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Abstract—Since Deep Learning (DL) libraries undergo rapid
development with thousands of lines of code changes daily, they
require continuous testing to detect software bugs and ensure
code quality.

In this paper, we explore DL testing approaches in a continuous
testing setting. To make it feasible, we present the first continuous
testing framework for DL libraries—CEDAR—that integrates two
state-of-the-art DL testing approaches (DocTer and EAGLE)
efficiently to test two popular DL libraries, PyTorch and
TensorFlow. Through the application of CEDAR to 20 versions
of PyTorch and TensorFlow, CEDAR detects 83 bugs in 140
APIs. Out of the 83 bugs, 23 are previously unknown bugs with
21 confirmed or fixed by the developers. The results also show
CEDAR has effectively shortened the bug detection latency by
almost a year (338.6 days) on average. In addition, CEDAR
demonstrates its effectiveness in detecting new regression bugs
and masked bugs. With three optimization strategies, CEDAR
reduces the time and space overhead by a factor of 15.4 and
9.7. We share insights and lessons learned from our research,
aiming to advance the development of more effective and efficient
continuous testing for DL libraries, benefiting both developers
and researchers.

Index Terms—testing, continuous integration, continuous testing,
deep learning

I. INTRODUCTION

Deep Learning (DL) systems have been widely deployed

in many domains including self-driving cars [1] and machine

translation [2], [3]. As a result, the reliability and security of

DL systems are of vital importance. Nevertheless, conventional

testing frameworks and methodologies (e.g., AFL [4]) have

limited effectiveness in testing DL libraries, primarily due to the

absence of oracles [5], [6] or domain-specific knowledge [7],

[8]. For instance, APIs from DL libraries require inputs possess-

ing domain-specific properties (e.g., shape) and data structures

(e.g., tensor), making traditional fuzzers either inapplicable or

ineffective for testing DL libraries. Fortunately, recent research

and techniques have focused on testing DL systems [5]–[12].

†The work was completed when Hung Viet Pham was at the University of
Waterloo.∗Corresponding author.

For example, DocTer [7] conducts fuzz testing on DL libraries

(e.g., PyTorch [13] and TensorFlow [14]) by generating test

inputs guided by DL-specific constraints (e.g., number of tensor

dimensions) extracted from API documentation, detecting

numerous bugs in various Application Programming Interfaces

(APIs). Another recent technique EAGLE [6] cross-checks

the outputs of two equivalent execution graphs to identify

inconsistency bugs in DL libraries. Both techniques have been

shown effective in discovering bugs in the specific versions of

DL libraries evaluated.

DL libraries such as PyTorch and TensorFlow are actively

developed. For example, TensorFlow publishes a nightly build

every few days and has released 8 official versions in 20231.

There were 142,385 lines of code changes to TensorFlow in a

month (November 2023)2. These rapid changes often introduce

new bugs into the DL libraries. Therefore, applying the

automated testing tools continuously is essential for efficiently

detecting and addressing these bugs, ensuring the reliability

and performance of these libraries in practical applications.

One way to continuously maintain the quality of software

projects is to apply Continuous Integration (CI), where con-

tinuous testing provides instant insights into the quality of

the newly committed code and catches newly introduced

bugs in time. Integrating existing testing techniques in the

CI loop with nightly test runs is one natural direction to

improve the reliability of actively developed DL libraries. While

existing continuous testing solutions have been implemented

on platforms such as Chrome [15] and Google [16], they do

not integrate cutting-edge DL testing tools, which are shown

to be highly effective in testing DL libraries and uncovering

new bugs.

In this paper, we fill this gap by integrating state-of-the-art

DL-testing tools, DocTer and EAGLE, into the continuous

testing process. Every night, a testing run is scheduled on the

latest nightly version of each DL library. These runs conduct

1https://pypi.org/project/tensorflow/#history
2https://github.com/tensorflow/tensorflow
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fuzz testing and differential testing on the DL APIs, and, in

the end, report potential bugs (crashes and inconsistencies).

There are challenges in integrating existing DL testing

approaches into the continuous testing process. First, to make

integration of these tools into the CI loop feasible in practice,

our tests must be completed within a reasonable time frame

to facilitate timely feedback [15]–[18]. Second, applying

DocTer and EAGLE to nightly builds of actively developed

DL libraries can be challenging due to potential day-to-day

significant changes. Since these tools rely on API documents

(e.g., API signatures and constraints) to generate test inputs,

significant source code changes can reduce their efficiency

if the documents become outdated. Third, it requires manual

efforts to investigate, verify, and report bugs to the developers

from a large number of crashes reported daily by the tools.

To address the challenges and enhance the performance and

effectiveness of the testing process, we present CEDAR: a

continuous testing framework for DL libraries that integrates

two state-of-the-art DL-testing tools, DocTer and EAGLE,

along with three optimization strategies tailored specifically

for integrating these tools. For example, test case reduction,

i.e., let EAGLE reuse selected test cases generated by DocTer,

reduces the time overhead by a factor of 15.4.

This paper makes the following contributions:

• We built a continuous testing framework CEDAR, which

integrates two state-of-the-art deep-learning testing ap-

proaches (DocTer and EAGLE) efficiently to test two

popular DL libraries, PyTorch and TensorFlow.

• Our evaluation demonstrates CEDAR’s effectiveness in

continuous testing, detecting 83 bugs in 140 APIs of 20

versions of PyTorch and TensorFlow. Out of the 83 bugs,

23 are previously unknown bugs with 21 confirmed or

fixed by the developers. (Section V-A).

• CEDAR’s continuous testing reveals its dual benefits,

detecting bugs in newly added code in nightly and released

versions, as well as (hard-to-detect) bugs in the existing
code (Section V-A & V-D).

• CEDAR’s continuous application across 20 versions

shortens the bug detection latency of the evaluated libraries

by nearly a year (338.6 days) on average, enabling earlier

bug detection (Section V-B).

• CEDAR demonstrates its effectiveness in regression test-

ing and continuous testing by detecting new regression
bugs and masked bugs, both of which are challenging to

detect when testing a single version. (Section V-C).

• To make CEDAR’s continuous testing practical, we design

and implement three optimization strategies that combine

generic and tool-specific approaches to reduce the time and

space overhead by a factor of 15.4 and 9.7 (Section V-F).

