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Abstract

A key mechanism of a persistent programming lan-
guage is its ability to detect and handle references to
non-resident objects. Ideally, this mechanism should be
hidden from the programmer, allowing the transparent
manipulation of all data regardliess of its potentid life-
time. We term such a mechanism object faulting, in a
deliberate anal ogy with page faulting in virtual memory
systems. This paper presents a number of mechanisms
for detecting and handling references to persistent ob-
jects, and eval uatestheir rel ative performance withinan
implementation of Persistent Smalltalk.

1 Introduction

Persi stent programming languagescombinethefeatures
of database systems and programming languagesto al-
low the seamless manipulation of data, without regard
for itspotential lifetime, beit transient or persistent [1].
To achievethisthe language must provide amechanism
for the detection and handling of referencesto persistent
data. 1deadlly, thismechanism should be hiddenfromthe
programmer, so that manipulationof persistent and non-
persistent data is as transparent as possible. The term
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we use for such a mechanism is object faulting [9, 10].
The analogy with page faulting virtual memory is de-
liberate, since the intent is to provide the illusion of
a persistent virtual heap of objects, potentially much
larger than physical or even virtual memory. Access
to those objects is detected and managed by the object
faulting mechanism, which triggers automatic retrieval
of objectsfrom persistent storage(i.e., disk) on demand.
In effect, persistent objects are cached in memory for
mani pul ation by the program.

This paper considers a number of implementations
of object faulting. We divide our attention between the
mechanism by which references to non-resident objects
are detected, and the way in which the object faults
themselves are handled. We compare several schemes
for detecting referencesto non-resident obj ects, not only
through checks in software, but also by exploiting the
page protection mechanism of the operating system to
detect non-residency through the trapping of references
to non-resident objects. We also explore an orthogonal
design choice: just how many objects should be made
resident per object fault? Naturally, faulting on agiven
object must make at | east that object avail ableto thepro-
gram, however any number of additional objects might
also be made available. Moreover, making one object
resident may require that other objectsalso be resident.
Such constraints must be observed by the object fault
handler before program execution can resume. The ad-
vantage of faulting more than one object per object fault
is straightforward: it may reduce the number of object
faults required for execution of a given program. Yet it
may al so result in more databeing made availableto the
program than is absolutely necessary for its execution.

In addition to the comparison of aternative imple-
mentations of object faulting, this paper’s contributions
include the description of our architecture and frame-
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work for persistence, and the performance evaluation,
using established benchmarks, of a prototype persistent
programming language implemented within thisframe-
work.

The remainder of the paper is organized as follows.
The next section surveys related work, distinguish-
ing this study from previous ones. Succeeding sec-
tions describe our system architecture and rationale,
the competing implementations of object faulting, the
benchmarks used for their comparison, the experimen-
tal setup, methodology, results, and our conclusions.

2 Related work

Many systems have attempted to extend the address
space of programs beyond that which can be addressed
directly by the available hardware. Virtua memory
represents the extension of the memory address space
of aprogram beyond that of physica memory. Virtua
address trandlation all ows transparent access to datare-
gardless of itsphysical memory location. The operating
system is responsible for trapping references to pages
that are not resident in physica memory, whereupon
the non-resident page is fetched from disk before the
process which caused the fault can resume execution.

Object-oriented programming languagestypically al-
low the dynamic allocation of data objects in a heap.
Objects are referred to via unique object identifiers
(OIDs), just asvirtual memory is referred to viavirtual
addresses. If the entire heap can fit in virtual memory
then OIDs can be represented as direct virtual memory
pointers. However, this limits the size of the heap to
that of the virtual address space. Extending the size
of the heap beyond that which can be addressed in vir-
tual memory requires OIDs that are not virtua mem-
ory addresses. Such systems must ultimately perform
translation of OIDs to in-memory pointersto alow the
program to manipul ate the data.

LOOM [12, 11] representsone of the earliest attempts
to extend the size of the heap beyond that addressable by
amachine word. Its goal was to provide extended vir-
tual memory support for Smalltalk systemson machines
with a narrow (16-bit) word width. Object pointers are
stored in 32 bits on disk, and an object table is used
to translate between the short and long forms. When
an object is brought into memory, its 32-bit persistent

pointer is hashed to find an entry for it in the object
table. All in-memory references to the object are then
indirected through its object table entry. If the object
contains references to other objects then they must be
converted to short form, in a process which has since
been termed swizzling. References to resident objects
are converted to their in-memory short object pointer.
References to non-resident objects are represented ei-
ther as anin-memory pointer to aleaf or asalambda. A
leaf is aresident proxy object that represents an object
on disk, containing sufficient information to locate that
object. A lambda is a place-holder (actualy the null
pointer, 0) for a pointer to an object that has not yet
been assigned a short pointer. Suppose a particular ob-
ject O hasafield which containslambda. To determine
the object to which that field refers means accessing the
long form of O stored on disk to obtain thelong address.

Object faults in LOOM are triggered via explicit
checks, isolated to certain operations in the Smalltalk
interpreter. Leaves are distinguished by a bit in their
object table entry. Objects containing lambdas are also
specialy marked. An object fault is handled by re-
trieving the object from disk and converting it to its
in-memory format. This object-at-a-time transfer of
obj ects between memory and disk is actually the major
downfall of the LOOM system, since Smalltalk objects
are too smal aunit for transfer. The implementors of
LOOM acknowledge this and specul ate on refinements
to their system that would group objects together for
transfer between memory and disk.

