
 1

MOL: METHOD OF LINES APPLICATION
John R. Rice and Mikel Luján

October 13, 2000

Abstract
MOL is a C program that has the behavior of a realistic scientific application: the
solution of time dependent partial differential equations by the "Method of
Lines". MOL is an abstraction that eliminates or greatly simplifies those
components of a realistic code which are required for robust and accurate results,
but which have little or no effect on run time behavior. As a result, MOL has
only 4,000 lines of code instead of 20,000 or 30,000 or more for a realistic code.
Further, MOL is highly object oriented to facilitate analysis, instrumentation and
translation. MOL should be viewed as producing the display of the PDE solution
and the computation should produce a go od "quality of service" (e.g., 30
solutions a second). MOL has four types (output speed, solution behavior,
accuracy and parallelism) of externally controllable parameters to adjust
execution behavior with a total of nine parameters. Currently MOL has one time
and one space dimension. It is designed to be extendible in various ways, e.g.,
more space dimensions and adding communication parameters.

I. THE METHOD OF LINES

We start with the simplest case and later show relevant variations. The PDE problem is

ux = f * u yy

on the 3-sided domain: x = 0, 0 ≤ y ≤ 1; y = 0, 0 ≤ x; x = 1, 0 ≤ x. The usual presentation is
ut = f * u xx but I reserve the variable t to be real time. Values of u(x,y) are given on 3-sides of the
domain:

The computation starts at x = 0 and evolves (this PDE problem is often called evolutionary)
through increasing x values.

The Quality of Service (QoS) requirement is *Produce a solution u(xi,y) at a fixed rate of
progress, (ROP). That is, given values xi (say xi = i*. 01 for i = 0 to 1 million), produce the
snapshot u(xi,y) at the rate ROP of, say, 30 per second.

The method goes as follows:

1. Discretize the y variable into K intervals, of size ∆y by yk = k * ∆y, k = 0,…, K. This
defines K-2 new lines parallel to y = 0 and y = 1. u(x,y) is given on the boundaries for
 k = 0, K

2. On line k, discretize uyy by the simple finite difference formula

2)(

),(),(2),(
),(

y

yyxuyxuyyxu
yxuyy ∆

∆−+−∆+=

Compute u(x,y) in here

y = 1

y = 0

 2

3. This creates K-2 ordinary differential equations (ODE) to be solved on the interior lines.

Let Vk(x) = u(yk,x) to simplify the notation and these ODEs are

dVk(x)/dx = f * [Vk+1(x) - 2Vk(x) + Vk-1(x)]/ ∆2y (1.1)

for k = 1,…, K-1

4. One now applies a standard (and for our application, a simple) ODE solving formula to
each of these ODEs. An explicit formula generates a computation at x = xi of the form

Vk(xi + ∆x) = some function of information for x ≤ xi .

Thus the ODE solver operates on line k in a mode of (1) make a step forward of size ∆x,
(2) exchange information with lines k+1 and k–1, (3) Repeat.

II. MOL Object Oriented Model — Model-A

The PDE problem is defined by four functions; three functions determining the values of u(x,y)
on 3-sides of the domain, and a discretized function on the y-dimension. We represent the first
three functions as objects (solutionAtT0, solutionAtY0, solutionAtYLast) of class Function2D,
while the discretized function is represented as an object (functionDiscretisedFirstDerivative)
of class FunctionDiscretised2D.

The main difference between these two classes is that FunctiondDiscretised2D has an attribute
of class InternalSolutionOfMethodOfLines1D which enables a discretized function to access
values of Vk(x) (i.e. previously obtained solutions) in any line (see 1.1).

The class InternalSolutionOfMethodOfLines1D is a container whose objects store the set of
internal values computed by the ODE solver (solver of Initial Value Problem). Internal is used to
differentiate between values computed by the solver of Initial Value Problem (IVP), from the
values required by users and specified by the snapshots u(xi,y) (with xi = i * u serDeltaX). The IVP
solver can be computing the solution with a ∆x different from userDeltaX. Thus, users simply
have to access objects of class SolutionOfMethodOfLines1D which store the solution values for
each snapshot.