• We present our main findings, insights, and lessons learned

for future developers and researchers (Section VIII).

Availability: We share the tool CEDAR and the bug list in [19].

II. TWO EVALUATED TESTING TOOLS

Testing API functions of DL libraries (e.g., PyTorch [13] and

TensorFlow [14]) is crucial because these libraries are widely

used and contain bugs [20]–[23]. Previous works DocTer [7]

and EAGLE [6] are two state-of-the-art open-source [24], [25]

tools designed for testing DL libraries and have detected many

bugs in these DL libraries.

A. DocTer

DocTer is a fuzz testing technique for DL libraries (e.g.,

PyTorch [13] and TensorFlow [14]) that analyzes API doc-

umentation to extract DL-specific input constraints and uses

them to guide input generation for testing DL API functions.

DocTer addresses two challenges: (1) extracting DL-specific

constraints, and (2) generating valid input following or violating

these constraints.

DL libraries’ API functions require DL-specific constraints

for their input arguments. Generating DL-specific test cases

for these API functions is challenging without the knowledge

of these constraints or the ability to use them to generate

diverse inputs. In addition, existing testing tools are incapable

of generating DL-specific data structures like tensors. DocTer

addresses these challenges using the following techniques:

(1) DL-specific constraint extraction: DocTer automatically

extracts DL-specific constraints from API documentation by

deriving rules predicting parameter constraints from parse tree

patterns of API descriptions. Given a small set of annotated API

function descriptions, DocTer constructs rules and applies them

to a larger set of real-world documents, extracting constraints

for widely used DL libraries. DocTer extracts four categories

of input properties: structure, dtype, shape, and valid values.

(2) Constraint-guided DL-specific input generation: DocTer

uses these constraints to guide test generation, producing

conforming inputs (CIs) and violating inputs (VIs). CIs test

the core functionality of the API function, while VIs test the

API function’s input validity checking code. DocTer reports

bug-triggering inputs that cause severe crashes.

Using these techniques, DocTer extracts tens of thousands of

correct constraints automatically from API documentation for

2,415 API functions from popular DL libraries (e.g., PyTorch)

and generates DL-specific inputs to effectively detect bugs in

the libraries.

B. EAGLE

Detecting bugs, especially non-crash bugs in DL libraries, is

challenging due to the complexity of DL API functionalities and

the difficulty of determining expected outputs. EAGLE applies

differential testing and uses equivalent graphs to test a single

DL implementation. Equivalent graphs use different APIs, data

types, or optimizations to achieve the same functionality and

should produce identical results given the same input.

EAGLE consists of three main steps:

1) Equivalence rule definition: The authors examine API

documentation and non-crash bugs in DL libraries, defining

16 equivalence rules in six categories:

a) Optimization: Computational graph optimization is

one of the most popular optimizations that are applied in DL

systems. This optimization should not alter the output of a DL

system. The rules in this category compare the execution of all
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API functions, with or without optimization, given the same

input.

b) API redundancy: The built-in API redundancy pro-

vided by most DL libraries allows the implementation of one

API using other APIs. Rules in this category leverage API

redundancy to create equivalent graphs.

c) Data structure equivalence: Numerous DL APIs accept

different types of data structures as input while preserving

their functionalities. Rules in this category construct equivalent

graphs with different input data structures and types.

d) Data format equivalence: Similar to rules in the Data

structure equivalence category, rules in this category utilize the

fact that input data can be provided to deep learning APIs in

different formats. By applying data transformation, these rules

generate equivalent graphs.

e) Inverse equivalence: Some APIs in DL libraries have

inverse functions. Rules in this category apply APIs and their

inverse APIs sequentially to produce equivalent graphs.

f) Model evaluation equivalence: A model should exhibit

equivalent behaviors regardless of the inference batch size or

before and after saving and loading.

2) Equivalent graph construction: EAGLE builds concrete

equivalent graphs for inconsistency detection by identifying

relevant APIs for the DL library under test and concretizing

the rules for each applicable API.

3) Bug detection: EAGLE generates inputs and compares

the outputs of the concretized equivalent graphs given the same

input. It reports inconsistencies between equivalent graphs. It

considers the outputs as equivalent if the difference is below a

certain threshold.

EAGLE applied the 16 equivalence rules to popular DL

libraries (e.g., PyTorch) and effectively detected many incon-

sistencies.

III. CEDAR APPROACH

A. Overview

Fig. 1 shows our continuous testing framework CEDAR for

deep learning libraries. It consists of three phases. First, in

the program installation phase (Section III-B), the scheduler

automatically starts the testing process at the scheduled time.

Once it is started, the program installer pulls and installs

the latest nightly version of the DL library (e.g., PyTorch).

After the program is installed, in the input generation phase
(Section III-C), DocTer and EAGLE generate test inputs for the

DL APIs. To make these tools practical for continuous testing,

we have optimized DocTer and EAGLE for efficient integration

(Section III-E). For clarity, we refer to the DocTer and EAGLE

components in CEDAR as C-DocTer and C-EAGLE in this

paper. Finally, in the test input evaluation phase (Section III-D),

the executor executes the generated inputs and reports a list of

abnormal behaviors (e.g., crashes and inconsistencies).

For continuous regression testing of actively developed

projects, our testing time must be reasonably short for timely

feedback [15]–[18]. Thus, we carefully design our testing

framework to ensure quick testing time, e.g., with parallelism,

test case reduction, and redundancy removal (Section III-E).

B. Program installation

The testing process is scheduled by the job scheduler that

starts CEDAR automatically in the background periodically at

fixed times, dates, or intervals. Once it is at the scheduled time,

the scheduler calls the program installer to pull and install the

latest nightly version of the program under test. For example,

one could schedule the testing job for PyTorch at 11:59 PM

every Friday. The program installer also saves the version and

environment information to the log for record and reference.