The Alltalk system [22] takes a similar approach to
LOOM in itsimplementation of a persistent Smalltalk
system, using an object table to translate between ob-
ject pointers and memory addresses. Alltalk performs
no swizzling: object pointers are always external iden-
tifiers that must be translated whenever they are deref-
erenced.

GemStone [17], is another effort to expand the
Smalltalk heap to include objects on disk. However,
it extends Smalltalk to provide considerable database
functionality, including queries and a query execution
model. Gemstone's integration with Smalltalk systems
isnot totally “ seamless,” sincethevirtual imageismod-
ified to include proxy aobjects that act as forwarders to
GemStoneobjects. Proxies, becausethey arefull-blown
objects in the virtual image, are thus fully visible to
applications programmers. Moreover, they carry the
additional burden of delivering much of the database

Page 2



functionality supported by GemStone.

Each of these systems have extended Smalltalk in
some way to provide some form of persistence. None
of them consider the performance overheads of persis-
tence, accepting the costs as necessary to support the
functionality they desire. Here, we are interested in
exploring the design space for implementing persi stent
programming languages, by eval uating the performance
of a number of mechanisms for object faulting.

White and DeWitt [26] have compared the over-
all performance of a number of architectures and sys-
tems that perform object faulting and pointer swizzling.
The systems considered in that study include Object-
Store[13, 16], acommercially availableobject-oriented
DBMS, and a number of software architectures based
on the EXODUS Storage Manager (ESM) [2, 20].

Severd of thearchitectures based on ESM requirethe
program to manipul ate objects through a call interface,
with modifications being performed in the client buffer
pool of ESM, as opposed to the virtua memory space
of the application. White and DeWitt introduce a new
scheme (EPVM 2.0), which avoids this call overhead
through object caching. Objects are still retrieved into
the client buffer pool using the ESM interface. How-
ever, they are then copied into the virtual memory of
the application, while the originals in the buffer pool
are unpinned. Modifications can then be made directly
in virtual memory. At transaction commit, for each
modified object in virtual memory the corresponding
origind is pinned and updated in the ESM buffer pool
through a call to ESM. White and DeWitt explored two
versionsof thiscaching scheme. Thefirst copiesobjects
one at a time from the buffer pool into virtual memory
as they are accessed by the application. The second
copies al of the objects on a given page of the buffer
pool when the first object on the page is accessed.

White and DeWitt's object caching scheme also per-
forms some pointer swizzling, in which references to
objects that are resident in the cache are converted to
direct memory pointers. Each object includes a bit ta-
ble indicating which of its slots contain direct pointers
and which contain unswizzled OIDs. Translating an
OID means probing a hash table containing pointersfor
al cached objects, and caching the abject if it is not
aready resident. EPVM 2.0 performs swizzling upon
discovery: when a location containing an unswizzled
reference to apersistent object is discovered (usually as
aresult of loading the reference to perform some oper-

ation on it) the location is updated with adirect pointer
to the abject.

ObjectStore, the final architecture considered by
White and DeWitt, takes a dramatically different ap-
proach. Objects are faulted and pointers are swizzled
using a page mapping scheme similar to virtual mem-
ory. We do not have exact details of the proprietary
mechanisms for object faulting and swizzling, but the
approach is similar to that used in the Texas system,
described in more detail below.

The results obtained by White and DeWitt indicate
that object caching is an attractive architecture for per-
sistent programming languages. For small databases,
in which the entire database can fit in main memory,
caching objects a page at atime seems best, sincethere
islittle extra overhead in copying pages versus objects,
with fewer copying operationsbeing needed. However,
for larger databasesthat do not fit in main memory, page
caching will copy some objects unnecessarily. Thisre-
sultsin double paging: pages arefirst cached in virtual
memory by the object caching mechanism, and then
paged out by the virtual memory manager.

Thecomparisonwith ObjectStore produced mixedre-
sults. Cold database performance (obtained by running
benchmarks against a database that starts out entirely
on disk at the possibly remote database server) was
worse for ObjectStore than for the architectures based
on ESM. For a small database ObjectStore exhibited
the best warm performance; for the large database its
performance was the worst. White and DeWitt suggest
that these resultsindicatethe cost of mapping dataintoa
process's address space. We speculatethat it isalso due
to the high overhead of fielding page protection traps
from the operating system to fault non-resident pages.

In contrast to White and DeWitt, who consider the
overall performance of several different architectures,
we have chosen to keep our basic architecture fixed
whilevarying the mechanisms used to detect and handle
object faults. Our architecture, as described in the next
section, is similar to the object caching architecture of
White and DeWitt. However, the representations we
usefor referencesto non-resident objectsaremuch more
lightweight than those of White and DeWitt, as are the
mechanisms we use for fault detection.

