
Efficient Object Sampling Via Weak References

Ole Agesen
�

VMware
3145 Porter Drive

Palo Alto, CA 94304

agesen@vmware.com

Alex Garthwaite
Sun Microsystems Laboratories

1 Network Drive
Burlington, MA 01803-0902

alex.garthwaite@sun.com

ABSTRACT
The performance of automatic memory management may be im-
proved if the policies used in allocating and collecting objects had
knowledge of the lifetimes of objects. To date, approaches to the
pretenuring of objects in older generations have relied on profile-
driven feedback gathered from trace runs. This feedback has been
used to specialize allocation sites in a program. These approaches
suffer from a number of limitations. We propose an alternative that
through efficient sampling of objects allows for on-line adaption of
allocation sites to improve the efficiency of the memory system. In
doing so, we make use of a facility already present in many col-
lectors such as those found in JavaTM virtual machines: weak ref-
erences. By judiciously tracking a subset of allocated objects with
weak references, we are able to gather the necessary statistics to
make better object-placement decisions.

1. INTRODUCTION
With better knowledge of the behavior of objects in a running ap-

plication, we can make better decisions about how to manage those
objects. These decisions may affect, for example, how and where
objects are placed. Typically, instrumenting all objects to gather
this knowledge would slow the application too much to be practi-
cal. We present a technique for dynamic sampling of a subset of
the allocated objects that incurs low runtime overheads. Coupled
with automatic memory management or collection, this technique
allows us to improve the efficiency of the collector by segregating
objects, sampled and non-sampled alike, based on observed charac-
teristics such as object lifetime. The sampling technique can track
many kinds of information but for purposes of this paper we con-
centrate on the improvement for generational garbage collectors.

1.1 Improving Generational Collectors
Strongly typed languages like the JavaTM programming language

rely on automatic memory management, also known as garbage
collection. Memory management services free the programmer

�The work presented in this paper was performed while this author
was at Sun Microsystems, Inc.

from the burden of explicitly reasoning about the use of memory
and eliminate two classes of errors:

� memory leakserrors where the application loses track of al-
located memory without freeing it.

� dangling referenceswhere the application frees memory while
retaining references to it and subsequently accesses this mem-
ory through these references.

Garbage collectors work by handling all requests to allocate mem-
ory, by ensuring that this allocated memory has an appropriately
typed format, and by guaranteeing that no memory is freed until it
is proven that the application holds no references to that memory.

Garbage collection services typically allocate objects in a heap.
Periodically, the collector locates the set of objects in the heap still
reachable from the running program and frees the rest of the mem-
ory in the heap so that it may be used for new allocation requests.
Often, the collection technique involves stopping the application
while this process of finding the reachable objects is performed.
For large heaps, this may lead to long pauses during which the ap-
plication is unable to proceed.

Generational collectors are designed to address part of this pause-
time problem. The observation is that recently allocated objects
tend to die (that is, become unreachable) quickly. The approach
in generational collectors is to divide the heap into an ordered se-
quence of two or more subheaps or generations. Objects are allo-
cated primarily in the first generation; as objects survive in a par-
ticular generation across collections, that generation will have a
policy for promoting these longer-lived objects to the next genera-
tion. Most collection work is performed in the youngest generation
which is sized to cause most collection-time pauses to be of accept-
ably short duration.

One inefficiency of a generational heap, however, is that long-
lived objects may be copied many times before reaching the appro-
priate generation. Our technique improves generational collectors
by identifying objects that will most likely survive to be tenured
to a particular generation and by allocating such objects directly
in that generation. By sampling a subset of the objects and study-
ing their lifetimes, we are able to better place objects to reduce the
number of times such objects are copied within a generation or pro-
moted between generations. A side-benefit is that by not allocating
long-lived objects in younger generations, we reduce the number
of collections in those generations. Finally, our approach uses con-
tinued sampling to dynamically track how the observed lifetimes
of objects change as the application executes. This allows the tech-
nique to adapt as the application changes the way in which it uses
objects.