An object of class RateOfControl1D represents the ROP. This class will receive information of
how long took to compute the last x-step, how many steps are needed for the next snapshot and
how much time has been consumed since was computed the previous snapshot. This information
will be used to determine whether the ROP could be met or whether the accuracy should be
relaxed.

An IVP solver is represented by an object of class SolverOfInitialValueProblem1D. This object
has an attribute of class InternalSolutionOfMethodOfLines and another attribute of class
FunctionDiscretised2D. The first attribute enables the solver to access solution values
computed in a previous step. The second attribute enables the solver to evaluate the discretized
first derivative function (1.1).

 3

The UML class diagram for MOL model-A is:

III. THE SPECIFIC APPLICATION — SIMPLEST CASE OF MOL

We choose the PDE to have the true solution

u(x,y) = cos(by) * [2 + sin(ax)]

So the PDE is

 ux = –[(a/b2) * cos(ax)/(2 + sin(ax))]uyy

 = f(a,b,x) * uyy

The parameters a and b are the knobs one varies to change the solution and thus the work
required. We assume these are varied smoothly as a function of real time. We restrict the
computation to

� Use constant ∆y (at any value of x).
� Use constant ∆x (at any value of y).
� Use the same ODE method on each line at any value of x.
� Adapt ∆x and ∆y to achieve an accuracy TOL.
� Be able to set a switch Meth to choose between two ODE methods.
� Group NG neighboring lines together to form a process for parallel execution.

The step size ∆x is determined automatically by the ODE methods and ∆y is determined by a
simple function inside MOL. This leaves three knobs to control the computation: Tol, Meth, and
NG. The computation geometry is illustrated as follows:

x = 0

Group 4

Group 3

Group 2

Group 1

y = 1

y = 0

 4

for the case of 16 lines partitioned into groups of 4.

As the control knows a, b, Tol, Meth and NG are changed, the rate of progress of the computation
changes. The controls a and b are external, while Meth and NG are internal. The control Tol is
ambiguous, one wants to set it externally, but if the computing capacity is inadequate, one can
rationally choose between not meeting the QoS requirement or relaxing the accuracy requirement.

IV. MOL Object Oriented Model — Model-B

The restrictions of MOL make us modify Model-A. We need to accommodate Model-A so that:

� ∆x and ∆y can be adapted to achieve TOL, and
� switch the IVP solver among a group of them∗.

How to change ∆x and ∆y, and how to switch the IVP solver are encapsulated into an object of
class ErrorControl1D. Such an object will use an estimation of the computational error to,
accordingly, increase or decrease ∆x and ∆y, and to switch among higher or lower order IVP
solvers. For this purpose, users will have to provide a function that estimates the error due to the
IVP solver (see 6.1) and a function that estimates the error due to the discrimination on y-
dimension (see 6.2). The function that estimates the error due to the IVP solver takes as
parameters the order of the solver, ∆x and x; it is represented as an object of class Function3D.
The other function takes as parameters ∆y and x; it is represented as an object of class
Function2D. Thus, the class ErrorControl1D has attributes of classes Function2D and
Function3D.

The list of IVP solvers, among which MOL selects, is stored in an ordered list, class named
RegisteredInitialValueProblemSolver1D.

Since ∆x and ∆y are allowed to change and IVP solvers use solution values u(xi,y) with xi less
than current x, sometimes u(xi,y) has not been computed. In these cases, we estimate u(xi,y) by
interpolation. The class InterpolationMethod1D represents an interpolation algorithm.

∗ We do not introduce parallelism in Model-B. This will be introduced in Model-Par.

 5

The UML class diagram for Model-B is:

V. GENERALIZATIONS OF MOL

We now present various ways the above application can be generalized to create more interesting
computations.