1~ 250usround trip as measured in atight loop under Ultrix 4.1
on the DECstation 3100. We note that this is generally acknowl-
edged to be one of the best operating system implementations for
trapping page protection faults.
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Figure 1. System architecture

The Texas system [21, 27] uses a page mapping
scheme similar to ObjectStoreto fault objectsand swiz-
Zle pointers. When a persistent object isto be assigned
avirtua address, a page of virtual memory is reserved
(and access protected) for the page in the persistent
store that contains the object. The offset of the object
in the persistent page is known, allowing the virtual
address of the object in the reserved virtual memory
page to be calculated. Accessing the page triggers a
virtual memory page trap. Texas handles this trap by
reading in the persistent page from the store and map-
ping it into the previously reserved virtual page. All
pointersin that page are then swizzled by reserving vir-
tual memory pages for the abjects to which they refer
(assuming the referenced pages are not already mapped
intovirtual memory). Thepersistent referencescanthen
be replaced with virtual memory addresses, the faulted
page is unprotected, and execution resumes. As exe-
cution proceeds, pages are reserved in a “wave-front”
just ahead of the most recently faulted and swizzled
pages, guaranteeing that the application will only ever
see virtual memory addresses.

Wilson and Kakkad [27] report promising prelimi-
nary performance results for an implementation of per-
sistent C++ using Texas. The beauty of Texasisthat it
requireslittle or no modificationto an existinglanguage
to support persistence. Aswe have already indicated,
fielding apage protection trap from the operating system
is an expensive operation. Whether software-mediated
object faults (realized by augmenting the programming
languageimplementation) can offer competitiveperfor-
mance is a question we explore here.

3 System architectureand rationale

Our architecture (see Figure 1) bears a close resem-
blance to the object caching architecture of White and
DeWitt [26]. Objects are copied on demand into the
virtual memory address space of the program from the
buffer pool of the persistent storage manager, inthiscase
the Mneme persistent object store [14]. This copying
includes any translation needed to convert the objects
into aform acceptabl e to the program, including pointer
swizzling. Our choice of such an architecture was
driven by a desire to give the language implementation
maximum control over all objects being manipulated
by an application, without having to go through a re-
strictiveinterface to the underlying storage manager. In
particular, standard programming language techniques
for memory management, including those of garbage
collection, can be used to manage the aobjects resident
in the program’s virtual address space[8].

The unit of transfer between the permanent database
and Mneme's buffers is the physical segment, which
may have arbitrary size (up to some large system-
defined limit). Thus a physical segment may contain
any number of objects. Objects within a physical seg-
ment are further grouped into logical segments. A log-
ical segment may contain at most 255 objects; all 1og-
ical segments within a physical segment must be full,
except possibly the last, in which new objects are al-
located. Grouping of objects for transfer between disk
and memory eliminates the performance bottleneck ex-
perienced by LOOM, which retrieved objects one at a
time.
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3.1 Detectingobject faults

Asmentioned previously, object faulting requires some
mechani smto distinguish between referencesto resident
and non-resident objects. These mechanisms may be
loosealy divided into two categories, depending on the
strategy they adopt. For the purposes of this discussion
we view the persistent heap as a directed graph: the
objects are the nodes and the references between the
objects are the edges.

Edge marking schemes take the approach of tagging
the references between the objects. If tagged as swiz-
Zed, then a reference is a direct pointer to the corre-
sponding object in memory; if non-swizzled then the
reference consistsof an OID. Thisis the approach used
by EPVM 2.0 [26]. An apparent disadvantage of edge
marking is that OIDs can be fetched from the pointer
fields of objects, passed around, and stored, without ac-
cessing the target object. When the target object finally
is accessed the origin of the reference may no longer
be known. White and DeWitt got around this through
swizzling upon discovery (when a reference is loaded
from alocation), assuming that theload isaprecursor to
performing some operation on the target object. How-
ever, their solution may swizzle too eagerly, since the
ultimate reason for loading a reference cannot always
be determined at the time of the load.

Node marking schemes require that all object refer-
ences in resident objects be converted to pointers. In
ObjectStore and Texas this is achieved by reserving
(although not necessarily allocating) virtual pages for
the objects referred to by the pointers, and protecting
those pages to trap all access to those pages. Another
approach, similar to LOOM’s leaf objects, is to have
small proxy objects (we call them fault blocks) stand in
for non-resident objects, asillustratedin Figure 2(a). A
fault block contains the OID of the target object, and
isdistinguishablefrom an ordinary object. Whenever a
reference is followed, if it refers to a fault block, then
the target object is made resident (copied and swizzled
as necessary). The fault block is changed to point to
the now-resident object (see Figure 2(b)). We call the
updated fault block an indirect block. If a reference to
be followed refers to an indirect block then the target
object can belocated at the cost of anindirection. Occa
sional scanning (possibly by agarbage collector) can be
used to bypassindirect blocks, as shown in Figure 2(c).

References to tagged OIDs and fault blocks may be
detected via explicit checks upon pointer dereference.
Alternatively, fault blocks can be allocated in protected
virtual memory pages, so that dereferencing apointer to
afault block istrapped, and handled by making the tar-
get object available. Another approach isto exploit the
indirection implicit in the method invocation schemes
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of object-oriented programming languages, folding res-
idency checks into the overhead of method invocation
(this approach is used to good effect in the persistent
Smalltalk system used for this study, and will be de-
scribed in detail in the next section).

3.2 Swizzling

When an object is made resident its pointer fields are
swizzled according to the mechanism being employed
for fault detection. All fieldsreferringto objectsthat are
aready resident are converted to point directly to those
obj ects—M neme supportsthismapping efficiently with
a hash table. Otherwise, for edge marking we convert
the reference to a tagged OID; for node marking, the
reference is converted to point to a fault block for the
non-resident object (afault block isallocated if onedoes
not yet exist for the target object).

