively. Figure 2a shows a UE vicious cycle (red
arrows) where an error (red box) affects normal execution
which causes more errors. The green VC-free cycle where
multiple normal executions (e.g., requests) continue error-free.

Figure 2b shows a UC vicious cycle (red arrows). An error
handler performs a recovery task (green box) to recover from
the error. However, the recovery task interferes with other
requests and causes them to run into the same error. The error
handler lacks information to distinguish between errors caused
by the interference (orange dotted box) and errors caused by

the external trigger (more discussion in §VI), forming a vicious
cycle (the cycle formed by the red arrows).

Table II shows our root cause taxonomy of two VC types
(UE and UC) and four VC subtypes. Numbers in the paren-
thesis are the percentage of vicious cycles belonging to each
category. Two major causes of UE vicious cycles are 1)
undetected error (§V-A), and 2) unhandled error (§V-B). We
further classify the UC vicious cycles based on the error han-
dler’s recovery task in each iteration: 1) incorrect degradation
recovery (§V-C), and 2) unconstrained retry (§V-D).

Column “Interference” shows the type of interferences be-
tween recovery tasks and requests in a vicious cycle. For UE
vicious cycles, errors are either silent or not properly handled.
Thus, no interference originates from the error handler. For
UC vicious cycles, we observe two types of interference—
performance interference and functional interference. Below
we explain these VC types and subtypes and their interaction
with interference with examples.

Finding 2: Unexpected errors make up 40% of vicious
cycles, when an undetected or unhandled error propagates
along a global cycle.

An example of an undetected error is Kafka-10888 [35],
where a slow node is caused by a buggy load balancer. No
explicit error such as an exception is thrown, and no error
handler is implemented.

One example of an unhandled error is HBase-14598 [28],
where an HBase client retries a bad request causing a server
crash. The client blindly retries the bad request because the
server crash is never properly handled.

Finding 3: Majority (60%) of vicious cycles are unex-
pected cycles, when error handlers unexpectedly interfere
with request handling and cause other requests to fail.

For example, as in Hadoop-572 [26] (§I), the error is
the delay of DataNode heartbeat delivery. The error handler,
replicating the under-replicated blocks, cannot differentiate
between a delay caused by an actual DataNode failure (thus no

heartbeat message is sent) and a contention in the RPC handler
thread pool caused by the recovery task (thus a heartbeat
message is received but not delivered).
Interference. As shown in Table II, both performance and
functional interference can cause vicious cycles. Performance
interferences include contentions through CPU resources,
memory resources, and a lock. For example, in Hadoop-
572 [26] (§I) the recovery task interferes with the heartbeat
through a CPU contention (a shared thread pool).

Functional interferences include IO errors, deadlocks, and
other system-specific errors caused by the recovery task and
interrupt request handling. For example, in HDFS-12914 [32],
the block replication (recovery task) triggers a deadlock on
the DataNode, causing its block report to be rejected by the
NameNode and more block replication initiated.

Note that an unconstrained retry could cause functional
interference, but we do not observe it in our study.

A. UE Subtype 1: Undetected Error

Finding 4: About one-sixth (18%) of the vicious cycles
are caused by undetected errors (silent errors). Majority
(83%) of such cases happen due to logic errors in the code.

For example, Cassandra-13441 [14] is a vicious cycle that
happens due to a silent error propagated through Cassandra’s
gossip protocol. Due to a silent logic error in Cassandra 3.0.14,
when a node is upgraded with no scheme change, gossip
messages [56], [70] between this node and other non-upgraded
nodes indicate a schema mismatch by mistake. The schema
mismatch incurs schema migration requests between the up-
graded and non-upgraded nodes. Non-upgraded nodes which
have detected the schema mismatch further spread information
about the schema mismatch to the remaining nodes in the
cluster through Cassandra’s gossip protocol, resulting in a
storm of unnecessary schema migration requests. The silent
error is spread to the entire cluster through the gossip protocol,
forming a vicious cycle.

We find that logic errors that cause silent errors are highly
diverse and system-specific and, unfortunately, could not iden-
tify general bug patterns. As discussed above, the logic error in
Cassandra-13441 is closely coupled with the gossip protocol.
Implication: The system-specific nature of the logic errors
makes vicious cycles triggered by them hard to be found
during the testing phase. Fortunately, logic errors usually
accompany observable system degradations (§IV), indicating
opportunities for automated detection.

B. UE Subtype 2: Unhandled Error

Finding 5: Another important (22%) reason for vicious
cycles is unhandled errors induced by “deadly retry”,
where a client retries a request that causes unhandled
errors, such as a node crash, a node getting stuck, or the
RPC queue being flooded, on different nodes.

For example, HBase-14598 [28] is such a vicious cycle:
The bug is caused by a problematic Scan (an HBase query)

allocating a large chunk of memory, larger than that is allowed
by the JVM. Such a request results in an OutOfMemoryError
(OOM) and crashes the RegionServer (RS) processing the
request. The problematic Scan is then retried on a new RS
and causes it to fail as well.

Implication: Vicious cycles caused by deadly retries result in
fatal errors that are detected but not handled. The reason is
the lack of the ability to infer the causal relationship between
the error-inducing retried request and the error, i.e., the system
does not know whom to blame when the error happens. Once
this causal relationship is identified, the error-inducing request
can be blocked to break the vicious cycle. More details about
detecting erroneous inputs are discussed in §VIII-A.

C. UC Subtype 1: Incorrect Decision in Degradation Recovery

Finding 6: More than a third (36%) of the vicious cycles
happen due to incorrect decisions when recovering from
the system degradation.

Specifically, degradation recovery includes capacity recov-
ery (24%) such as node restart and reconnection, and data
recovery (12%) such as replicating missing file blocks. As
shown in Figure 2b, such an incorrect decision typically
happens when the error handler is not able to distinguish an
error caused by an external trigger and an error caused by the
interference of the error handling execution itself.

Finding 7: Majority of the interferences caused by degra-
dation recovery are contention in CPU (42%) or memory
(17%) resources, resulting in heartbeat delays, prolonged
garbage collection (GC) periods, or out-of-memory errors.
The remaining 41% manifests as functional interferences
such as an IO error or a deadlock.