III. Increase the Dimension ∗∗∗∗. One can add more space dimensions (x is time and y is space
above) and solve

ux = f * (uyy + uzz)
 ux = f * (uyy + uzz + uww)

The complexity of the code increases little with these additions, provided one maintains the
groups of lines as equal rectangular sets. One can allow a border of smaller rectangular groups
with somewhat more effort. Otherwise, one is restricted to 1, 4, 9, 16, 25, 36, … groups in 3D and
1, 8, 27, 64, 125, 216, 343, … groups in 4D.

The computing requirements increase rapidly with dimension, being of the order of K, K2 and K3
for space dimensions 1, 2, and 3, respectively.

III.2 Change the Number of Lines Dynamically. The number of lines in y (and z and w) is
determined by Tol. We assume (reasonably) that we have a function D so that ∆y = D(Tol). As we
vary b, we should change ∆y, the relationship is, roughly, ∆y2 = Tol/b4. In the previous simple
case we are implicitly assuming that Tol is determined by the resolution of the visualization and
not by the numerical accuracy needed.

III.3 Change the ODE Method Dynamically . This is actually fairly easy to do and the pause in
the solution should be short, perhaps the order of the time to make 2–5 steps in x. It is interesting
because it can have a large effect on accuracy (and thus step size ∆x) and adds to the challenge of
management.

∗ Not to be implemented, since 1D is already complex enough (> 1000 lines).
+ See Model-Par.

 6

III.4 Change the Number of Groups Dynamically++++. This is equivalent to adding processors in a
parallel computation. It requires the redistribution of data among the groups. If one changes, say,
from 6 to 14 groups using 42 lines, then essentially everything must be redistributed. If one
simply divides each group of lines, then to makes the change is much simpler, e.g., going from 7
to 14 groups using 42 lines.

III.5 Variable Group Sizes *. A group represents a processor of a parallel computing
environment. If this environment is heterogeneous, then the group sizes should vary so as to
maintain a constant rate of progress. Suppose there are M processors, each of power mj, then the
M = NG groups should have a number of lines gj with mj/gj = constant.

If the group sizes are fixed, then the computation is essentially the same as before, but the code
data structures must be more flexible. If the group siz es change dynamically, then further
flexibility is needed in the codes for each group.

VI. MOL PARAMETERS

These are defined as follows:

* ROP: Rate of Progress. The rate of advancing x as a function of real (computing) time.
* a: Time Variation Factor . The parameter a in sin (ax).
* b: Space Variation Factor. The parameter b in cos(by).
* Tol: Accuracy. The tolerance needed in solving the PDE.
* K : Number of Lines. The number of lines in the method = 1/∆y.
* Meth: Method Selection. Indicator of the ODE method being used along the lines.
* MethOr : Method Order . The order of the ODE method.
* NG: Number of Groups. Number of (nearly?) equal sized groups of lines assigned to

a process. Equivalent to the number of processors in most parallel computing
environments.

The parameters ROP, a, and b are totally external to the management process. The accuracy
parameters (Tol, K, Meth, Method) are related approximately by

SolverError = Cx × ∆x MethOr * a
MethOr + 1 (6.1)

DiscritizationError = Cy × ∆y2 * b
4 (6.2)

Tol = SolverError + DiscritizationError

where Cx and Cy are unknown constants that can be estimated rather well (with some effort). The
ODE methods automatically adapt the computation to control the term Cx * ∆xM * aM but the
management analysis could suggest a change Meth to affect the performance. The control of the
Cy * ∆y2 * b4 term is made by MOL itself as a separate computation. The parameter NG depends
on the hardware.

VII. MODEL COMPLEXITY AND ANALYSIS

It is obvious that MOL and its generalization have substantial complexity and a wide range of
needs for computing power. The interactions between parameters and performance are non-linear
and opaque. There are multiple choices for maintaining QoS, e.g., if the QoS is too low, one can

* See Model-Par.