1.2 Object Sampling and Fingerprinting
Central to our sampling technique is the use of weak references.

Simply put, a weak reference is a reference to an object with the
property that the garbage collector does not consider this reference
when determining the reachability of the referred-to object. As long
as some other stronger reference keeps the object alive, the weak
reference will continue to refer to the object. At some point, the col-
lector determines that the object is only reachable from weak refer-
ences of a given strength. For each weak reference to the object, an
“imminent death” action is then performed, followed by clearance
of the weak reference so that the referred object can subsequently
be reclaimed. Weak references can be available as first-class con-
structs in the language, as is the case with the JavaTM platform, or
they can be an implementation-level construct visible only to the
runtime system. Either kind of weak reference may be used with
our approach so long as the one chosen cannot cause an object to
become reachable again.

The Java platform [10] mandates four kinds or strengths of weak
references under the packagejava.lang.ref :

� softreferences meant to be used for implementing caches

� weak references meant to implement canonicalization data
structures

� final references used to implement finalization

� phantomreferences designed to schedule actions once an ob-
ject ceases to be reachable

Weak references to objects are processed in order of strength. Weak
references, when processed, may be enqueued on a reference queue
for further processing by the application. For our purposes, it is
important to note that finalization of objects may result in those
objects becoming strongly reachable again. Only phantom refer-
ences are guaranteed not to resuscitate a dying object. This means
that phantom references or VM-specific weak references are ap-
propriate choices for implementing our proposal in a Java virtual
machine.

As a motivating example, suppose we want to determine the
average lifespan of certain objects. Specifically, we might want
to know if instances of a certain class X tend to live longer than
instances of a certain other class Y. Monitoring all allocations of
classes X and Y to compute the exact lifespan statistics may be too
costly to be practical in the production use of most programs. How-
ever, it is possible that knowing the lifespans of a small fraction of
all X and Y instances, say one in every 1000 allocated, allows us
to estimate lifespans for the entire population of X and Y instances
with a useful degree of accuracy. We can sample X and Y instances
effectively by attaching a weak reference to every 1000th X and Y
instance allocated. The weak reference tracks the instances, and the
associated “imminent death” action will inform us when they cease
to be alive. Thus, we get access to both the birth and death events
for a specifiable fraction of X and Y instances, from which we can
estimate their relative lifespans.

More generally, this approach combines the use of weak refer-
ences to track a sample of objects over their lifetimes with the idea
of “fingerprinting” such objects, i.e., associating additional infor-
mation with the objects. The fingerprint summarizes interesting
aspects of the state of the system at the point when the object is
allocated. A convenient place to store the fingerprint would be in
association with the weak reference data structure.

Examples of the kind of information that one might include in
the fingerprint are:

� the time at which the object is allocated. Allocation time may
be measured in many ways: real time, CPU time, number of
collections since the start of the application, number of bytes
allocated. If we combine information from allocation with
information gathered at other points in the program, we can
infer reasonable bounds on object lifetimes.

� the allocation site in the program where the object is cre-
ated. This may include a summary of information from one
or more frames of the calling context for the allocation op-
eration. Many different places in a program may allocate
instances of the same class. Sometimes it might be use-
ful to distinguish between these. For example, it might be
thatString objects allocated at one site (say, used for file
names) tend to live much longer thanString objects allo-
cated at another site (say, created to print floating point num-
bers).

� the type of the object. In most object-oriented languages, this
information does not need to be included in the fingerprint
since it is stored in the object itself. For other languages
where runtime type information is not readily available, it
may be approximated by some other metric such as object
size [3].

� in object-oriented languages, the type of the receiver to which
the method performing the allocation is applied.1

� an identifier for the thread performing the allocation. Objects
of the same type allocated at the same allocation site by dif-
ferent threads may serve different purposes and, hence, have
different lifespans.

Weak references can be implemented relatively efficiently, and
by varying the fraction of objects we sample, we can trade effi-
ciency and statistical accuracy against each other. Further, in envi-
ronments like the Java platform where support for weak references
already exists, we can efficiently gather statistics on sampled ob-
jects as they become unreachable without having to explicitly ex-
amine the heap for dying objects after each collection.