C. Input generation

In the input generation phase, C-DocTer and C-EAGLE

generate test inputs for the API functions of the programs under

test. The existing work DocTer [7] collects API information

(e.g., API signature and parameter descriptions) from API doc-

uments. For example, in the document of PyTorch v1.5.0, the

API signature specifies that torch.nn.functional.conv1d

has two required parameters (input and weight) and four

optional parameters (bias, stride, etc.). DocTer extracts

constraints from the document automatically to guide fuzz

testing. For example, the parameter input should be a 3-

dimensional tensor. Any input that is not a 3-dimensional

tensor is rejected by the function’s input validity check. Such

invalid inputs exercise only the input validity checking code,

failing to test the core functionality of the API function.

To test the nightly versions that are not documented,

CEDAR uses the API information and constraints provided

by DocTer from earlier versions, i.e., PyTorch v1.5.0 and

TensorFlow v2.1.0. This is feasible since the difference in the

document between each version is small: on average, 96%

of the parameters’ descriptions remain unchanged between

subsequent versions. Based on the extracted constraints, C-

DocTer generates both conforming inputs (CIs) and violating

inputs (VIs) (Section II-A).

For each equivalence rule (Section II-B), C-EAGLE gen-

erates a pair of equivalent graphs for each applicable API.

For each of these APIs, C-EAGLE takes inputs generated by

C-DocTer and then executes the equivalent graphs with them.

D. Test input evaluation

In the test input evaluation phase, the executor invokes the

target function with the generated input from C-DocTer and

C-EAGLE. If a severe failure occurs, CEDAR reports the input

as bug-triggering input. Specifically, CEDAR returns those

inputs causing a segmentation fault, floating-point exception,

abort, and bus error in the C++ backend. Additionally, if an

inconsistency is detected between equivalent graphs generated

by C-EAGLE, the input is also reported as bug-triggering input.

E. Efficient Continuous Testing

To make continuous testing practical and efficient, we

propose three optimization strategies to reduce time and space

overhead.
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Fig. 1. Overview of CEDAR

a) Parallelism: CEDAR employs parallelism to accelerate

the testing procedure. It executes D_max_proc C-DocTer

processes concurrently, where each process is dedicated to

testing a single API. In the case of C-EAGLE, CEDAR initiates

E_max_proc parallel processes, with each focusing on testing

a pair of equivalent graphs against a specific input.

b) Test case reduction: As a standalone testing tool, C-

EAGLE relies on C-DocTer’s API constraints to generate test

inputs to detect inconsistency bugs. To save input fuzzing time,

firstly, CEDAR feeds C-EAGLE the inputs generated by C-

DocTer directly without having C-EAGLE generate new inputs.

Secondly, since C-EAGLE focuses on detecting inconsistency

bugs (not crashes), there is little incentive to feed inputs that

cause DL API functions to crash to C-EAGLE again, as we have

already tested these inputs with C-DocTer to detect crash bugs.

Thus, to further accelerate C-EAGLE’s input generation and the

testing process, C-DocTer generates D_max_iter test inputs

for each API and only feeds C-EAGLE the first E_max_iter

inputs that are likely valid (i.e., those that do not make the

APIs to crash or throw exceptions) to reduce overhead.

c) Redundancy removal: After CEDAR reports bugs, we

keep only the information needed for reproducing the bug

(e.g., bug-triggering inputs, status information, etc.) for further

investigation and all other space (e.g., inputs and logs) will be

freed to reduce overhead.

While parallelism is a general strategy, test case reduction
and redundancy removal are tool-specific and tailored specifi-

cally for the integration of C-DocTer and C-EAGLE. Our ex-

periments show that the above strategies reduce time and space

overhead by 15.4 and 9.7 times respectively (Section V-F).

IV. EXPERIMENT SETUP

a) Data preparation: As discussed in Section III-C, since

nightly versions are not documented, we use the API signatures

and constraints extracted by DocTer from earlier versions, i.e.,

PyTorch v1.5.0 and TensorFlow v2.1.0. DocTer extracts 5,908

and 3,201 constraints from 498 and 911 APIs from PyTorch

and TensorFlow, respectively. There are 10 PyTorch APIs and

3 TensorFlow APIs that are no longer supported in the latest

nightly versions. CEDAR skips them and generates inputs for

the rest 488 and 908 APIs.

C-EAGLE reused the inputs C-DocTer generated for all of

the APIs C-DocTer is applied on. Additionally, C-EAGLE

generates inputs for 31 PyTorch APIs and 17 TensorFlow

APIs whose constraints are not available and are not supported

by C-DocTer. For example, the constraints for the PyTorch

API torchvision.transforms.Normalize is not available

since it is from the Torchvision package which is out of

the scope of DocTer [7], and therefore not available for C-

DocTer. In total, C-EAGLE executes 2,461 equivalent graphs

(522 for PyTorch and 1,939 for TensorFlow) graphs generated

from the 16 equivalence rules (Section II-B) to 519 and 925

PyTorch and TensorFlow APIs respectively.

b) Input generation and testing: During input genera-

tion, CEDAR first runs C-DocTer to generate and execute

D_max_iter CIs and D_max_iter VIs for each API and saves

the bug-triggering inputs. It also saves the first E_max_iter

likely-valid inputs for C-EAGLE. After C-DocTer finishes

testing all APIs, CEDAR conducts differential testing on

equivalent graphs with C-EAGLE. Once C-EAGLE finishes,

CEDAR collects and reports crashes and inconsistencies as bugs

and frees all other storage that is relevant to the bug-triggering

inputs. During testing, CEDAR first runs D_max_proc C-

DocTer processes in parallel, and then runs E_max_proc C-

EAGLE processes in parallel (Section III-E).

Specifically, we set D_max_iter=800, E_max_iter=200,

D_max_proc=20, and E_max_proc=24 for PyTorch; and

we set D_max_iter=500, E_max_iter=50, D_max_proc=6,

and E_max_worker=24 for TensorFlow. This configuration

was chosen to balance computational speed and resource usage

efficiently and maintain a reasonable testing duration.

c) Scheduling and versioning: We use cron [26] as

a job scheduler which schedules programs periodically at

fixed times, dates, or intervals. The testing job is scheduled

every day at 11:59 PM. The output, logs, and inputs that

are relevant to bugs are stored in the working directory
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named with the library name, date, and time. For example,

the experiment for TensorFlow on November 17, 2023, for

testing TensorFlow nightly version 2.16.0.dev20231117 is

saved in the folder tensorflow-11-17-2023-23-59-01.