For example, Hadoop-572 [26] (§I) is a vicious cycle
caused by CPU contention between data recovery and heart-
beat handling, resulting in a heartbeat delay. HDFS-9107 [33]
is a vicious cycle caused by contention between a GC during
the DataNode’s handling of FullBlockReport (FBR) requests
and the sending of heartbeat messages.

The vicious cycle in HDFS-12914 [32] originates from a
performance bug delaying the handling of FBR requests and
propagates through a deadlock on DataNode caused by HDFS
block replications.

Implication: To expose and detect vicious cycles, it is critical
to trigger performance and functional interferences between
error handling logic and request handling logic. For example,
injecting delays to health-checking (or degradation-checking)
operations to trigger recovery and applying resource capping to
induce performance interference could expose vicious cycles.
Fault injection such as injecting IO errors is also useful
in mimicking functional interferences. Monitoring techniques
could focus on observing and correlating system degradation
with performance degradation to detect many vicious cycles.

Finding 8: The interference causing a vicious cycle can
result not only from a recovery task but also from delaying
a recovery task.

Interestingly, not only a delay caused by a recovery task
(e.g., CPU contention in Hadoop-572), a delay to the recovery
task can also cause vicious cycles. Such a delay causes the
error recovery information not being propagated to all the
relevant nodes, so that other nodes handling requests can be
interrupted by an error. STORM-404 [39] is such a vicious
cycle: In an Apache Storm cluster, when a worker W1 sends
requests to another worker W2 but W2 unfortunately crashes.
The error handler of the W2 crash on the coordinator relocates
the tasks served on W2 to W3. However, such a topology
change will only be sent to W1 when the coordinator receives
a heartbeat from W1. For a substantial period of time, W1
incorrectly thinks W2 is still alive and keeps sending requests
to W2. These requests are never terminated and crash W1
through a runtime exception. W2’s status is misinterpreted by
other workers who are sending requests to W2 and eventually
further causing them to crash.

Implication: Both the recovery task and the delay of the
recovery task could interfere with request handling, resulting
in vicious cycles. Testing techniques could inject delays before
the recovery task to expose potential vicious cycles.

D. UC Subtype 2: Unconstrained Retry

Finding 9: The last major (24%) reason for vicious
cycles is unconstrained retries overloading the system,
causing CPU (21%) and lock (3%) contentions, resulting
in continuous request timeouts.

KAFKA-901 [37] is a vicious cycle caused by uncon-
strained retries. When a Kafka broker (node) is down, the
clients will need to access the metadata of the cluster, which is
slow and cause IO pressure on the nodes holding the metadata.
Moreover, the threads handling the metadata request share the
same thread pool with that handling the metadata response,
and a spike in the request could delay the responses due to
contention, which in turn causes more retries from the clients
and would eventually make the cluster unavailable.

We find that commonly suggested prevention techniques
such as exponential backoff are not universally applied to
all retry procedures. However, as shown in our experiment
(§VIII-B), applying exponential backoff can be a quick mit-
igation approach once the vicious cycle is discovered. Still,
even for retry procedures with exponential backoff, it does not
prevent vicious cycles completely because exponential backoff

usually has a maximum backoff limit [89] and the same vicious
cycle can still happen when the limit is reached.

Though unconstrained retry also introduces contention, it is
different from vicious cycles caused by contention delaying the
heartbeat. To prevent vicious cycles caused by unconstrained
retry, the retry procedure should be confined to reduce the
number or frequency of requests. In comparison, to prevent

TABLE III: Triggering conditions of vicious cycles.

Trigger % Trigger %

Heavy workloads 42% Special cluster/node state 24%
Timing constraints 18% Fault 21%
Input constraints 24%

vicious cycles caused by contention delaying the heartbeat, the
workload in each request handling logic should be reduced.

Implication: Unconstrained retries could easily overload the
server if no backoff or other feedback-based prevention tech-
niques are in place. The server can proactively drop user
requests under a high load, and the client should refrain from
future retries once the request is rejected. A simpler alternative
is to use exponential backoff in non-latency-sensitive requests,
but the stop condition of such techniques should be scrutinized
to prevent vicious cycles.

VI. Triggering Conditions of Vicious Cycles

As discussed in §V and shown in the vicious cycle concep-
tual graph (Figure 2b), vicious cycles need special conditions
to trigger. Table III shows an overview of the triggering
conditions for vicious cycles. Note that we only consider
the necessary triggering conditions for each vicious cycle to
reduce the testing space for automated testing tools.

A. Special Constraints for Automated Testing Tools

Finding 10: About a quarter (24%) of the vicious cycles
are triggered by inputs with special constraints. Many
(21%) vicious cycles are triggered by faults in the cluster,
including node failures, network disruptions, and out-of-
memory errors.

As discussed in §V, many vicious cycles are caused by prob-
lematic retries that require special input constraints, including
1) inputs that trigger a timeout, and 2) inputs that trigger a
latent logic bug or an error. For example, FLINK-12342 [21]
requires an allocation request for a large number of YARN
containers, whose processing time exceeds the timeout limit.

Many vicious cycles start with a fault such as a node failure.
For example, Hadoop-572 [26] (§I) is triggered by a failure of
a DataNode holding a large number of blocks. Although such
a failure in turn triggers a heavy workload and violates the
timing constraints of the heartbeat message, only the DataNode
failure is necessary to trigger the bug.

Implication: Traditional testing techniques such as fuzz test-
ing [50] and fault injection [67] can help explore the input
constraints and faults to expose vicious cycles. Fuzzing should
prioritize commands and options vulnerable to vicious cycles,
such as commands that could induce a large workload and the
options controlling timeout and retry behaviors.

Finding 11: 24% of the vicious cycles can only be
triggered when the cluster is in a special state, such as
during a rolling upgrade or when nodes are holding large
amounts of data.

TABLE IV: Fixing strategies to vicious cycles 1.

Major redesign % Other Fix %

Separation of heavy workload 6% Adjusting timeout 9%
Workload reduction 18% Using asynchronous operation 9%
System-specific 37% Improving performance 6%

Fixing logic errors 21%

Subtotal: Major redesign 61% Subtotal: Other fix 42%

Workarounds 27%

For example, Hadoop-13738 [23] happens when the disks
on many DataNodes in the cluster are full or nearly full. A
logic error in the disk checker confuses the disk full with disk
failures, causing a vicious cycle.
Implication: Though vicious-cycle-triggering states cannot be
exhausted developers could leverage the special states revealed
in our study during testing to expose vicious cycles.