 7

increase NG, increase the power of the processor (a parameter not visible here), change Meth,
change Tol, or take some combination of these actions.

The communication needs exist in MOL but are, so far, derived from other features of MOL.
Parameters of the communication system (bandwidth, connectivity, latency…) are not present in
MOL, but this is as it should be.

VIII. Parallel MOL Object Oriented Model — Model-Par

The parallel computation has been defined as a data partition of lines forming groups. The
restriction is that a group should be composed of neighboring lines (see Section III). This is
represented by an object of class Partition1D. Such an object is replicated for each process and
provides methods to determine the lower and upper bounds of the loop that traverses the lines at
each step on x. Since the parallel implementation is based on Message Passing (MPI), we create a
class GlobalInternalSolutionOfMethodOfLines1D and a class PrivatePartitionOfInternal-
SolutionOfMethodOfLines1D. These classes substitute the class InternalSolutionOfMethod-
OfLines1D in Model-A and Model-B.

The parallel computation of MOL will create a number of processes and each process will have
its own object of class PrivatePartitionOfInternalSolutionOfMethodOfLines1D. In addition,
the master thread will have an object of class GlobalInternalSolutionOfMethodOfLines1D. At
each x-step, each process will compute the solutions for the lines that are in its partition (do k =
lowerBound, upperBound) and then exchange the information with neighboring processes.
Also at each x step the error control and the ROP are carried by the master, that then broadcasts to
all the other processes the ∆x, ∆y and Meth. If necessary, the processes will communicate to
repartition the lines.

 8

The UML class diagram for Model-Par is:

 9

MOL Appendix - UML Class Diagrams with Attributes and Methods

struct ClassFunction2D_rep
{
 double (*evaluate) (double, double);
};// end struct

typedef struct ClassFunction2D_rep *ClassFunction2D;

ClassFunction2D createFunctio n2D
 (double (*evaluate)(double x, double y));

double evaluateFunction2DAt(ClassFunction2D f, double x, double y);

void changeEvaluationFunction2D (ClassFunction2D f,
 double (*newEvaluate)(double x, double y));

void destroyFunction2D (ClassFunction2D f);

 10

struct ClassFunction3D_rep
{
 double (*evaluate) (double, double, double);
};// end struct

typedef struct ClassFunction3D_rep *ClassFunction3D;

ClassFunction3D createFunction3D
 (double (*eva luate)(double x, double y, double z));

double evaluateFunction3DAt(ClassFunction3D f, double x,
 double y, double z);

void changeEvaluationFunction3D (ClassFunction3D f,
 double (*newEvaluate)(doubl e x, double y, double z));

void destroyFunction3D (ClassFunction3D f);

 11

struct ClassInterpolationMethod1D_rep
{
 ClassFunction2D f;
}; // end struct

typedef struct ClassInterpolationMethod1D_rep *ClassInterpolationMethod1D;

ClassInterpolationMethod1 D createInterpolationMethod1D ();

void setRealSolution1D (ClassInterpolationMethod1D method, ClassFunction2D f);
// this method is included only because this is a dummy interpolation.

double interpolate1DAt (ClassInterpolationMethod1D method,
 double x, double y);

void getNewPointsForInterpolationMethod1D
 (ClassInterpolationMethod1D method,
 ClassInternalSolutionOfMethodOfLines1D solution,
 double x, double y);

void destroyInterpolationMethod1D (ClassInterpolationMethod1D method);

 12

struct ClassInternalSolutionOfMethodOfLines1D_rep
{
 double solutionTable[maxIntermediateSolutionsInMemory][maxNumberOfLines - 2];
 // maxIntermediateSolutionsInMemory =
maxIntermediateSolutionsPerUserSolution
 // * maxNumberOfWindowsInMemory;
 // the intermediate solutions of a user solution is called
 // a window.
 double timeTable[maxIntermediateSolutionsInMem ory];
 int numberOfLinesTable[maxIntermediateSolutionsInMemory];
 int pointerToCurrentTime;
 double currentDeltaTime;
 double currentDeltaY;