The architecture | eaves open the possibility of copy-
ing and swizzling any number of objects at one time
from the Mneme buffer pool into memory. For this
study we consider the granularitiesnaturally inherent in
this architecture: individual objects, logical segments,
and physical segments. Swizzling just one object a a
time has the advantage of copying and swizzling only
those objects needed immediately by the program for
it to continue execution. Thiswill serve to minimize
object fault latencies (including swizzling), as well as
memory consumption.

Swizzling alogical or physical segment at atime may
take advantage of any clustering present in the physical
layout of objects in the database. Since &l the ob-
jectsin asegment are mapped before they are swizzled,
any intra-segment references will be converted to direct
pointers. If the static clustering is a good approxima-
tion to the dynamic locality of access by the program
then the speed of program execution will improve since
fewer object faults will occur.

4 Persistent Smalltalk

The prototype persistent programming language used
for these experimentsisan implementation of Smalltalk
with extensions to support persistence. The underlying
permanent storage is managed by the Mneme persis-
tent object store[14]. Our Smalltalk implementationis
based on the definition of Goldberg and Robson[6], and

consistsof two components: avirtual machineand avir-
tual image. Thevirtual machineimplementsabytecode
instruction set to which Smalltalk source code is com-
piled, as well as other primitive functionaity. While
we have retained the standard bytecode instruction set
of Goldberg and Robson [6], our implementation of the
virtual machine differs somewhat from their original
definition.

The virtual image is derived from an early com-
mercial version of Smalltalk with minor modifications.
It implements (in Smalltalk) all the functionality of a
Smalltalk devel opment environment, including editors,
browsers, the bytecode compiler, classlibraries, etc., all
of which are first-class objects in the Smalltalk sense.
Booting a Smalltalk environment involves loading the
virtual image into memory for execution by the virtual
machine.

Our persistent implementation of Smalltalk placesthe
virtual image in a Mneme database, and the Smalltalk
environment is booted by loading that subset of the ob-
jectsin the image sufficient to resume execution by the
virtual machine. We haveretained theorigina bytecode
instruction set, and changes to the virtual image have
been minor. Rather, al extensionsfor persistence have
been to the virtua machine, which has been carefully
augmented to make persistent objects resident as they
are needed by the executing image.

4.1 Object faulting

Computation in Smalltalk proceeds by sending mes-
sages to objects. A message consists of a message
selector and a number of arguments. The effect of
sending amessageisto invoke a method on the receiver
of the message. Invoking a method may be thought
of as a procedure call. The method to be executed is
determined dynamically, based on the message selec-
tor and the class of the receiver. Every class object in
Smalltalk has a pointer to a method dictionary which
associates selectors with compiled methods. A com-
piled method consists of the bytecodes that implement
the method, along with aliteral frame, containing the
shared variables, constants, and message sel ectors used
by the method's bytecodes. Determining which method
to execute when a message is sent proceeds as follows.
Thereceiver’s classis checked to seeif its method dic-
tionary containsthe message selector. If it doesthenthe
corresponding compiled method isinvoked. Otherwise,
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the search continuesin the superclass of the object, and
so on, up the class hierarchy. If no matching selector is
found then arun-time error is signalled.

As described so far, the method lookup process is
very expensive. To reduce this lookup cost a method
lookup cacheisused. Entriesin the cache store a selec-
tor, class, and compiled method. Before proceedingtoa
full method lookup, the selector and class are hashed to
index an entry in the cache. If the selector and class of
the cache entry match those of the message send, then
the compiled method has been found. If they do not,
then afull lookup takes place, updating the correspond-
ing cache entry aswell.

Our discussion of message sends has illustrated just
how many objects must be accessed as computation
proceeds. For performance reasons it is crucial that
the bytecode interpreter not perform a residency check
for every object reference it must follow. To overcome
this we impose certain residency constraints on critical
objects, restricting residency checks to message sends
asfollows.

Because computationisdriven by the sending of mes-
sages, most objects will become resident only when a
message is sent to them. The send bytecodes must |oad
the receiver’s class for method lookup. When an ob-
ject is made resident, we require that its class also be
resident, so that its class field can be swizzled to a di-
rect pointer. In this way we eliminate the need for a
residency check on the class when probing the method
lookup cache.

411 Edgemarking

Smalltalk implementations typically avoid alocating
individual objects for such things as integers by tag-
ging object pointers, and representing the integer value
directly in the tagged pointer.?2 Such objects have been
termed immediate, since their value may be obtained
immediately from their object reference. To cope with
this, message sends must always check the pointer tag
of the receiver. Immediate values are mapped to their
class based on the tag, rather than by dereferencing the
object pointer to obtain the class.

For edge marking, references to non-resident ob-
jectsare represented as tagged immediate Ol Ds,® which

2\We use an immediate representation for Smallinteger, Char-
acter, nil, true and false.
3Mneme OIDs are only 28 bits, leaving plenty of room for the

we map to a specia “class’ (represented by the null
pointer), whose only “method” primitively responds to
all messages by faulting the target object and forward-
ing the messagetoit. Sincethe method lookup cacheis
loaded with thisresponsethefirst time amessageis sent
toan OID, subsequent message sends can proceed with-
out an explicit residency check. Only the full method
lookup must deal with the case when the class is null,
priming the method cache appropriately.