B. Stress Testing is Useful to Trigger Vicious Cycles

Finding 12: A significant portion (42%) of vicious cycles
require a heavy workload to trigger.

Implication: Resource contention is a major interference
caused by error handlers (§V). Proactively limiting available
resources and stress testing are useful to trigger many vicious
cycles. Also, testing the systems’ behavior after and beyond
the overloading point is important, as the failure recovery
afterwards can still trigger vicious cycles.

C. Vicious Cycles Can Be Non-deterministic

Finding 13: A large portion (36%) of vicious cycles
are non-deterministic, and a non-negligible amount (18%)
requires timing constraints with very small time windows.

Exposing concurrency bugs in distributed software systems
with concurrency testing [76], [78] and model checking [73],
[83], [93] is extremely challenging. A combination of heavy
workloads and small timing windows creates a large testing
space, which challenges existing automated testing techniques.

For example, as discussed in §8, STORM-404 [39] is a
vicious cycle that requires a fair amount of requests and a
small time window. Specifically, since the delayed knowledge
of the node failure directly leads to the vicious cycle, the
only time window available to trigger the bug is one heartbeat
interval, during which worker W2 has crashed but worker W1
has not learned about the node failure yet.

VII. Fix Strategies for Vicious Cycles
We find that fixes to vicious cycles are highly complex and

ad hoc. Table IV shows an overview of the fixing strategies
for vicious cycles. There are two major fixing categories: 1)
major redesign and 2) other fixes. The workaround row shows
the percentage of fixes that are considered as a workaround
instead of a complete fix by the developers themselves.

1 Numbers do not add to 100%, because some vicious cycles are fixed by
a combination of multiple fixing strategies.

A. Patterns of Major System Redesigns

Finding 14: A significant portion (61%) of vicious cycles
are fixed by major redesigns, including 1) separating heavy
workload (6%), 2) reducing the workload (18%), and 3)
other system-specific redesigns (37%).

To fix Hadoop-572 [26] (§I), the developers reduce the
workload (generating block replication commands) in each
heartbeat message by demanding a block report from any
resurrected DataNodes. When a DataNode is temporarily
marked dead at the NameNode side and later reconnects,
the blocks available on that DataNode could be immediately
available after the block report, thus greatly reducing the need
for generating block replication commands.

However, the fixes introduced in Hadoop-572 are not com-
plete, and the same bug is captured again in a later JIRA
ticket: Hadoop-923 [27]. It is fixed by a major redesign of the
heartbeat handling logic, separating the unbounded workload
- generating block replication requests - out of the heartbeat
reply and creating a new command for this function. Combined
with a better scheduling policy (e.g., FairCallQueue [19]), such
a vicious cycle caused by contention is fixed.

Implication: Any heavy workload in the distributed software
systems should be measured for the latency and the overall
turnaround time to avoid contention with time-sensitive op-
erations such as the heartbeat. Such workloads can also be
processed with a separate command or thread pool asyn-
chronously. A better scheduling policy, such as prioritizing the
heartbeat processing is also a good practice.

B. Other Fixing Patterns of Vicious Cycles

Finding 15: 42% of vicious cycles are fixed using
approaches other than a redesign, including adjusting the
timeout limits (9%), utilizing asynchronous requests (9%),
applying performance optimization (6%), and fixing logic
errors (21%).

Replacing a synchronous operation with its corresponding
asynchronous version is a general pattern for fixing vicious
cycles. For example, ZooKeeper-1049 [47] is fixed by making
the TCP close() calls asynchronous. So that they do not block
the heartbeat handlers in the same thread pool. Such a fix is
considered a general pattern because it does not change the
logic or the architecture of the system, compared to the sep-
aration of heavy workloads, which changes request handling
logic. Similarly, adjusting timeout is also a common practice,
though developers often use it as a short-term workaround
(§VII-C). Applying performance optimization and fixing logic
errors are typically system-specific.

C. Vicious Cycles Often Have Incomplete Fixes

Finding 16: More than a quarter (27%) of fixes are
considered incomplete by developers.

As the Hadoop-572 discussed above, vicious cycles are hard
to fix. Though the root causes for each bug can be correctly
identified by the developers, the fixes proposed in each bug
ticket can still be incomplete, i.e., it does not prevent future
occurrences of a similar vicious cycle.

To get an objective result, we conservatively use the de-
velopers’ assessment to determine a fix’s completeness. If the
fix patch is later admitted by the developers as a “short-term
solution”, “workarounds”, or “mitigation”, we consider the
patch incomplete. Using this criterion, we find that 27% of
the fixes are incomplete, and the bug Hadoop-572 mentioned
above is one of them, which is observed again in Hadoop-923.

Implication: To determine the completeness of the fixes,
vicious cycles can be revisited by triggering the original buggy
execution. For example, if only the timeout limit is adjusted or
a performance improvement is applied, developers can conduct
stress testing again on the patched system.

A previous study [60] found that 12% of the failure recovery
bugs are not fixed completely. Our study indicates that vicious
cycles are harder to be fixed than general failure recovery bugs,
especially noting the fact that we only consider developers’
direct confirmation of utilizing workarounds.

VIII. Preventing Vicious Cycles: A Feasibility Study

We investigate the feasibility of preventing vicious cycles
by 1) building a prototype tool that prevents deadly retries and
2) implementing a commonly suggested practice – exponential
backoff – to prevent unconstrained retries. They account for
45% of the vicious cycles we studied. Their solutions also
facilitate concrete discussions for more general solutions that
apply to other types of vicious cycles. The limitations of our
feasibility study are further discussed in §IX.

A. Preventing Deadly Retry

Design. The key to preventing deadly retry is to identify the
causal relationship between the error-inducing retried request
and the error (§V-B), This helps the system determine whom to
blame and block the error-inducing request. Our tool identifies
this causal relationship with a central monitor which correlates
repeated requests with repeated errors on multiple nodes.

For each node in the cluster, we deploy an agent to record
recent outgoing RPC requests. The agent also forwards any
error (e.g., ERROR and FATAL log messages, and crash) to
the central monitor. The monitor collects such errors from each
node and analyzes them to detect repeated errors across nodes.
Once a repeated error is detected, the monitor broadcasts a
message containing the set of nodes (S) on which the error is
repeated to the entire cluster. Each node replies with its recent
outgoing RPC requests sent to the nodes in S . Upon receiving
these RPC requests, the monitor calculates their signatures to
identify the repeated requests sent to S and instruct the agents
to block further retries of these requests.