 ClassInterpolationMethod1D method;
 ClassFunction2D solutionAtT0;
 ClassFunction2D solutionAt Y0;
 ClassFunction2D solutionAtYLast;
 double y0;
 double yLast;
 double t0;
 double tLast;
 double tLastCalculated;
 char *fileName;
};// end struct

typedef struct ClassInternalSolutionOfMethodOfLines1D_rep
 *ClassInternalSo lutionOfMethodOfLines1D;

ClassInternalSolutionOfMethodOfLines1D createInternalSolutionOfMethodOfLines1D

 13

 (ClassInterpolationMethod1D method,
 ClassFunction2D solutionAtT0,
 ClassFunction2D solutionAtY0,
 ClassFunction2D solutionAtY Last,
 double t0,
 double tLast,
 double y0,
 double yLast,
 int numberOfLines,
 double deltaY,
 double deltaTime,
 char *fileName);

void changeDeltaTimeInternalSolutionOfMethodOfLines1D
(ClassInter nalSolutionOfMethodOfLines1D solution,
 double newDeltaTime);

void changeNumberOfLinesInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution,
 int newNumberOfLines, double newDeltaY);

void advanceInTi meInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution);

void advanceInTimeReadingExistingInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution);

double getSolutionReadingExistingInternalSoluti onOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution, int yJ);

void setTimeAtT0ForReadingExistingInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution);

int isLastReadingExistingInternalSolutionOfMethodOfLin es1D
(ClassInternalSolutionOfMethodOfLines1D solution);

int isLastInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution);

double getInternalSolutionOfMethodOfLines1DAt
(ClassInternalSolutionOfMethodOfLines1D solution,
 int tI, int yJ);

void setInternalSolutionOfMethodOfLines1DAt
(ClassInternalSolutionOfMethodOfLines1D solution,
 int yJ, double value);

double getCurrentTimeInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D s olution);

double getValueY0InternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution);

double getValueYLastInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution);

double getValueT0InternalSolutionOfM ethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution);

double getValueTLastInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution);

 14

double getCurrentDeltaYInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMe thodOfLines1D solution);

double getCurrentDeltaTimeInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution);

int getCurrentNumberOfLinesInternalSolutionOfMethodOfLines1D
(ClassInternalSolutionOfMethodOfLines1D solution);

void destroyInternalSolutionOfMethodOfLines1D
 (ClassInternalSolutionOfMethodOfLines1D solution);

 15

struct ClassFunctionDiscretised2D_rep
{
 double (*evaluate) (double, int, double, int, double,
ClassInternalSolutionOfMethodOfLines1D);
 ClassInternalSolutionOfMethodOfLines1D solution;
};// end struct

typedef struct ClassFunctionDiscretised2D_rep *ClassFunctionDiscretised2D;

ClassFunctionDiscretised2D createFunctionDiscretised2D
 (double (*evaluate)(double, int, double, int, do uble,
ClassInternalSolutionOfMethodOfLines1D));

double evaluateFunctionDiscretised2DAt(ClassFunctionDiscretised2D f, double x,
int xi, double y, int yi, double deltaY);

void setSolutionFunctionDiscretised2D (ClassFunctionDiscretised2D f,
ClassInternalSol utionOfMethodOfLines1D solution);

void changeEvaluationFunctionDiscretised2D (ClassFunctionDiscretised2D f,
 double (*newEvaluate)(double, int, double, int, double,
ClassInternalSolutionOfMethodOfLines1D));

void destroyFunctionDisc retised2D (ClassFunctionDiscretised2D f);