4.1.2 Nodemarking

We use a similar trick to obtain check-free message
sends for node marking. Fault and indirect blocks are
distinguished from other objects by their “class’ field,
which instead of containing a direct pointer to some
class, containsatagged OID or indirect pointer instead.*
Similarly to our implementation of edge marking, we
arrange for fault blocks to respond to al messages by
faulting the corresponding object and forwarding the
message to the now-resident object. Once again, only
the full method lookup performs residency checks to
detect fault and indirect blocks, priming the method
cache appropriately so that all future sends to the fault
or indirect block will occur without additional checks.

Our implementation of the page protection variation
for fault blocks achieves the same effect, but makes
surethat the virtual machine sees only resident objects.
Loadingthe*class’ of afault or indirect block will cause
atrap. Thetrap handler unprotectsthe pages containing
fault and indirect blocks, overwrites the offending fault
block with an indirect block, and arranges for the load
instruction that caused the fault to be restarted with a
direct pointer to the resident object. The fault and indi-
rect block pages are then reprotected before resuming
execution in the virtual machine.

In addition to eimination of indirections by the
garbage collector, a fault block implementation can be
more aggressive in its elimination of indirections. At
each object fault our system scans al transient (i.e,
non-persistent) objects (including active stack frames)
to eliminate any references to fault blocks that have
been converted to indirect blocks. We aso maintain a
remembered set [24, 25] for each page of allocated fault
blocks, recording al persistent objects whose pointer

tag on a 32-bit machine.
“Mneme’s 28-bit OlDs allow us to keep the size of fault blocks
to 32 hits.
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fields have been swizzled to refer to a fault block in
the page. At each object fault the objects in the re-
membered set are scanned, and any fields that contain
pointersto (ex-fault) indirect blocks are updated to by-
pass theindirection. In thisway the source |ocations of
fault block referencesare swizzled, so avoiding repeated
loading and faulting on those references, without having
to adopt the over-eager swizzle-on-discovery approach
of Whiteand DeWitt. We expect thisto be particularly
important for the page protection variant, by preempting
unnecessary expensive page traps.

4.1.3 Residency constraints

In addition to the constraint that an object must always
contain a direct pointer to its class, we impose fur-
ther restrictions to elide other residency checks in the
bytecodes of the virtual machine. Whenever a byte-
compiled method is made resident (usually through its
invocation), we make theliteralsinitsliteral frameres-
ident along withit. Thisforces the selectors, constants,
and shared variables® referred to by the bytecodes to
be resident. It does not force the objects referred to
by the shared variablesto be resident. This permitsthe
bytecodes accessing the selectors, constants, and shared
variables of the literal frame to do so without perform-
ing residency checks. In short, there is no need for
residency checks in the stack bytecodes. Stack frames
are aso objectsin the Smalltalk system, and so may be
persistent. Requiring all stack frames of an active pro-
cess to be resident further eliminates residency checks
in the return bytecodes.

In summary, by preloading objects that are critical
to the forward progress of computation, we are able to
restrict all residency checks to message sends.®

5 Experiments

We compared several versions of the virtual machine,
varying the schemes for abject fault detection (tagged
OIDs, fault blocks, and page protection), the granular-
ity of swizzling (object, logical segment, and physica
segment at a time), and whether the virtual machine

SShared variables are represented as Association objects with
two fields, onefor aname and one for avalue.

SPrimitive methods must perform additional residency checks
on any objects they need to access other than the receiver of the

message.

is running against a completely resident virtual image
(ordinary non-persistent Smalltalk) or against an im-
agethat is faulted in on demand (persistent Smalltalk).
Table 1 enumerates the variants.

As mentioned earlier, our fault block schemes (FB
and PF variants) eiminate indirections at each object
fault by scanning transient space, and processing the
remembered set of the page containing the faulted-on
fault block. We apply this technique in the explicitly
checked FB schemes as well as their page-trapping PF
counterparts, in order to obtain a straight comparison.
This is despite the fact that the explicitly checked FB
schemes can cheaply bypass indirections as they are
encountered, while the scanning and remembered set
processing adds substantia additional overhead at each
fault. In contrast, the page-trapping PF schemes must be
aggressivein eliminating indirections, sincetheindirect
blocks reside in protected pages, to which any access
will be trapped.

5.1 Thebenchmark database

Our benchmarks are drawn from the OO1 object oper-
ations benchmarks [3]. The OO1 benchmark database
consists of acollection of 20,000 “part” objects, indexed
by part numbersin therange 1 through 20,000, with ex-
actly three “ connections’ from each part to other parts.
Theconnectionsare randomly sel ected to produce some
locality of reference: 90% of the connections are to the
“closest” 1% of parts, with the remainder being made
to any randomly chosen part. Closeness is defined as
parts with the numerically closest part numbers. The
part database and the benchmarks are implemented en-
tirely in Smalltalk, including the B-tree used to index
the parts.