Implementation. We use AspectJ [71] to instrument the
RPC library, and gRPC [22] to implement the agent-monitor

TABLE V: Result on reproduced deadly retry vicious cycles. A tick
in column P.? indicates that the vicious cycle is prevented. Column
“Reason” explains why the vicious cycle is not prevented.

Vicious Cycle P.? Reason

HBase-14598 [28] X
HBase-23076 [29] X

Flink-10928 [20] The error frequency of the vicious cycle is low.

communication. Each agent is implemented as an extra dae-
mon thread, and all the RPC messages are recorded in an
in-memory FIFO queue with a configurable fixed size.

We use the string representation of RPC message content to
identify retried RPC requests. To accommodate the potential
variance of message content when the erroneous request is
retried on different nodes, we identify a retried RPC message
by calculating its edit distance [86] to the request signatures
calculated by the monitor. If the string representation of the
current outgoing RPC request is more than 90% similar to the
signature, the agent will block this request from sending.

A caveat of our approach is batched RPC requests. We
leverage the repeated field modifier in Protocol Buffers [38]
to identify a batched request. If the string representation
of the repeated fields makes up more than 85% of the
entire RPC message content, we consider the request as a
batched RPC request. The batched RPC requests are then
split into multiple sub-requests, and the identification of retried
erroneous requests is carried out at the sub-request level.

Though constructing string representations and computing
edit distances are expensive, they are only performed when a
repeated error is detected.
Evaluation. We evaluate our tool on all the vicious cycles
caused by deadly retry that we can reproduce. Table V
shows that our tool successfully prevents HBase-14598 [28]
and HBase-23076 [29] without interfering with the normal
functionality of the system.

Flink-10928 [20] cannot be prevented because it involves
an OOM error that happens repeatedly but infrequently. If the
FIFO queue size is too small, we cannot retrieve the retried
request because it may have already been evicted. If the size is
too large, the false positive rate will increase. The root cause
of the OOM error is a memory leak. In the future, one may
integrate a runtime memory leak detection tool [53], [54], [80]
with our solution to prevent such vicious cycles.

The remaining four cases are not reproduced due to 1) the
non-determinism nature of the bug, 2) lack of information in
the bug ticket, and 3) incompatible JDK version requirements.
Impact on normal executions and limitation. We evaluate
the overhead of our solution with six standard benchmarks
from the “Yahoo! Cloud Serving Benchmark” [55] (YCSB),
which is a popular benchmark for evaluating the performance
of distributed software systems [57], [58], [66], [91]. Each of
the benchmarks is run 5 times. The introduced overhead is
0.31% on average with a maximum of 0.98%.

It is possible that our solution incorrectly blocks non-error-
inducing requests if it incorrectly associates a normal request
with an error (false positive). However, we do not observe such

Fig. 3: An example of retry loop from Hadoop 2.4.0 [25].

TABLE VI: Result on reproduced unconstrained retry vicious cy-
cles. A tick in column P.? indicates that the vicious cycle is prevented.
Column “Reason” explains why the vicious cycle is not prevented.

Vicious Cycle P.? Reason

Hadoop-16284 [24] X
HBase-27149 [30] X

Kafka-6028 [36] X
Flink-12342 [21] Request piggybacked on heartbeat

cases in our evaluation. To balance between false positive and
false negative rates, three parameters in the implementation
are selected based on empirical experiments (thus, limited
to HBase and Flink): 1) the size of the FIFO queue, 2) the
threshold identifying the request to block, and 3) the threshold
identifying batched requests.

Discussion. Our tool shows the feasibility of preventing
vicious cycles by making a more informed decision in error
handling. It achieves this by collecting one type of error
context – recent RPC requests – with low overhead. Preventing
other vicious cycles (e.g., those that happen when the error
handler cannot distinguish error induced by an external trigger
and the interference of error recovery) requires different error
contexts to be collected (e.g., information about the interfer-
ence). In addition, the selected parameters need to be tuned for
more systems and, if needed, automatically adjusted to achieve
a good balance between false positive and false negative rates.

B. Preventing Unconstrained Retry

Figure 3 shows an excerpt of a retry loop of RPC invocation
in Hadoop [25]. The retry logic manifests as an infinite loop
(L2), and the RPC invocation is enclosed by a try-catch block
(L3). If an exception is thrown during the RPC invocation, a
RetryPolicy (L6 and L7) decides 1) whether the request should
be retried further (if not, rethrow the exception on L6), 2) how
long should the thread wait until the next retry (L8).

After reproducing each vicious cycle, we manually inspect
the source code and identify the loops that can cause un-
constrained retries. Then we inject exponential backoffs at
the loops to test if the vicious cycle can be prevented. Our
evaluation shows the feasibility of using exponential backoff

to prevent vicious cycles. One promising future direction is
to automate the process of identifying retry-inducing loops
statically using patterns such as the one shown in Figure 3.

Evaluation. As in Table VI, injecting exponential backoffs
can prevent 75% of the vicious cycles reproduced. This ap-
proach cannot address Flink-12342 [21] as the retried request
is piggybacked on the heartbeat, which cannot be delayed.

Impact on normal executions and limitation. Injecting
exponential backoff may affect the correctness of the system
because picking the optimal backoff parameters is challenging
due to dependencies in timeout configurations. For example, in
Hadoop-16284 [24], the retried request first lands on a server-
side cache, when the backoff cap is set too large, the retried

request always experiences cache miss, because the retrieved
cache entry is evicted (timed out) before the next retry. In
our experiments, we carefully inspect the source code and
configuration file to make sure that the correctness of the
system is not affected.

Discussion. For vicious cycles induced by performance inter-
ference, exponential backoff is an effective solution as long as
the recovery task can be delayed. However, picking backoff pa-
rameters safely without affecting the system’s correctness can
be challenging. In addition, injecting exponential backoff on
the client side could be undesired due to latency constraints. To
automatically inject exponential backoff and prevent vicious
cycles induced by performance interference, automatically
identifying backoff locations, automatically setting safe back-
off parameters, and dynamically adjusting backoff parameters
to reduce latency are important future directions to explore.