 16

struct ClassSolverOfInitialValueProblem1D_rep
{
 ClassInternalSolutionOfMethodOfLines1D solution;
 ClassFunctionDiscretised2D functionFirstDerivate;
 void (*solveNextAt)(ClassInternalSolutionOfMethodOfL ines1D solution,
 ClassFunctionDiscretised2D functionFirstDerivate,
 double stepSize, int yI);
 void (*solveNextPredictorCorrectorAt)(ClassInternalSolutionOfMethodOfLines1D
solution,
 Clas sFunctionDiscretised2D
functionFirstDerivate,
 double stepSize, int yI, double *error);
 double (*getError) (double stepSize);
 double error;
 int isPredictorCorrector;
 int solverOrder;
};//end struct

typedef struct ClassSolverOfInitialValueProblem1D_rep
 *ClassSolverOfInitialValueProblem1D;

ClassSolverOfInitialValueProblem1D createSolverOfInitialValueProblem1D
 (void (*solveNextAt)(ClassInternalSolutionOfMethodOfLines1D solution,
 ClassFunctionDiscretised2D functionFirstDerivate,
 double stepSize, int yI),
 double (*getError)(double stepSize),
 int solverOrder);

ClassSolverOfInitialValueProblem1D
createPredictorCorrectorSolverOfInitialValueProblem1D
 (void (*solveNextAt)(ClassInternalSolutionOfMethodOfLines1D
solution,
 ClassFunctionDiscretised2D functionFirstDerivate,
double stepSize,
 int yI, double *error),
 double (*getError)(double stepSize),
 int solverOrder
);

void solveNextSolverOfInitialValueProblem1D

 17

 (ClassSolverOfInitialValueProblem1D solver, int yJ);

double getErrorOfSolverOfInitialValueProblem1D
 (ClassSolverOfInitialValueProblem1D solver) ;

double getStepSize(ClassSolverOfInitialValueProblem1D solver);

int getOrderOfSolverOfInitialValueProblem1D
 (ClassSolverOfInitialValueProblem1D solver);

void setSolutionOfSolverOfInitialValueProblem1D
 (ClassSolverOfInitialValueP roblem1D solver,
 ClassInternalSolutionOfMethodOfLines1D solution);

void setFunctionFirstDerivateSolverOfInitialValueProblem1D
 (ClassSolverOfInitialValueProblem1D solver,
 ClassFunctionDiscretised2D functionFirstDerivat e);

void destroySolverOfInitialValueProblem1D(ClassSolverOfInitialValueProblem1D
solver);

 18

ClassSolverOfInitialValueProblem1D createAdamsBashforthSolver1DOrder1();

void solveNextWithAdamsBashforthSolver1DOrder1At
(ClassInternalSolutionOfMethodOfLines1D solution,
 ClassFunctionDiscretised2D functionFirstDerivate, double stepSize,
 int yJ);

double getErrorAdamsBashforthSolver1DOrder1(double stepSize);

 19

ClassSolverOfInitialValueProblem1D createAdamsMoultonSolver1DOrder1 ();

vo id
solveNextWithAdamsMoultonSolver1DOrder1At(ClassInternalSolutionOfMethodOfLines1
D solution,
 ClassFunctionDiscretised2D functionFirstDerivate, double stepSize,
 int yJ, double *error);

double getErrorAdamsMoultonSolver1DOrder1(d ouble stepSize);

 20

struct ClassSolutionOfMethodOfLines1D_rep
{
 ClassInternalSolutionOfMethodOfLines1D internalSolution;
 double userDeltaTime;
 double userDeltaY;
 int userNumberOfLines;
 double userCurrentTime;
 double *solutionTable;
 cha r *fileName;
 FILE *fp;
 double auxSolutionTable[2][maxNumberOfLines];
 double auxNumberOfLines[2];
 double auxTimeTable[2];
 int auxIndx[2];
};// end struct

typedef struct ClassSolutionOfMethodOfLines1D_rep
*ClassSolutionOfMethodOfLines1D;