The version and environment information are logged in the

working directory for record and reference.

We run CEDAR on a total of 20 versions, i.e., five nightly

versions and five released versions of PyTorch and TensorFlow

respectively. The version details are in Section V-A.

d) Apparatus: We use servers with 56 cores and 337G

memory and run CEDAR in a Docker container with Ubuntu

18.04.

V. EVALUATION AND RESULTS

A. Overall bug detection results

We apply our continuous testing framework CEDAR to

20 versions of PyTorch and TensorFlow (five recent nightly

versions and five recently released versions per library). After

the testing process, CEDAR reports bug-triggering inputs that

cause severe failures (e.g., segmentation fault, floating-point

exception, abort, and bus error in C++ backend) or result in

inconsistencies between equivalent graphs. We then investigate

these bug-triggering inputs and report bugs to the developers

on GitHub.

We present CEDAR’s bug detection results in Table I.

In total, CEDAR detects 83 bugs (8 in PyTorch and 75 in

TensorFlow) from 140 APIs (35 from PyTorch and 105 from

TensorFlow). Out of the 83 bugs, 23 are previously unknown,

21 of which have been confirmed by the developers (15 fixed

and 6 confirmed but unfixed yet). Out of the 8 PyTorch bugs

that CEDAR detects, 2 bugs, which cause 24 APIs to crash,

have been labeled high priority by PyTorch developers and

are later fixed in the nightly versions. CEDAR also detects 60

(83− 23) known bugs that are fixed in the subsequent versions

or reported by previous approaches (DocTer or EAGLE).

The 83 bugs cause 140 APIs to fail because one bug can

cause failures in multiple APIs but is fixed in one location. For

example, a bug that C-DocTer detects in PyTorch causes 23

APIs to crash with a segmentation fault. Similarly, C-EAGLE

detects a bug in TensorFlow that causes three APIs to produce

wrong outputs and results in inconsistencies.

Specifically, C-DocTer detects 77 bugs from 134 APIs in

total, including 18 previously unknown bugs. Of the 18 bugs,

17 are confirmed bugs (15 fixed and 2 confirmed but unfixed

yet). Among the 59 (77 - 18) known bugs, 53 were detected by

DocTer [7]. The other 6 bugs are introduced after the versions

on which DocTer was applied, i.e., TensorFlow v2.1.0 and

PyTorch v1.5.0. C-EAGLE detects 6 bugs from 6 APIs in total,

including 5 previously unknown bugs. The other 1 (6 - 5) bug

is a known bug and was previously detected by EAGLE.

We built a continuous testing tool CEDAR for the DL

libraries. We learned that CEDAR (both C-DocTer and

C-EAGLE) is effective in continuous testing, detecting 83

bugs in 140 APIs of 20 versions of PyTorch and TensorFlow,

including 23 previously unknown bugs (21 confirmed or

fixed) and 2 high-priority bugs.

We present the breakdown bug detection results for PyTorch

in Table II and TensorFlow in Table III. In these tables, we list

the PyTorch/TensorFlow versions, the release dates, the total

number of bugs detected (Col. “# Bug Total”), and the number

of bugs detected by C-DocTer (Col. “# Bug C-DocTer”) and

C-EAGLE (Col. “# Bug C-EAGLE”) correspondingly. In the

last three columns of these tables, we present the number of

verified new bugs, new bugs, all bugs, and buggy APIs. A

verified bug is fixed or confirmed by the developers.

The number of detected bugs in each version varies for two

main reasons. First, CEDAR may uncover more bugs in newer

versions as it detects additional bugs within the newly added

code. Meanwhile, CEDAR may detect fewer bugs in a newer

version when some bugs found in an older version have been

fixed, for instance, after we report the bugs. For example, in

Table II, the number of detected PyTorch bugs (Col. “All”), as

well as the number of buggy APIs (Col. “API”), decrease in

version 1.13.0.dev20220921 compared to the nightly version

two days prior, i.e., 1.13.0.dev20220919. This is because two

of the bugs that trigger 29 APIs to crash have been fixed

by the developers and, therefore, no longer exist in the later

versions. Similarly, in Table III, the number of bugs detected in

TensorFlow decreases between some versions, i.e., from v2.2.0

to the nightly versions (e.g., 2.11.0.dev20220916), since bugs

have been fixed over time. The study of the bugs’ lifetime is

discussed in Section V-C.

By continuously applying CEDAR, it consistently identifies

bugs in two distinct scenarios: (1) within newly added code in

both nightly and released versions, and (2) within existing code

that has been tested by CEDAR. For instance, consider version

2 of a library introduces an additional 20 lines of code to the

existing version 1. If CEDAR is applied to test both version 1

and the modified version 2, it can detect bugs not only in the

newly added 20 lines but also in the pre-existing code from

version 1. Our findings reveal that 15 of the 83 CEDAR-detected
bugs were present in the new code, while 68 were identified
in the existing code. This illustrates CEDAR’s capability in

promptly detecting bugs in newly integrated code, as well as

its effectiveness in re-examining established code to uncover

more elusive bugs.

CEDAR’s continuous testing reveals its dual benefits,

detecting bugs in newly added code within both nightly

and released versions, as well as (hard-to-detect) bugs in

the existing code.

B. Reducing bug detection latency

Figure 2 illustrates the bug latency reduction with four crucial

time points for a bug denoted as t0 – t3. Consider the following

example: a bug in the TensorFlow API tf.linalg.diag
was introduced in TensorFlow v2.2.0, released on May 7th,

2020 (t0). When CEDAR is applied to different TensorFlow
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TABLE I
NUMBER OF BUGS DETECTED BY CEDAR. ‘VERIFIED’, ‘NEW’, AND ‘ALL’ ARE THE NUMBER OF VERIFIED NEW, NEW, AND ALL BUGS, WHILE ‘API’ IS

THE NUMBER OF BUGGY APIS.