The Mneme database, including the Smalltalk im-
age as well as the parts data, consumes 179 physical
segments, for a total size of just over 6 Mbytes. Each
physical segment is at least 32 Kbytesin size, although
some may be larger since Smalltalk objects larger than
32 Kbytes are allocated in their own private segment.
There are on average three or four logical segments
per physical segment. Newly created objects are clus-
tered into segments only as they are encountered when
unswizzling, using an essentially breadth-first traversal
similar to that of copying garbage collectors [4]. The
part objects are 68 bytes in size (including the object
header). The three outgoing connections are stored di-
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| Variant | Description
non-persistent | Non-persistent
I D-resident Non-persistent, augmented with checks needed for tagged OIDs
FB-resident Non-persistent, augmented with checks needed for fault blocks
PF-resident Non-persistent, augmented with the page trap handling code,
plus necessary support to decode load instructionsthat might cause atrap
ID-OBJ Persistent, tagged OIDs, swizzle 1 object at atime
ID-LSEG Persistent, tagged OIDS, swizzle 1 logical segment at atime
ID-PSEG Persistent, tagged OIDs, swizzle 1 physical segment at atime
FB-OBJ Persistent, fault blocks, swizzle 1 object at atime
FB-LSEG Persistent, fault blocks, swizzle 1 logical segment at atime
FB-PSEG Persistent, fault blocks, swizzle 1 physical segment at atime
PF-OBJ Persistent, fault blocks allocated in protected pages,
swizzle 1 object at atime
PF-LSEG Persistent, fault blocks allocated in protected pages,
swizzle 1 logical segment at atime
PF-PSEG Persistent, fault blocks allocated in protected pages,
swizzle 1 physical segment at atime

Table 1: Schemes measured in experiments

rectly in the part objects. The string fields associated
with each part and connection are represented by ref-
erences to separate Smalltalk objects of 24 bytes each.
Similarly, apart’sincoming connectionsare represented
as a separate abject containing references to the parts
that are the source of the connections. The B-treeindex
for the 20,000 parts consumes around 165 Kbytes.

5.2 Benchmarks

We used the Lookup and Traversal portions of the OO1
benchmarks, which operate as follows:

e L ookup fetches 1,000 randomly chosen partsfrom
the database. For each part a null procedure is
invoked, taking as its arguments the x, y, and type
fields of the part.

e Traversal fetches al parts connected to a ran-
domly chosen part, or to any part connected to
it, up to seven hops (for a total of 3,280 parts,
with possibleduplicates). Similarly to the Lookup
benchmark, a null procedure is invoked for each
part, taking asitsargumentsthex, y, and typefields
of the part.

These benchmarks are intended to be representative of
the data operations in many engineering applications.
The Lookup benchmark emphasizes selective retrieval
of objects based on their attributes, while the Traversal
benchmark illuminatesthe cost of raw pointer traversal .

Each measureistypically runtentimes, thefirst when
the system is cold, with none of the database cached
(apart from any schema or system information neces-
sary toinitialize the system). Each successive iteration
fetches a different set of random parts. Before the first
run of each series of benchmark iterationsa* chill” pro-
gram is executed on the client to sequentialy read a
32 Mbyte file from the server. This ensures that the
operating system file buffers of both client and server
have been flushed of al database segments, so that the
firstiterationistruly cold.

In addition to the ten cold-warm iterations, we mea-
sured the elapsed time for severa hot iterations of the
Traversal benchmark, by beginning each hot iteration
a the sameinitial part used inthelast of the warm iter-
ations. These hot runs are guaranteed to traverse only
resident objects, and so will be free of any overheads
due to swizzling and retrieval of non-resident objects.
We varied the number of hot iterations performed per
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data point gathered, in order to obtain a linear mea
sure of the CPU overheads of fault detection (excluding
swizzling and disk accesses) for each of the schemes.

5.3 Experimental setup

The client machine on which the benchmarks were run
was a DECstation 3100 (MIPS R2000A CPU’ clocked
at 16.67MH2z) running ULTRIX 4.1.2 The system has
24 Mbytes of main memory, 10% of which is used for
operating systemdisk buffers. The Smalltalk interpreter
is coded in C and compiled with the GNU C compiler
(gce) version 2.3.3 at optimization level 2. The bench-
marks were run with the client system in single user
mode and the process's address space was locked in
main memory to prevent paging.

The database is accessed remotely via NFS. The
server isa SPARCstation 2 running SunOS4.1.2,° with
32 Mbytes of main memory,and the database resides on
a 1.3 Gbyte external SCSI disk. The client and server
were connected viaa private ethernet.

We measured el apsed time on the client machine us-
ing a custom timer board having a resolution of 100
ns. The fine-grained accuracy of thistimer allowed us
to measure the elapsed time of each phase of execu-
tion separately: running time, swizzling, and time spent
retrieving physical segmentsfrom disk.

Theexperimentswere repeated several timesfor each
configuration, and the results averaged. Each run is
presented with exactly the same database (no updates
are ever committed). Note aso that the nth iteration of
any given benchmark run will always access the same
parts as the nth iteration within any other benchmark
run, since the script that controls the execution of the
benchmarks presents the same sequence of random part
identifiersto each run.

6 Reaults

We now report on the results for each of the bench-
marks. All times reported are in seconds, and exclude

"MIPS and R2000 are trademarks of MIPS Computer Systems.

8DECstation and ULTRIX are registered trademarks of Digital
Equipment Corporation. The operating system had some official
patchesinstalled that fix bugsin the mprotect system call.

9SPARCstation is atrademark of SPARC International, licensed
exclusively to Sun Microsystems. SunOS is a trademark of Sun
Microsystems.