Cla ssSolutionOfMethodOfLines1D createSolutionOfMethodOfLines1D
 (double userDeltaTime,
 double userDeltaY,
 int userNumberOfLines,
 ClassInterpolationMethod1D method,
 ClassFunction2D solutionAtT0,
 ClassFunction2D solu tionAtY0,
 ClassFunction2D solutionAtYLast,
 double t0,
 double tLast,
 double y0,
 double yLast,
 int numberOfLines,
 double deltaY,
 double deltaTime,
 char *fileName);

double getTi meForNextSnapshot(ClassSolutionOfMethodOfLines1D solution);

 21

int getNumberOfLinesSolutionOfMethodOfLines1D (ClassSolutionOfMethodOfLines1D
solution);

double getDeltaYSolutionOfMethodOfLines1D (ClassSolutionOfMethodOfLines1D
solution);

double getDeltaTime SolutionOfMethodOfLines1D (ClassSolutionOfMethodOfLines1D
solution);

void setTimeAtT0ForReadingExistingSolutionOfMethodOfLines1D
(ClassSolutionOfMethodOfLines1D solution);

void advanceInTimeReadingExistingSolutionOfMethodOfLines1D
(ClassSolutionOfMethod OfLines1D solution);

double getSolutionReadingExistingSolutionOfMethodOfLines1D
(ClassSolutionOfMethodOfLines1D solution, int yJ);

int isLastReadingExistingSolutionOfMethodOfLines1D
(ClassSolutionOfMethodOfLines1D solution);

ClassInternalSolutionOfMe thodOfLines1D
getInternalSolutionSolutionOfMethodOfLines1D (ClassSolutionOfMethodOfLines1D
solution);

char * getFileNameSolutionOfMethodOfLines1D (ClassSolutionOfMethodOfLines1D
solution);

void destroySolutionOfMethodOfLines1D(ClassSolutionOfMethodOfLi nes1D solution);

 22

struct ClassErrorControl1D_rep
{
 ClassInternalSolutionOfMethodOfLines1D solution;
 ClassSolverOfInitialValueProblem1D solver;
 int pointerToCurrentSolver;
 ClassFunction2D functionLinesDiscretisationError;
 ClassFunction3D fu nctionSolverError;
 ClassSolverOfInitialValueProblem1D *registeredSolvers;
 int numRegisteredSolvers;
 double tolerance;
 double maxDeltaY;
 double maxDeltaTime;
 char *fileName;
};// end struct

typedef struct ClassErrorControl1D_rep *ClassErr orControl1D;

ClassErrorControl1D createErrorControl1D
(ClassInternalSolutionOfMethodOfLines1D solution,
 ClassSolverOfInitialValueProblem1D initialSolver,
 int keySolver,
 ClassFunction2D functionLinesDiscretisationError,
 ClassFunction3D functionSolverError,
 ClassSolverOfInitialValueProblem1D *registeredSolvers,
 int numRegisteredSolvers, double tolerance, double initialDeltaY,
 double maxDeltaY, double initialDeltaTime, double maxDeltaTime,

 23

 char *userSolutionFileName);

void setSolverOfInitialValueProblemErrorControl1D (ClassErrorControl1D
errorControl,
 ClassSolverOfInitialValueProblem1D solver, int keySolver);

double getCurrentDeltaTimeErrorControl1D(ClassErrorControl1D er rorControl);

void setDeltaTimeErrorControl1D(ClassErrorControl1D errorControl, double
newDeltaTime);

double getCurrentDeltaYErrorControl1D(ClassErrorControl1D errorControl);

void setDeltaYErrorControl1D (ClassErrorControl1D errorControl, double
newDelta Y);

double getToleranceErrorControl1D (ClassErrorControl1D errorControl);

void setToleranceErrorControl1D (ClassErrorControl1D errorControl, double
newTolerance);

void modifyDeltasAndSolverIfNecessaryErrorControl1D(ClassErrorControl1D
errorControl);

in t isMetToleranceErrorControl1D(ClassErrorControl1D errorControl);

int couldBeMetToleranceErrorControl1D (ClassErrorControl1D errorControl);

double getTotalErrorWithAGivenDeltaTimeErrorControl1D (ClassErrorControl1D
errorControl, double deltaTime);