IX. Threats to Validity and Limitations

Representativeness of bug reports from the issue tracker.
There could be vicious cycles not reported to issue trackers.
For instance, vicious cycles formed due to resource contention
could be mitigated by changing configurations or adding
resources. A mailing list can provide such solutions.

Limitations of the filtering criteria. We could have missed
vicious cycles whose issue reports do not contain our selected
keywords for two reasons. 1) A vicious cycle could be treated
as a symptom while the underlying bug forming the cycle
is considered the root cause. Many reports on issue trackers
mainly focus on the root causes, searching with keywords
describing the symptom could result in false negatives. 2)
Our multi-round boosting strategy is a best-effort strategy and
could have missed some keywords.

Representativeness of selected distributed software sys-
tems. Our study does not include vicious cycles in closed-
source systems and they could have different characteristics.
Our study focuses on open-source software systems because
we favor a source-code-level understanding of vicious cycles.

Possible observer errors. There is a risk of observer errors.
To minimize the effect, each failure was investigated by at
least two inspectors with the same detailed criteria. Any
disagreement is discussed in the end to reach a consensus.

Limited number of vicious cycles investigated. The gen-
eralizability of our findings may be affected by the number
of vicious cycles included in our study. Our filtering process
of the bug reports may miss some vicious cycles as many
reports focus on the root cause and proposed fix, rather than
detailing symptoms and logs. However, our findings cover a
wide range of open-source distributed software systems on
various workloads (§III). This indicates that the findings are
workload-agnostic and highlights the prevalence of vicious
cycles in open-source systems.

Limitations of the feasibility study. Our feasibility study is
based on a limited number of reproduced vicious cycles related
to the retry behavior of the system. For the unreproducible

retry-related vicious cycles due to 1) the non-deterministic
nature of the bug, 2) lack of information in the bug report,
and 3) incompatible JDK or dependency version, we cannot
evaluate the effectiveness of our tool on them. The feasibil-
ity study also does not cover the non-retry-related vicious
cycles due to their diversity in symptoms and programming
paradigms. For example, the bug in Cassandra-13441 (§V-A)
is system-specific, and the bug in HDFS-12914 (§V-C) is
performance related. In addition, as explained in Section VIII,
the effectiveness of our tools is affected by the parameters
empirically selected.

X. RelatedWork

Distributed Software System Failure Study. Many stud-
ies [48], [49], [59], [62]–[64], [69], [74], [79], [81], [85],
[87], [88], [94], [97] have analyzed distributed software system
failures. Gunawi et al. [62] conducted a comprehensive study
of 3,655 high-priority issues in widely-used open-source dis-
tributed software systems. Unfortunately, only one of the 3,655
issues [62] contains a vicious cycle, highlighting the difficulty
of gathering such issues from open-source systems.

There has been a growing interest in studying and address-
ing cascading failures, such as incorrect failure recovery [65],
cascading performance bugs [77], metastable failures [51],
[68], and cascading virtual machine failure [92]. However,
none of them defined and discussed vicious cycles in detail.

Closest to our study are recent works on the metastable
failure state [51], [68] when a system is under permanent
overload due to a work amplification. While insightful, only
resource contention and unconstrained retry are studied as the
root cause. Our study reveals vicious cycles are much more
diverse. Also, all 21 metastable failures were from proprietary
cloud systems such as Amazon AWS, which hinders their
reproduction and analysis for future research.

Unlike Huang et al.’s [68] observation of high-level system
behavior, our definition of vicious cycles focuses on the exe-
cution trace of the system. Our approach provides a detailed
understanding of the system behavior, especially the behavior
of the error handler, which is useful for developing automated
testing and runtime monitoring tools.

Error handlers, such as exception handlers and crash re-
covery procedures, have garnered substantial research inter-
est [52], [60], [95] in recent years. However, none of them
study vicious cycles. Our study complements these studies
by analyzing vicious cycles in detail and reveals the reason
why error handlers can lead to vicious cycles: the inability
to distinguish errors caused by an external trigger and the
interference due to lack of information (§V). Our study also
reveals that vicious cycles do not always involve explicit
errors (e.g., exceptions and crashes) and incorrect handlers, but
sometimes happen due to silent errors and missing handlers
(§V-A). In addition, our bug dataset [45] does not overlap
with the crash recovery bug [16] and exception-related bug
datasets [18].

Guo et al. [65] provided a case study of 4 cascading
failures that happen in the failure recovery stage in production

commercial clusters. Our study corroborates their result. On
the other hand, our study provides a deeper analysis of
vicious cycles in open-source systems and proposes actionable
suggestions to combat vicious cycles.

Testing Tools. Recent works [73], [77], [82], [83], [90], [93]
scaled automated system-level testing to distributed software
systems by focusing the test effort on specific bug patterns.
However, vicious cycles have yet to be covered.

PCatch [77] detects performance cascading bugs by utilizing
a causal relationships model [78]. Performance cascading bugs
happen when a large user job delays another user job, but does
not necessarily involve system degradation. In comparison,
vicious cycles focus on the aggravating cycle between the
system’s execution, including both user requests and internal
requests, and system degradation.

CrashTuner [82] utilizes log-guided fault injection [82] to
automatically test for concurrency bugs that happen during
failure recovery. Our study shows most vicious cycles are not
caused by concurrency bugs.

ScaleCheck [90] triggers scalability bugs by injecting sleep
in CPU-intensive computations that involve scale-dependent
data structures. Though some vicious cycles (e.g., Hadoop-
572) are easier to be triggered in a large-scale cluster, most
vicious cycles do not have such a requirement.

XI. Conclusion

This paper provides the first in-depth analysis of vicious cy-
cles in open-source distributed software systems. To overcome
the challenge of collecting issues containing vicious cycles, we
adopt a multi-round boosting strategy to expand our filtering
criteria until it converges. We further analyze the symptoms,
root causes, triggering conditions, and the fixing strategies
of vicious cycles. Based on the findings, we present two
approaches that can prevent vicious cycles caused by retries.
Our study reveals 16 findings with concrete implications. In
particular, we discuss implications and guidelines for runtime
detection and prevention techniques, testing techniques, and
good practices in fix and development strategies to avoid
vicious cycles.