Library # Bug Total # Bug C-DocTer # Bug C-EAGLE
Verified New All API Verified New All API Verified New All API

PyTorch 6 6 8 35 5 5 7 34 1 1 1 1
TensorFlow 15 17 75 105 12 13 70 100 3 4 5 5

Total 21 23 83 140 17 18 77 134 4 5 6 6

TABLE II
NUMBER OF BUGS DETECTED IN PYTORCH. ‘VERIFIED’, ‘NEW’, AND ‘ALL’ ARE THE NUMBER OF VERIFIED NEW, NEW, AND ALL BUGS, WHILE ‘API’ IS

THE NUMBER OF BUGGY APIS.

PyTorch Version Release Date # Bug Total # Bug C-DocTer # Bug C-EAGLE
Verified New All API Verified New All API Verified New All API

1.13.0.dev20220923 09/23/2022 1 1 1 1 1 1 1 1 0 0 0 0
1.13.0.dev20220921 09/21/2022 1 1 1 1 1 1 1 1 0 0 0 0
1.13.0.dev20220919 09/19/2022 5 5 5 27 4 4 4 26 1 1 1 1
1.13.0.dev20220917 09/17/2022 4 4 4 28 4 4 4 28 0 0 0 0
1.13.0.dev20220915 09/15/2022 4 4 4 25 4 4 4 25 0 0 0 0
1.12.1 08/05/2022 5 5 6 27 5 5 6 27 0 0 0 0
1.12.0 06/28/2022 4 4 5 28 3 3 4 27 1 1 1 1
1.11.0 03/10/2022 3 3 4 28 3 3 4 28 0 0 0 0
1.10.1 12/15/2021 2 2 3 8 1 1 2 7 1 1 1 1
1.10.0 10/21/2021 2 2 3 8 1 1 2 7 1 1 1 1

Total 6 6 8 35 5 5 7 34 1 1 1 1

TABLE III
NUMBER OF BUGS DETECTED IN TENSORFLOW. ‘VERIFIED’, ‘NEW’, AND ‘ALL’ ARE THE NUMBER OF VERIFIED NEW, NEW, AND ALL BUGS, WHILE ‘API’

IS THE NUMBER OF BUGGY APIS.

TensorFlow Version Release Date # Bug Total # Bug C-DocTer # Bug C-EAGLE
Verified New All API Verified New All API Verified New All API

2.11.0.dev20220927 09/27/2022 5 5 7 8 5 5 7 8 0 0 0 0
2.11.0.dev20220921 09/21/2022 9 10 12 16 7 8 10 14 2 2 2 2
2.11.0.dev20220920 09/20/2022 4 4 5 9 4 4 5 9 0 0 0 0
2.11.0.dev20220918 09/18/2022 8 8 10 15 7 7 9 14 1 1 1 1
2.11.0.dev20220916 09/16/2022 7 8 10 15 7 7 9 14 0 1 1 1
2.10.0 09/06/2022 8 10 12 16 8 9 11 15 0 1 1 1
2.8.0 02/02/2022 8 10 19 25 7 8 17 23 1 2 2 2
2.6.0 08/11/2021 6 7 26 33 6 6 25 32 0 1 1 1
2.4.0 12/14/2020 5 7 44 63 5 6 42 61 0 1 2 2
2.2.0 05/07/2020 2 3 57 82 2 3 56 81 0 0 1 1

Total 15 17 75 105 12 13 70 100 3 4 5 5

Fig. 2. Bug detection latency illustration.

versions around t2 on Sep. 15, 2020, it detects the bug in

v2.4.0, released on Dec. 14th, 2020 (t1). We then report the

bug to the developers on t2. t3 denotes the present.

Initially, we measure the actual bug latency reduction
(represented in red dashed line in Fig.2) brought about by

CEDAR. This is calculated as the time between the release

date of the version in which CEDAR detects the bug (t1) and

the date we report the bug to the developers (t2). In the example

provided earlier, if CEDAR had been applied immediately after

the release of version v2.4.0 in 2020 (t1) and detected the bug

on the same day, CEDAR could have reduced the bug’s latency

by t2 − t1, which is 640 days. In contrast, without CEDAR,
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this bug would have remained undiscovered until at least t2
(Sep. 15, 2022), i.e., 640 days later, since we are the first to

report this bug.

For the 23 previously unknown bugs that CEDAR detects,

we compute the actual (minimum) bug latency reduction. Our

findings indicate that, on average, the minimum bug latency

reduction time for these bugs is 338.6 days. Furthermore, under

the assumption that the previously unknown bugs detected by

CEDAR would have remained undiscovered until today (t3) if

CEDAR had not been applied—-considering the challenge and

the effectiveness of employing such tools to detect bugs in DL

libraries [6], [7]—-the possible bug latency reduction (indicated

by the orange dashed line) amounts to 744 days. In summary,
the regular application of CEDAR leads to bugs being detected
at least 338.6 days earlier, possibly reaching 744 days, and
correspondingly reducing the bug detection latency.

Second, we investigate the extent to which CEDAR could

have reduced the bug latency of a program if developers had

applied CEDAR to all nightly versions. We refer to this as the

potential bug latency reduction (represented by the purple line

in Fig. 2). For instance, if CEDAR were applied to the nightly

version that introduces a bug, it could be detected immediately,

resulting in a zero-day bug detection latency. Currently, since

we have only applied CEDAR to 20 versions, the purple time

window is non-zero for some bugs for two main reasons: (1)

certain bugs are introduced in a version older than the earliest

version among the 20 tested, and (2) some bugs are introduced

in a nightly version (days or months) before a released version

that we evaluate. Specifically, we calculate the potential bug
latency reduction for the previously unknown bugs detected by

CEDAR as the time between t0 and t1, i.e., the duration from

when the bug is introduced to the release date of the version in

which CEDAR first detects the bug (the purple line in Fig. 2).

Our results reveal that the average potential bug latency
reduction is 350.5 days for the 23 bugs. If developers had

applied CEDAR to the nightly versions, the time to detection

for these bugs could be 0 days, potentially reducing bug latency

from 350.5 to 0 days. This represents only a potential bug

latency reduction, as we did not apply CEDAR to all nightly

versions, and considering the inherent randomness of fuzzing,

there is a slight possibility that CEDAR may not detect some

bugs in the versions where they are introduced.

Continuously applying CEDAR reduces bug detection

latency of the evaluated libraries by nearly a year (on

average 338.6 days), and can potentially further reduce it

by 350.5 days, facilitating earlier bug detection.