Class SolverOfInitialValueProblem1D getSolverErrorControl(ClassErrorControl1D
errorControl);

void destroyErrorControl1D (ClassErrorControl1D errorControl);

 24

struct ClassRateOfProgressControl1D_rep
{
 ClassErrorControl1D errorControl;
 ClassSolutionOfMeth odOfLines1D userSolution;
 ClassInternalSolutionOfMethodOfLines1D internalSolution;
 double timeForOneSnapshot;
 double maxTolerance;
 double initialTolerance;
 char *fileName;
}; // end struct

typedef struct ClassRateOfProgressControl1D_rep *Cl assRateOfProgressControl1D;

ClassRateOfProgressControl1D createRateOfProgressControl1D
 (ClassErrorControl1D errorControl,
 ClassSolutionOfMethodOfLines1D userSolution,
 double timeForOneSnapshot,
 double maxTolerance,
 double initialTolerance);

double getMinimumToleranceRateOfProgressControl1D (ClassRateOfProgressControl1D
ropControl);

void setMinimumToleranceRateOfProgressControl1D (ClassRateOfProgressControl1D
ro pControl,
 double minTolerance);

double getTimeForOneSnapshotRateOfProgressControl1D
(ClassRateOfProgressControl1D ropControl);

void setTimeForOneSnapshotRateOfProgressControl1D (ClassRateOfProgressControl1D
ropControl,
 double timeForOneSnapshot);

void modifyToleranceIfNecessaryRateOfProgressControl1D
(ClassRateOfProgressControl1D ropControl,
 double executionTime, double
lastStepExecutionTime);

void destroyRateOfProgress Control1D (ClassRateOfProgressControl1D ropControl);

 25

struct ClassMethodOfLines1D_rep
{
 ClassSolutionOfMethodOfLines1D userSolution;
 ClassInternalSolutionOfMethodOfLines1D internalSolution;
 ClassRateOfProgressControl1D ropControl;
 ClassError Control1D errorControl;
};// end struct

typedef struct ClassMethodOfLines1D_rep *ClassMethodOfLines1D;

ClassMethodOfLines1D createMethodOfLines1D (ClassFunction2D solutionAtT0,
 ClassFunction2D solutionAtY0,
 ClassFunction2D soluti onAtYLast,
 ClassFunctionDiscretised2D functionFirstDerivate,
 double t0,
 double tLast,
 double y0,
 double yLast,
 double userDeltaTime,
 double userDeltaY,
 double t olerance,
 double initialDeltaTime,
 double initialDeltaY,
 double maxTolerance,
 double maxDeltaTime,
 double maxDeltaY,
 double rateOfProgressPerSecond,
 ClassInterpolationMetho d1D method,
 ClassSolverOfInitialValueProblem1D registeredSolvers[],
 int numberOfRegisteredSolvers,
 int keyInitialSolver,
 ClassFunction2D functionLinesDiscretisationError,
 ClassFunction3D functionS olverError,
 char *solutionFileName);

 26

void setSolver (ClassMethodOfLines1D mol,
 ClassSolverOfInitialValueProblem1D newSolver);

ClassSolverOfInitialValueProblem1D getSolver (ClassMethodOfLines1D mol);

void se tSolution (ClassMethodOfLines1D mol, ClassSolutionOfMethodOfLines1D
solution);

ClassSolutionOfMethodOfLines1D getSolution (ClassMethodOfLines1D mol);

void setErrorControl (ClassMethodOfLines1D mol, ClassErrorControl1D
controler);

ClassErrorControl1D g etErrorControl (ClassMethodOfLines1D mol);

void solveNext (ClassMethodOfLines1D mol);

void solveMethodOfLines1D (ClassMethodOfLines1D mol);

void destroyMethodOfLines1D(ClassMethodOfLines1D mol);