Acknowledgments

The authors thank anonymous reviewers for their construc-
tive comments. They thank Tian Xie for examining some bug
reports. This research is partially supported by NSF 1901242
and 2006688. Any opinions, findings, and conclusions in this
paper are those of the authors only and do not necessarily
reflect the views of the sponsors.

References

[1] “Apache Accumulo,” https://accumulo.apache.org/.
[2] “Apache ActiveMQ,” https://activemq.apache.org/.
[3] “Apache Cassandra,” https://cassandra.apache.org/.
[4] “Apache Flink,” https://flink.apache.org/.
[5] “Apache Hadoop,” https://hadoop.apache.org/.
[6] “Apache hbase,” https://hbase.apache.org/.
[7] “Apache Ignite,” https://ignite.apache.org/.
[8] “Apache Kafka,” https://kafka.apache.org/.
[9] “Apache Ratis,” https://ratis.apache.org/.

https://accumulo.apache.org/
https://activemq.apache.org/
https://cassandra.apache.org/
https://flink.apache.org/
https://hadoop.apache.org/
https://hbase.apache.org/
https://ignite.apache.org/
https://kafka.apache.org/
https://ratis.apache.org/

[10] “Apache Solr,” https://solr.apache.org/.
[11] “Apache Storm,” https://storm.apache.org/.
[12] “Apache ZooKeeper,” https://zookeeper.apache.org/.
[13] “AWS Post-Event Summaries,” https://aws.amazon.com/premiumsuppor

t/technology/pes/.
[14] “Cassandra-13441,” https://issues.apache.org/jira/browse/CASSANDR

A-13441.
[15] “A conjecture on why reliable systems fail – surfing complexity,” ht

tps://surfingcomplexity.blog/2017/06/24/a-conjecture-on-why-reliable-s
ystems-fail/.

[16] “CREB Dataset,” http://www.tcse.cn/∼wsdou/project/CREB/.
[17] “Data replication,” https://hadoop.apache.org/docs/stable/hadoop-project

-dist/hadoop-hdfs/HdfsDesign.html#Data Replication.
[18] “eBugs in cloud systems,” https://hanseychen.github.io/eBugs/.
[19] “Fair call queue guide,” https://hadoop.apache.org/docs/stable/hadoop-p

roject-dist/hadoop-common/FairCallQueue.html.
[20] “Flink-10928,” https://issues.apache.org/jira/browse/FLINK-10928.
[21] “Flink-12342,” https://issues.apache.org/jira/browse/FLINK-12342.
[22] “gRPC: A high performance, open source universal RPC framework,”

https://grpc.io/.
[23] “Hadoop-13738,” https://issues.apache.org/jira/browse/HADOOP-137

38.
[24] “Hadoop-16284,” https://issues.apache.org/jira/browse/HADOOP-162

84.
[25] “Hadoop 2.4.0,” https://github.com/apache/hadoop/blob/a0389ac6aa83

d8ec8dc8dbe22fd423e8a93c2c62/hadoop-common-project/hadoop-co
mmon/src/main/java/org/apache/hadoop/io/retry/RetryInvocationHandl
er.java#L78.

[26] “Hadoop-572,” https://issues.apache.org/jira/browse/HADOOP-572.
[27] “Hadoop-923,” https://issues.apache.org/jira/browse/HADOOP-923.
[28] “HBase-14598,” https://issues.apache.org/jira/browse/HBASE-14598.
[29] “HBase-23076,” https://issues.apache.org/jira/browse/HBASE-23076.
[30] “HBase-27149,” https://issues.apache.org/jira/browse/HBASE-27149.
[31] “HBase Cluster Replication,” https://hbase.apache.org/book.html# clu

ster replication.
[32] “HDFS-12914,” https://issues.apache.org/jira/browse/HDFS-12914.
[33] “HDFS-9107,” https://issues.apache.org/jira/browse/HDFS-9107.
[34] “HDFS architecture guide,” https://hadoop.apache.org/docs/r1.2.1/hdfs

design.html.
[35] “Kafka-10888,” https://issues.apache.org/jira/browse/KAFKA-10888.
[36] “Kafka-6028,” https://issues.apache.org/jira/browse/KAFKA-6028.
[37] “Kafka-901,” https://issues.apache.org/jira/browse/KAFKA-901.
[38] “Protocol Buffers Documentation,” https://protobuf.dev/.
[39] “Storm-404,” https://issues.apache.org/jira/browse/STORM-404.
[40] “Summary of the Amazon DynamoDB Service Disruption and Related

Impacts in the US-East Region,” https://aws.amazon.com/message/546
7D2/.

[41] “Summary of the Amazon EC2 and Amazon RDS Service Disruption
in the US East Region,” https://aws.amazon.com/message/65648/.

[42] “Summary of the Amazon SimpleDB Service Disruption,” https://aws.
amazon.com/message/65649/.

[43] “Summary of the AWS Service Event in the Northern Virginia (US-
EAST-1) Region,” https://aws.amazon.com/message/12721/.

[44] “Summary of the October 22, 2012 AWS Service Event in the US-East
Region,” https://aws.amazon.com/message/680342/.

[45] “Vicious Cycle Study Dataset,” https://github.com/lin-tan/vcstudy.
[46] “YARN ResourceManager HA,” https://hadoop.apache.org/docs/stable/

hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html.
[47] “Zookeeper-1049,” https://issues.apache.org/jira/browse/ZOOKEEPER-

1049.
[48] M. Alfatafta, B. Alkhatib, A. Alquraan, and S. Al-Kiswany, “Toward

a Generic Fault Tolerance Technique for Partial Network Partitioning,”
in Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’20), 2020.

[49] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany, “An Analysis
of Network-Partitioning Failures in Cloud Systems,” in Proceedings
of the 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’18), 2018.

[50] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions
of constraints: Whitebox fuzz testing in production,” in 2013 35th
International Conference on Software Engineering (ICSE’13), 2013.

[51] N. Bronson, A. Aghayev, A. Charapko, and T. Zhu, “Metastable failures
in distributed systems,” in Proceedings of the Workshop on Hot Topics
in Operating Systems (HotOS’21), 2021.

[52] H. Chen, W. Dou, Y. Jiang, and F. Qin, “Understanding Exception-
Related Bugs in Large-Scale Cloud Systems,” in Proceedings of the
34th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’19), 2019.