Scheme Elapsed time (s)
Average
non-persistent 0.565
ID-resident 0.557
FB-resident 0.556
PF-resident 0.567
\ | Cold | Warm |

ID-OBJ 6.75 | 1771
ID-LSEG 7.65| 1.448
ID-PSEG 756 | 1431
FB-OBJ 379.79 | 40.647
FB-LSEG 26.21 | 0.558
FB-PSEG 19.81 | 0.569
PF-OBJ 390.93 | 41.579
PF-LSEG 2721 | 0.573
PF-PSEG 20.27 | 0.593

Table 2: Lookup

any Smalltalk initialization time prior to beginning the
benchmark. In al of thefigures, the schemes are iden-
tified by their names as specified in Table 1.

6.1 Lookup

Theresultsfor the Lookup benchmark are summarized
in Table 2. We give the average elapsed time of the
ten iterations for the non-persistent variants (since the
database is always resident and warm), and the cold
and warm times for the persistent variants. The non-
persistent variants exhibit margina variation in their
performance, indicating that the overhead of the run-
time residency checks is negligible. It is curious that
both the ID-resident and FB-resident schemes perform
slightly better than non-persistent Smalltalk, since they
have been augmented with residency checks. We can
only speculatethat theimprovement isdueto underlying
cache effects.

The results for the persistent schemes are naturally
more interesting. The FB-OBJ and PF-OBJ schemes
are a clear loss, since object-at-a-time faulting results
in more frequent object faults, and fewer objects are
made resident per fault. Thus, even a the warmest
iteration the object-at-a-time schemes still experience
object faults. Performance is poor since each object
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Figure 3: Lookup

fault incurs significant overhead to eliminate indirec-
tions. Still, FB-OBJ is better than PF-OBJ, because
the page-trapping approach incurs significant overhead
to trap object faults and to manipul ate page protections
when swizzling.

We have found that FB-OBJ behaves much less
poorly if we refrain from eliminating indirections at
every object fault, even though indirect blocks will
frequently be encountered when traversing references,
since dereferencing an extralevel of indirection can be
performed relatively cheaply. Similarly, the cold times
for al the FB schemes can beimproved substantially by
not performing indirection elimination, so that they also
outperformthe ID schemesfor cold starts. Thus, it may
be preferable to expend effort to eliminate indirections
for the FB schemes only as the system gets warmer,
when the cost of traversing indirections becomes more
important. In contrast, for the PF schemes an expensive
page protection trap occurs every time an indirect block
isencountered, making early elimination of indirections
much more important.

To compare the schemes more effectively we have
plotted their performance in Figure 3, expanding the
scale to focus on the warm run performance, and omit-
ting the poorly performing FB-OBJ and PF-OBJ vari-

ants. The non-persistent Smalltalk results are a so plot-
ted as a baseline. The ID schemes are ranked by their
eagerness to swizzle, since swizzling more objects at a
time reduces the number of locations containing OIDs.
Still, the ID schemes are significantly less competitive
overall. The FB and PF schemes behave very similarly,
with warm performance close to optimal, due to the
aggressive approach taken to eliminatereferencesto in-
direct blocks. Nevertheless, the software-mediated FB
schemesare marginally better than the page-trapping PF
approach for the warmest runs, which incur no object
faults or swizzling. Thereason isthat for the page trap
handler to decodethecontentsof theregistersat thetime
of afault (in order tofix thefaulting reference), we have
had to impose aless than natural code sequence at each
potential fault sitein theinterpreter. Thisyieldsaslight
run-time performance penalty for the PF schemes.

The schemesiillustrated in Figure 3 show almost im-
mediatewarmup, sincethefirstiteration touchesenough
of the database to bring most of the database's physical
segments into Mneme's client buffers, whence objects
can be swizzled very quickly. Only the FB-LSEG and
PF-LSEG schemes exhibit noticeable further warming
effects after the first iteration, as additional objects are
swizzled from the buffers. By the fifth iteration the
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L SEG schemes have made sufficient objectsresident to
proceed without further object faults. The ID schemes
aredominated by the overhead to convert OlDsto direct
pointers, masking any faults that might occur.

6.2 Traversal

We summarize the Traversal benchmark results in
Table 3. Once again, the non-persistent variants show
margina differences in elapsed time, indicating that
the overhead of the run-time residency checksisslight.
Also, theresultsfor the persistent variants show that the
object-at-a-time faulting schemes still have the worst
performance, due to the increased per-fault swizzling
costs imposed by indirection elimination. Thus, we
again omit FB-OBJ and PF-OBJ in plotting the results
in Figure 4.

The warming effect is slower than for the Lookup
benchmark, despitethe fact that each iteration accesses
more parts. This is due to the locality of references
encoded in the connections between parts, which has
been replicated in the clustering used to group objects
into physical segments. Thus, traversals mostly touch
parts whose physical segments are aready resident in
Mneme's client buffers, with only a few connection

o> O

o> O

u non-persistent
O ID-OBJ
. ID-LSEG
ID-PSEG
A FB-LSEG
FB-PSEG
i PF-LSEG
0 O PF-PSEG
®
10
Scheme Elapsed time (s)
Average
non-persistent 0.0880
ID-resident 0.0880
FB-resident 0.0880
PF-resident 0.0886
\ | Cold | Warm
ID-OBJ 401 | 0.184
ID-LSEG 517 | 0.119
ID-PSEG 546 | 0.110
FB-OBJ 1964 | 6.717
FB-LSEG 1552 | 0.0883
FB-PSEG 15.61 | 0.0883
PF-OBJ 21.30 | 8.090
PF-LSEG 16.08 | 0.0877
PF-PSEG 15.88 | 0.0884

Table 3; Traversal
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Figure 5: Hot traversal

traversals needing to be serviced by a disk access. The
ID schemes warm up more quickly, athough their per-
formance is bounded by the overhead of translating
OIDs to pointers, while the FB and PF schemes are
penaized for indirection removal. Nevertheless, indi-
rection removal pays off by the fourth iteration for FB-
PSEG and PF-PSEG, and by theeighthiteration for FB-
LSEG and PF-LSEG, when dl resident part references
have been converted to direct pointers, and enough of
the database has been made resident for execution to
proceed without object faults.