C. Bug lifetime

Fig. 3 and Fig. 4 show the lifetime of the bugs de-

tected by CEDAR in PyTorch and TensorFlow respec-

tively. Among the 83 bugs, we omit bugs that either 1)

have no status change during the time window we inves-

tigate, e.g., buggy in all the versions; or 2) are known

bugs. For example, we omit the TensorFlow bug with

Fig. 3. PyTorch bug lifetime. Numbers in parenthesis () are the number of
buggy APIs if more than one, while the y-axis lists one of them. Letters in
brackets [] are the symptoms of the bugs: S - segmentation fault; F - floating
point exception; A - abort; B - bus error. The left cap of a blue line denotes
bug introduction time and the right cap indicates bug fixing time.

Fig. 4. TensorFlow bug lifetime. Numbers in parenthesis () are the number
of buggy APIs if more than one, while the y-axis lists one of them. Letters in
brackets [] are the symptoms of the bugs: S - segmentation fault; F - floating
point exception; A - abort; I - inconsistency. The left cap of a blue line denotes
bug introduction time and the right cap indicates bug fixing time.

API tf.image.combined_non_max_suppression in

Fig. 4 because the bug exists in all versions we investigated

and remains unfixed until now. In total, we omit 1 and 58 bugs

from PyTorch and TensorFlow respectively.

We manually investigate the bugs that CEDAR detected

(Table I) on the versions listed in Table II and Table III. In the

figures, the x-axes are the dates, and the y-axes represent each

bug. We use the buggy API to represent each bug. Numbers in

parenthesis () are the number of buggy APIs if more than one,

while the y-axis lists one of them. Letters in brackets [] are

the symptoms of the bug: S - segmentation fault; F - floating

point exception; A - abort; B - bus error; I - inconsistency. For

example, Bug 1 in Fig. 3 represents a PyTorch bug that causes

segmentation fault ([S]) in 23 APIs including torch.add.

[B/S] indicates that PyTorch Bug 6 in Fig. 3 results in both

a bus error and a segmentation fault in the PyTorch API

torch.kthvalue.

The blue lines represent the time windows that each bug

remains open/unfixed. The time points are rounded to versions.

The left cap on a line, if any, represents the time point the bug

is introduced. No left cap means the bug is introduced prior

to the oldest versions we investigate, i.e., PyTorch v1.10.0 and

TensorFlow v2.1.0. We exclude older versions because they
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Fig. 5. Bug-triggering input for TensorFlow Bug 5.

a. Bug fix for TensorFlow Bug 3.

b. Bug fix for TensorFlow Bug 4.

Fig. 6. TensorFlow bug fixes for Bug 3 and Bug 4 for API
tf.nn.conv2d_transpose.

are not actively maintained and developers would not fix bugs

detected in those older versions, according to a response we

got from a developer. The right cap on a line, if any, represents

the time point the bug is fixed. No right cap means the bug

remains unfixed until now (Nov. 1st, 2023).

a) Regression Bugs: CEDAR detects new regression

bugs, which is an ideal use case for CEDAR. For example, Ten-

sorFlow Bug 5 in Fig. 4 results in a segmentation fault in API

tf.random.learned_unigram_candidate_sampler
due to large values in the parameter true_classes as

shown in Fig. 5. The bug existed in earlier versions of

TensorFlow and was fixed in v2.4.0 where the API outputs

the correct results. However, the bug was re-introduced in

v2.7.0 released on November 4th, 2021, which has the same

symptom as Bug 5 given the same bug-triggering input. We

reported this new regression bug and it was fixed in Nov.

2022.

b) Masked Bugs: Furthermore, by continuously apply-

ing CEDAR on new releases, it detects additional new

bugs that may be masked by existing bugs. For example,

CEDAR detects two previously unknown TensorFlow bugs

(Bug 3 and Bug 4 in Fig. 4) affecting the same API

(tf.nn.conv2d_transpose) and causing similar crashes,

i.e., abort. Bug 3 is triggered by negative values in the pa-

rameter output_shape (e.g., output_shape=[2,-2]),

and Bug 4 is caused by a large value in the same parame-

ter (e.g., output_shape=[114078056, 179835296]).

After reporting Bug 3 to the TensorFlow developers, they

fixed it on Sep. 26, 2022 (Fig.6a). However, the API

tf.nn.conv2d_transpose continued to crash in the

nightly version on Sep. 27, 2022, due to Bug 4. This bug was

later confirmed and fixed (Fig.6b) two days after being reported.

These two bugs, fixed in different locations, demonstrate the

importance of continuous testing even after resolving bugs,

as additional issues may be concealed. Bug 3 was addressed

with a negative value check, while Bug 4 was resolved by

a. Bug-triggering input for PyTorch Bug 1.

b. Bug fix for PyTorch Bug 1.

Fig. 7. PyTorch Bug 1 in torch.add and 22 additional APIs.

replacing the API ShapeFromFormat with a safer API

ShapeFromFormatWithStatus to prevent crashes (e.g.,

due to overflow). This example highlights the importance of

continuous testing in uncovering hidden (masked) bugs.

CEDAR demonstrates its effectiveness in regression and

continuous testing by detecting new regression bugs and

masked bugs, both of which are challenging to detect when

testing a single version.

CEDAR detects previously unknown inconsistency bugs

with C-EAGLE. For instance, Bug 17 in Fig. 4 is a new

inconsistency bug introduced in TensorFlow v2.4.0 (Dec. 14,

2020). The developers have confirmed this bug after we reported

it. Details of Bug 17 are in Section V-D.