[53] Z. Chen, C. Wang, J. Yan, Y. Sui, and J. Xue, “Runtime detection of
memory errors with smart status,” in Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2021, pp. 296–308.

[54] Z. Chen, J. Yan, S. Kan, J. Qian, and J. Xue, “Detecting memory errors
at runtime with source-level instrumentation,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 341–351.

[55] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[56] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing (PODC’87),
1987.

[57] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
remote memory,” in 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’ 14), 2014, pp. 401–414.

[58] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging scale-out workloads on modern hardware,”
in Proceedings of the Seventeenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS’ 12), 2012, p. 37–48.

[59] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in Globally Distributed Storage
Systems,” in Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (OSDI’10), 2010.

[60] Y. Gao, W. Dou, F. Qin, C. Gao, D. Wang, J. Wei, R. Huang, L. Zhou,
and Y. Wu, “An empirical study on crash recovery bugs in large-scale
distributed systems,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE’18), 2018.

[61] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C.
Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen, and D. Borthakur,
“FATE and DESTINI: A framework for cloud recovery testing,” in 8th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’11), 2011.

[62] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria, “What bugs live in the cloud? a study of 3000+ issues
in cloud systems,” in Proceedings of the ACM Symposium on Cloud
Computing (SoCC’14), 2014.

[63] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why Does the Cloud Stop Computing?
Lessons from Hundreds of Service Outages,” in Proceedings of the 7th
ACM Symposium on Cloud Computing (SoCC’16), 2016.

[64] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman,
X. Lin, T. Emami, W. Sheng, N. Bidokhti, C. McCaffrey, G. Grider, P. M.
Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb, P. Alvaro,
H. B. Runesha, M. Hao, and H. Li, “Fail-Slow at Scale: Evidence
of Hardware Performance Faults in Large Production Systems,” in
Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST’18), 2018.

[65] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo, T. Bergan,
M. Musuvathi, Z. Zhang, and L. Zhou, “Failure recovery: When the cure
is worse than the disease,” in 14th Workshop on Hot Topics in Operating
Systems (HotOS’13), 2013.

[66] S. He, G. Manns, J. Saunders, W. Wang, L. Pollock, and M. L.
Soffa, “A statistics-based performance testing methodology for cloud
applications,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’19), 2019, pp. 188–
199.

[67] M.-C. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and tools,”
Computer, vol. 30, no. 4, pp. 75–82, April 1997.

[68] L. Huang, M. Magnusson, A. B. Muralikrishna, S. Estyak, R. Isaacs,
A. Aghayev, T. Zhu, and A. Charapko, “Metastable failures in the

https://solr.apache.org/
https://storm.apache.org/
https://zookeeper.apache.org/
https://aws.amazon.com/premiumsupport/technology/pes/
https://aws.amazon.com/premiumsupport/technology/pes/
https://issues.apache.org/jira/browse/CASSANDRA-13441
https://issues.apache.org/jira/browse/CASSANDRA-13441
https://surfingcomplexity.blog/2017/06/24/a-conjecture-on-why-reliable-systems-fail/
https://surfingcomplexity.blog/2017/06/24/a-conjecture-on-why-reliable-systems-fail/
https://surfingcomplexity.blog/2017/06/24/a-conjecture-on-why-reliable-systems-fail/
http://www.tcse.cn/~wsdou/project/CREB/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Data_Replication
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Data_Replication
https://hanseychen.github.io/eBugs/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/FairCallQueue.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/FairCallQueue.html
https://issues.apache.org/jira/browse/FLINK-10928
https://issues.apache.org/jira/browse/FLINK-12342
https://grpc.io/
https://issues.apache.org/jira/browse/HADOOP-13738
https://issues.apache.org/jira/browse/HADOOP-13738
https://issues.apache.org/jira/browse/HADOOP-16284
https://issues.apache.org/jira/browse/HADOOP-16284
https://github.com/apache/hadoop/blob/a0389ac6aa83d8ec8dc8dbe22fd423e8a93c2c62/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/io/retry/RetryInvocationHandler.java#L78
https://github.com/apache/hadoop/blob/a0389ac6aa83d8ec8dc8dbe22fd423e8a93c2c62/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/io/retry/RetryInvocationHandler.java#L78
https://github.com/apache/hadoop/blob/a0389ac6aa83d8ec8dc8dbe22fd423e8a93c2c62/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/io/retry/RetryInvocationHandler.java#L78
https://github.com/apache/hadoop/blob/a0389ac6aa83d8ec8dc8dbe22fd423e8a93c2c62/hadoop-common-project/hadoop-common/src/main/java/org/apache/hadoop/io/retry/RetryInvocationHandler.java#L78
https://issues.apache.org/jira/browse/HADOOP-572
https://issues.apache.org/jira/browse/HADOOP-923
https://issues.apache.org/jira/browse/HBASE-14598
https://issues.apache.org/jira/browse/HBASE-23076
https://issues.apache.org/jira/browse/HBASE-27149
https://hbase.apache.org/book.html#_cluster_replication
https://hbase.apache.org/book.html#_cluster_replication
https://issues.apache.org/jira/browse/HDFS-12914
https://issues.apache.org/jira/browse/HDFS-9107
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://issues.apache.org/jira/browse/KAFKA-10888
https://issues.apache.org/jira/browse/KAFKA-6028
https://issues.apache.org/jira/browse/KAFKA-901
https://protobuf.dev/
https://issues.apache.org/jira/browse/STORM-404
https://aws.amazon.com/message/5467D2/
https://aws.amazon.com/message/5467D2/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65649/
https://aws.amazon.com/message/65649/
https://aws.amazon.com/message/12721/
https://aws.amazon.com/message/680342/
https://github.com/lin-tan/vcstudy
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
https://issues.apache.org/jira/browse/ZOOKEEPER-1049
https://issues.apache.org/jira/browse/ZOOKEEPER-1049

wild,” in 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’22), 2022.

[69] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and
R. Yao, “Gray Failure: The Achilles’ Heel of Cloud-Scale Systems,” in
Proceedings of the 16th Workshop on Hot Topics in Operating Systems
(HotOS’17), 2017.

[70] A.-M. Kermarrec and M. Van Steen, “Gossiping in distributed systems,”
ACM SIGOPS operating systems review, vol. 41, no. 5, pp. 2–7, October
2007.