6.3 Hot traversals

Thehot Traversal results(plotted in Figure5) give some
idea of the run-time CPU costs for the schemes, in the
absenceof any object faultsor swizzling overheads. We
have obtained excellent linear regression fits for these
results, for themodel y = a + bx, wherey isthe elapsed
time, and x the number of hot iterations per run. As
expected, the fitted y-axisintercepts a are close to zero.
More interesting is the slope b, which is a measure of
time per traversal, givenin Table 4.

Theresultsconfirm the drawbacksof the D schemes,
showing that OID conversion is a significant run-time

| Scheme [ Slopeb |

non-persistent | 0.0865
ID-resident 0.0865
FB-resident 0.0865
PF-resident 0.0871
ID-OBJ 0.1486
ID-LSEG 0.1178
ID-PSEG 0.1086
FB-OBJ 0.0850
FB-LSEG 0.0867
FB-PSEG 0.0866
PF-OBJ 0.0872
PF-LSEG 0.0862
PF-PSEG 0.0870

Table 4: Estimated elapsed time per hot traversal
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overhead. Also, the ID schemes are ranked by their
eagerness to swizzle, since swizzling a whole physi-
cal or logical segment at one time alows many intra-
segment references to be converted to direct pointers
rather than OIDs; recall that the OlDs are never updated
with direct pointers. The FB and PF schemes have hot
performance close to that of non-persistent Smalltalk
since they convert all resident object references to di-
rect pointers. Most importantly, the software-mediated
residency checks used by the FB schemes poseinsignif-
icant overhead for hot execution.

7 Conclusions

Our results are conclusive in establishing that software
object fault detection mechanisms can provide perfor-
mancevery closeto optimal, even surpassing the perfor-
mance of comparable hardware-assisted schemes. This
has been achieved through careful assumptions about
residency. In particular, the object-oriented execution
paradigm alows many residency checks to be elided,
with residency checksbeing restricted mostly to method
invocation. This approach can be applied to any lan-
guage that includes dynamic binding of method calls,
by arranging for fault blocksto respond to al methods
by first faulting thetarget object and then forwarding the
invocationto it. We have also shown that it paysto be
eager in object swizzling, by swizzling related objects
in advance of the application’s need for them.

7.1 Compilation

Thefact that the results have been obtained for an inter-
preted language cannot be taken lightly, since run-time
overheads are severa times higher than those of com-
piled programs. Nevertheless, we see no reason why the
resultswill not carry over to acompiled setting; only the
relative overheads of object fault detection and handling
will change with respect to total execution time. How-
ever, somelanguages (e.g., Modula-3[15, 7], C++[23])
do not enforce the pure object-oriented style of execu-
tion that enables residency checks to be piggy-backed
with method invocation. Operations on an object can
be performed without necessarily invoking a method
on it. This means that explicit residency checks must
be compiled into the code in advance of such opera
tions, to ensure that the object is resident. Compiler

optimizations [19, 18, 9, 10] may allow these explicit
residency checksto bemerged or eliminated. For exam-
ple, control-flow information may revea that multiple
traversals of a particular object reference along a given
execution path require only one residency check, rather
than a check per traversal. We look forward to explor-
ing the effect of such techniques in our forthcoming
implementation of Persistent Modula-3.

7.2 Other architectures

We acknowledge that our architectural framework is
one of several that might be considered. For example,
we have chosen a copy swizzling approach, whereas
it may be possible for applications to manipulate ob-
jectsdirectly in the client buffer pool. We have already
discussed the reasons for our choice, on the grounds of
flexibility inthe management of resident objects. More-
over, the performance study of White and DeWitt [26]
indicated that such an architecture was superior to the
othersthey considered.

We also recognize that our page trapping approach,
which alocates fault blocks in protected pages, does
not compare directly with the memory-mapped file ap-
proaches of ObjectStore and Texas. In particular, Ob-
jectStore makes some effort to alow objects to be
mapped directly into the same memory locations in
which they were originally alocated, thus reducing or
eliminating the need to swizzle pointers upon object
fault.

Nevertheless, our results stand as a relative compar-
ison of object faulting techniques within a fixed archi-
tectural framework. It isreasonable to assume that the
relative standing of our fault detection mechanismswill
remain the same even if the underlying persistent object
storage architecture changes.

7.3 Summary

In summary, we have explored the design space of
mechanisms for detecting and handling references to
persistent objects, and compared their performance
within a prototype persistent programming language.
Most importantly, we have demonstrated that software-
mediated object faulting can be a viable alternative to
hardware-assisted techniques, and that adding persis-
tence to a programming language does not necessarily
imply degradation of performance.
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