D. Bug examples

a) Case study 1 (PyTorch Bug 1): C-DocTer detects a

segmentation fault (i.e., Bug 1 in Fig.3) in the newly added

code of PyTorch v1.11.0, which causes crashes in 23 PyTorch

APIs, including torch.add and torch.eq. These APIs are

mathematical operations and require three input parameters: two

operand parameters (input and other) and one output tensor

(out) to store the results. The APIs crash with a segmentation

fault when there is a shape mismatch, specifically when out
has at least two more dimensions than both operands. For

example, in Fig.7a, the two operands have 2 and 1 dimensions,

respectively, while out has 4 dimensions. After we reported

the bug, it was labeled as high priority by the developers and

subsequently fixed with the patch shown in Fig.7b. This case

study illustrates CEDAR’s effectiveness in detecting bugs in

newly added code, reducing the bug detection latency (i.e., red

dashed line in Fig.2) to 0 days.

b) Case study 2 (TensorFlow Bug 16): C-DocTer de-

tects a previously unknown TensorFlow bug in the API

tf.histogram_fixed_width when passing large values

(e.g., 3e+38) to parameters values and value_range. This

bug has existed since v2.1.0. However, DocTer [7] failed to

detect it due to the randomness of the fuzzing process. C-

DocTer triggers this bug in two out of ten runs when testing

versions v2.10.0 and v2.11.0.dev20220916. Due to the random

nature of fuzz testing, some bugs can be difficult to trigger

with a limited number of trials. The developers confirmed and

fixed the bug after we reported it. This case study highlights
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a. Bug-triggering input for PyTorch Bug 2.

b. Bug fix for PyTorch Bug 2.

Fig. 8. PyTorch Bug 2 in torch.nn.PixelShuffle.

a. Bug fix for TensorFlow Bug 1.

b. Bug fix for TensorFlow Bug 2.

Fig. 9. TensorFlow bug fixes for Bug 1 and Bug 2 for API
tf.linalg.diag.

the advantage of applying continuous testing to repeatedly test

code, increasing the likelihood of exposing hard-to-detect bugs.

c) Case study 3 (PyTorch Bug 2): C-DocTer de-

tects a floating-point exception in the PyTorch layer API

torch.nn.PixelShuffle (i.e., Bug 2 in Fig.3) when

providing the layer API with an empty tensor, such as the

input in Fig.8a. We reported this bug to the PyTorch

developers on GitHub, and it was labeled by the developers

as high priority. The bug was later fixed with the patch in

Fig 8b with a zero check.

d) Case study 4 (TensorFlow Bug 1 and Bug 2): C-

DocTer detects two bugs (Bug 1 and Bug 2 in Fig.4) in the

same TensorFlow API, tf.linalg.diag, but with different

symptoms-—one with an abort (Bug 1) and another with a

segmentation fault (Bug 2). The API returns a batched diagonal

tensor with given batched diagonal values. The parameter k
represents the diagonal offset(s), where positive values mean

super-diagonal and negative values mean sub-diagonal. Bug 1

is a previously unknown bug discovered by CEDAR, caused by

a large value of k, e.g., k=1070828000000. The developers

fixed it after we reported it by replacing the function AddDim
with AddDimWithStatus, which prevents check crashes

(Fig9a). Bug 2 is a known bug introduced in v2.2.0 and fixed

before v2.6.0. It is caused by an empty k, e.g., k=[], and

was fixed by adding a size check in Fig. 9b.

e) Case study 5 (TensorFlow Bug 17): C-EAGLE de-

tects a bug by observing the inconsistency between the

outputs of the eager mode and graph mode of the API

tf.signal.inverse_stft, which are supposed to yield

the same results. In the eager mode, TensorFlow evaluates

operations instantly, while in the graph mode, it constructs a

computational graph before evaluation, enabling compiler-level

TABLE IV
EXECUTION TIME. THE TIME IS OF FORMAT HH:MM.

Time (Avg.) Total C-DocTer C-EAGLE

PyTorch 07:50 03:30 04:20
TensorFlow 09:08 04:10 04:58

Average 08:29 03:50 04:39

TABLE V
EFFECTIVENESS OF THE OPTIMIZATION STRATEGIES. THE TIME IS OF

FORMAT HH:MM.

Time (Avg.) Total C-DocTer C-EAGLE

CEDAR 08:29 03:50 04:39
CEDAR - Parallelism 95:53 34:43 61:10
CEDAR - Test case reduction 11:42 03:50 07:52
CEDAR - Parallelism - Test case reduction 130:36 34:43 95:53

optimizations. Both modes are expected to produce equivalent

outputs. The developers have confirmed this bug after we

reported it.

f) Case study 6 (PyTorch remainder Bug): C-EAGLE

detects inconsistencies when passing inputs with different data

types to the API torch.remainder. Specifically, C-EAGLE

casts the input parameter into two data types, typeX , and

typeY , and feeds them into the API. If the input value is

within the intersection of two data types’ size ranges, the

outputs are expected to be the same. However, we observed a

significant difference among the outputs, as large as 197, when

passing the same value in different data types (torch.int32

and torch.float32). After reporting this inconsistency, the

developers confirmed it as a numerical stability problem.

E. Execution time

In Table IV, we list the execution time (in the format

of HH:MM) of CEDAR (Col. “Total”) on PyTorch and

TensorFlow respectively, as well as the time breakdown for C-

DocTer and C-EAGLE. On average, CEDAR takes 08:29 hours

to conduct testing on PyTorch or TensorFlow. On average, it

takes 0.14 seconds for C-DocTer to generate and test each

input, and 24.9 minutes for C-EAGLE to execute a pair of

equivalent graphs.

F. Optimization

In this section, we study the effectiveness of the optimization

strategies (Section III-E). We focus on the time efficiency

for strategies parallelism and test case reduction, and space

efficiency for strategy redundancy removal. We also discuss

the bug detection effectiveness for test case reduction.

Table V shows the test time reduction and the ablation

study of our optimization strategies parallelism and test case
reduction. The table lists the average execution time (HH:MM)

of PyTorch and TensorFlow for CEDAR, CEDAR without

parallelism, CEDAR without test case reduction, and CEDAR

without parallelism and test case reduction. In each row, we list

the execution time for C-DocTer, C-EAGLE, and the total time

(i.e., time for CEDAR in Col. “Total”). The results show that
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the two optimization strategies combined effectively reduce

the testing time overhead by a factor of 15.4. Specifically, the

test case reduction strategy reduces the continuous testing time

overhead by a factor of 1.4, while parallelism reduces it by a

factor of 11.3.

Although the test case reduction strategy only helps reduce

the execution time of 3 hours and 13 minutes on average,

it increases the chance of triggering bugs or inconsistencies.