[71] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of aspectj,” in ECOOP 2001—Object-Oriented
Programming: 15th European Conference Budapest, Hungary, June 18–
22, 2001 Proceedings 15. Springer, 2001, pp. 327–354.

[72] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, p. 558–565, July 1978.

[73] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S.
Gunawi, “SAMC: Semantic-Aware model checking for fast discovery of
deep bugs in cloud systems,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14), 2014.

[74] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi, “TaxDC:
A Taxonomy of Non-Deterministic Concurrency Bugs in Datacenter Dis-
tributed Systems,” in Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’16), 2016.

[75] H. Leung and L. White, “A study of integration testing and software
regression at the integration level,” in Proceedings. Conference on
Software Maintenance 1990 (ICSM’90), 1990.

[76] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, “Efficient scal-
able thread-safety-violation detection: Finding thousands of concurrency
bugs during testing,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP’19), 2019.

[77] J. Li, Y. Chen, H. Liu, S. Lu, Y. Zhang, H. S. Gunawi, X. Gu, X. Lu, and
D. Li, “Pcatch: Automatically detecting performance cascading bugs in
cloud systems,” in Proceedings of the Thirteenth EuroSys Conference
(EuroSys’18), 2018.

[78] H. Liu, G. Li, J. F. Lukman, J. Li, S. Lu, H. S. Gunawi, and C. Tian,
“Dcatch: Automatically detecting distributed concurrency bugs in cloud
systems,” in Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’17), 2017.

[79] H. Liu, S. Lu, M. Musuvathi, and S. Nath, “What Bugs Cause Production
Cloud Incidents?” in Proceedings of the 17th Workshop on Hot Topics
in Operating Systems (HotOS’19), 2019.

[80] C. Lou, C. Chen, P. Huang, Y. Dang, S. Qin, X. Yang, X. Li, Q. Lin, and
M. Chintalapati, “RESIN: A holistic service for dealing with memory
leaks in production cloud infrastructure,” in 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’22), 2022.

[81] C. Lou, P. Huang, and S. Smith, “Understanding, Detecting and Lo-
calizing Partial Failures in Large System Software,” in Proceedings
of the 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’20), 2020.

[82] J. Lu, C. Liu, L. Li, X. Feng, F. Tan, J. Yang, and L. You, “Crashtuner:
Detecting crash-recovery bugs in cloud systems via meta-info analysis,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP’19), 2019.

[83] J. F. Lukman, H. Ke, C. A. Stuardo, R. O. Suminto, D. H. Kurniawan,
D. Simon, S. Priambada, C. Tian, F. Ye, T. Leesatapornwongsa et al.,
“Flymc: Highly scalable testing of complex interleavings in distributed
systems,” in Proceedings of the Fourteenth EuroSys Conference 2019
(EuroSys’19), 2019.

[84] J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in Proceedings of the 25th Sympo-
sium on Operating Systems Principles (SOSP’15), 2015.

[85] B. Maurer, “Fail at Scale: Reliability in the Face of Rapid Change,”
Communications of the ACM, vol. 58, no. 11, pp. 44–49, November
2015.

[86] G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[87] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why Do Internet
Services Fail, and What Can Be Done About It?” in Proceedings
of the 4th USENIX Symposium on Internet Technologies and Systems
(USITS’03), 2003.

[88] A. Rabkin and R. Katz, “How Hadoop Clusters Break,” IEEE Software
Magazine, vol. 30, no. 4, pp. 88–94, July 2013.

[89] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “RFC3261: SIP: Session
Initiation Protocol,” USA, 2002.

[90] C. A. Stuardo, T. Leesatapornwongsa, R. O. Suminto, H. Ke, J. F.
Lukman, W.-C. Chuang, S. Lu, and H. S. Gunawi, “ScaleCheck:
A Single-Machine approach for discovering scalability bugs in large
distributed systems,” in 17th USENIX Conference on File and Storage
Technologies (FAST’19), 2019.

[91] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic
database management system tuning through large-scale machine learn-
ing,” in Proceedings of the 2017 ACM International Conference on
Management of Data (SIGMOD’ 17), 2017, p. 1009–1024.

[92] H. Wang, H. Shen, and Z. Li, “Approaches for resilience against
cascading failures in cloud datacenters,” in 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS’18), 2018.

[93] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou, “Modist: Transparent model checking of unmod-
ified distributed systems,” in Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’09), 2009.

[94] D. Yuan, Y. Luo, X. Zhuang, G. Rodrigues, X. Zhao, Y. Zhang, P. U.
Jain, and M. Stumm, “Simple Testing Can Prevent Most Critical Fail-
ures: An Analysis of Production Failures in Distributed Data-intensive
Systems,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14), 2014.

[95] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang,
P. U. Jain, and M. Stumm, “Simple testing can prevent most critical
failures: An analysis of production failures in distributed Data-Intensive
systems,” in 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’14), 2014.

[96] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” in
Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’12), 2012.

[97] Y. Zhang, J. Yang, Z. Jin, U. Sethi, K. Rodrigues, S. Lu, and D. Yuan,
“Understanding and Detecting Software Upgrade Failures in Distributed
Systems,” in Proceedings of the 28th ACM Symposium on Operating
Systems Principles (SOSP’21), 2021.

	Introduction
	A Motivating Example
	Contribution

	Definitions
	Events and Causal Relationships
	Identifying Vicious Cycles

	Experimental Methods
	Symptoms of Vicious Cycles
	Root Causes of Vicious Cycles
	UE Subtype 1: Undetected Error
	UE Subtype 2: Unhandled Error
	UC Subtype 1: Incorrect Decision in Degradation Recovery
	UC Subtype 2: Unconstrained Retry

	Triggering Conditions of Vicious Cycles
	Special Constraints for Automated Testing Tools
	Stress Testing is Useful to Trigger Vicious Cycles
	Vicious Cycles Can Be Non-deterministic

	Fix Strategies for Vicious Cycles
	Patterns of Major System Redesigns
	Other Fixing Patterns of Vicious Cycles
	Vicious Cycles Often Have Incomplete Fixes

	Preventing Vicious Cycles: A Feasibility Study
	Preventing Deadly Retry
	Preventing Unconstrained Retry

	Threats to Validity and Limitations
	Related Work
	Conclusion
	References