According to a previous study [7], only 33.4% of the inputs

that DocTer generates are likely valid (i.e., do not cause the

APIs to crash or throw exceptions). Invalid inputs would be

rejected by the function’s input validity check and are not likely

to trigger any inconsistencies. Exercising invalid inputs would

not only increase time overhead but also lower the chance of

triggering a bug with limited time and resources. With the test
case reduction strategy, C-DocTer only feeds C-EAGLE with

E_max_iter likely valid inputs, and it, therefore, increases

the chance of triggering inconsistencies.

Our experiments also show that the strategy redundancy
removal helps remove 1,492,538 and 1,648,391 redundant files

and releases 64.25GB and 94.97GB space for PyTorch and

TensorFlow respectively. Since CEDAR only uses on average

8.2G storage for all the logs, outputs, and bug-relevant inputs,

the strategy reduces the space overhead by a factor of 9.7.

The optimization strategies, which combine generic and

tool-specific approaches, effectively reduce the time and

space overhead by factors of 15.4 and 9.7, making

CEDAR’s continuous testing more practical.

VI. THREATS TO VALIDITY

One threat is that older versions of documents may contain

outdated constraints, which could lead to false positive bugs.

We did not observe false positives due to this reason in our

experiments. This is because the main negative impact of using

outdated documents is increasing the invalid input ratio, i.e., the

ratio of generated inputs that trigger exceptions, which would

not introduce false positive bugs for C-DocTer and C-EAGLE,

as they only focus on crashes and inconsistencies. In the future,

one can mitigate this threat by analyzing the latest versions of

the documents.

Moreover, since we only investigate official and certain

nightly versions of each library within a certain time window

(Section IV) and the time points are rounded to versions in

Section V-B, the bug introduction time (Fig. 2) may not be

precise, which puts a threat to the validity of the potential bug

latency reduction (350.5 days). However, the bug introduction

time could only be earlier than the time that we obtain, as a

bug could be introduced in a nightly version before the bug-

introducing version that we identified. Therefore, CEDAR could

potentially reduce the bug latency by 350.5 days minimally.

VII. RELATED WORK

a) Continuous Testing: Continuous testing [17] is testing

in a situation where software is continuously developing and

can be released at any time. With the growth of modern

software projects’ code sizes, there’s an increasing reliance on

continuous integration systems [27]. There has been significant

research on optimizing this procedure [15], [16], [18], [28].

Google researchers [16] proposed test prioritization to reduce

workload by avoiding frequent re-execution of unlikely-to-fail

tests. CEDAR also employs optimization strategies such as test

case reduction (Section III-E). While previous works focus on

test case selection, prioritization, etc., our approach targets DL

libraries, integrating the state-of-the-art DL testing frameworks,

with tool-specific optimizations.

b) Bug life cycle: There has been work studying the bug

fixing time, i.e., from bug reported till bug report closed, for

bugs in open-source projects and found that it takes less than

three months for most bugs to be fixed in large open-source

projects (e.g., Eclipse) [29], and 0-1.5 months for most bugs

in open-source Android apps [30].

c) Bugs in DL/ML systems: There is research on the bugs

in the DL or ML systems [31], [32], including their categories

(e.g., data bug), root causes (e.g., unaligned tensors), challenges

for debugging (e.g., probabilistic correctness), etc. We focus

on crashes and inconsistencies and provide a study on the life

cycles of the bugs detected, including the bug-fixing time, bug

detection latency, etc.

d) Testing DL libraries: There are approaches focused on

testing DL libraries [8], [9], [11], [12]. Fuzz-based approaches

leverage information extracted from documents [7], [9]–[11],

code base [8], [10], and gradients [12]. Different from them,

CRADLE [5], LEMON [33], EAGLE [6], DeepREL [9], and

�Fuzz [11] resolves the oracle challenge with differential

testing. CEDAR selects two latest DL testing approaches to

study their integration in a continuous testing setup.

VIII. CONCLUSION AND DISCUSSION

In this paper, we explore DL testing approaches in a

continuous testing setting, examining their capabilities and

effectiveness in finding bugs in continuous builds. We propose

a continuous testing framework for DL libraries, CEDAR,

which efficiently integrates two state-of-the-art DL testing

approaches, i.e., DocTer and EAGLE, to test DL libraries

for detecting crashes and inconsistency bugs. We share our

conclusions, insights, and lessons learned for the reference of

future developers and researchers.

a) Effectiveness in continuous testing: One insight gained

from this integration is that continuous testing of cutting-

edge tools increases test effectiveness. Specifically, CEDAR

is effective in finding bugs from the newly added code within

both nightly and released versions, as well as hard-to-detect

bugs within the existing code from DL libraries. In addition,

CEDAR identifies regression bugs and masked bugs, both of

which are challenging to detect when testing a single version.

Overall, both C-DocTer and C-EAGLE effectively detect bugs

in the tested versions. By continuously applying CEDAR, it

detects 83 bugs from 140 APIs in 20 versions of PyTorch and

TensorFlow. Out of the 83 bugs, 23 are previously unknown

bugs, with 21 confirmed or fixed by the developers.
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b) Efficient integration with tool-specific optimizations:
Another lesson learned from our integration with a leading

company is that speed is crucial for the practical adoption of CI

testing tools. One best practice is combining generic and tool-

specific optimizations. Specifically, to make the integration

more efficient, we design and implement three optimization

strategies that reduce CEDAR’s time and space overhead by a

factor of 15.4 and 9.7. While one of the optimization strategies

(parallelism) is general, test case reduction and redundancy
removal are tailored specifically for the integration of DocTer

and EAGLE. To make the integration of domain-specific tools

more efficient, specialized (joint) optimizations that consider

the unique characteristics of each tool are needed.
c) Reducing bug detection latency: Our results (Sec-

tion V-B) show that CEDAR has effectively shortened the

bug detection latency by almost a year (338.6 days) on

average. If applied to all nightly versions, CEDAR could further

reduce bug detection latency substantially. This underscores the

importance of continuous testing on DL libraries and highlights

the potential of integrating domain-specific tools in the testing

process.
We explore integrating state-of-the-art DL library testing

techniques with continuous testing, making them more efficient

and effective for both developers and researchers. Our work

demonstrates the importance of domain-specific optimizations

and the potential impact of continuous testing on detecting

bugs and reducing bug detection latency in the development

of DL libraries.
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