As can be seen, by including various pieces of information in the
fingerprints, and by controlling sampling rates, we can estimate:

� how many objects are allocated of each type (class)

� how many objects are allocated at each allocation site

� how long each category (class, allocation site) of objects tend
to live

Furthermore, we can refine the above kind of information either on
a per-thread basis or through correlated class information. The uses
of such statistical information include optimizations in the memory
system as well as offering a source of feedback to the program-
mer allowing the program to be better optimized or debugged. For
instance, in the memory system, one might:

� allocate (or pretenure) certain categories of objects directly
into specific generations.

� promote objects to selected generations.

� better place and move objects within generations, especially
in the context of systems based on the Train Algorithm [9].

� choose which objects to allocate in thread-local versus global
areas of the memory system.

1Our colleague, Tim Harris, suggested this idea.



Using the data gathered about reclaimed and still-live objects and
their lifespans, we can improve the efficiency of generational col-
lectors through better object placement, reduction in the copying of
objects, and reduced collection of individual generations.

1.3 Roadmap
In Section 2, we briefly review work related to our proposal. In

Section 3, we offer our own design for a dynamic object-sampling
and fingerprinting framework applicable to a generational frame-
work. Finally, we consider future work and conclude.

2. RELATED WORK
Garbage collection has a long history. Two excellent surveys of

the area are available from Paul Wilson [19] and Richard Jones [11].
The earliest reports on generational collectors can be traced to David
Moon [13], Henry Lieberman and Carl Hewitt [12] and their imple-
mentation of a collector for Lisp. They observed that segregating
young objects and concentrating collection on those objects yields
a more efficient memory system. Another pioneer in generational
collection is David Ungar who developed a simple, two-generation
collector where the heap is split into an allocation area or eden and
a tenured object space [15]. Ungar succinctly sums up the genera-
tional hypothesis: “most young objects die young.” A good account
of the benefits of generational collectors may be found in [1].

Unfortunately, there are limits to the generational hypothesis.
While the observation generally holds true of recently allocated
objects, there is no stronger statement supporting the idea that the
older an object is the longer it is likely to live. Ungar and Jackson
improved the efficiency of a two-generation collector for Smalltalk
by explicitly segregating some kinds of objects and by using a dy-
namically computed threshold for deciding when to promote ob-
jects [16, 17]. Barrett and Zorn extended this idea further by col-
lapsing the two generations and using a movable “threatening bound-
ary” to separate the spaces for short- and long-lived objects [2].

In the absence of information about the lifespans of objects, a
number of proposals have been put forward to improve the effi-
ciency of older generations. Most recently, work by Will Clinger
and Lars Hansen, and by Darko Stefanovic, Eliot Moss, and Kathryn
McKinley has examined the idea of “oldest-first” collectors [6, 14].
Our proposal differs in that we attempt to improve the collector by
having knowledge about the objects in the heap. In this sense, it
is orthogonal to “oldest-first” collection techniques and may even
improve these techniques by placing objects where they are likely
to be collected shortly after dying.

David Hanson developed amalloc implementation for the C
language that allows for explicit placement of allocation requests [7].
Barrett and Zorn extended this work by developing a technique for
profiling the allocation behavior of programs [3]. The two met-
rics they used were allocation size (since C lacks appropriate type
information) and a summary of the state of the call stack at the
time of allocation. Using the profile information generated from
tracing the applications, they augmented themalloc library with
a database consisting of allocation sites where objects always die
quickly. This technique allows them to separate long lived objects
from short lived ones, simultaneously reducing fragmentation, al-
lowing the short lived objects to be allocated together on pages, and
allowing these pages to be freed at once.

Seidl and Zorn have studied the notion of pretenuring objects
based on how the objects are referenced and what the observed
lifespans of the objects are [20]. Using profile-driven feedback
from sample application runs, they classify objects allocated at
given sites in the program into categories: short-lived, highly refer-
enced, not highly referenced, and other. Combining this informa-

tion together with information about the state of the call stacks at
the time of allocation, they use two predictors, path point predic-
tion and stack contents prediction, to place objects in the heap to
maximize the efficiency with which the program uses virtual pages
of memory.

Cheng, Harper, and Lee examine several techniques for improv-
ing the efficiency of generational garbage collection in the con-
text of the TIL compiler and runtime system for ML [5]. This
work uses profile-driven feedback from sample runs to pretenure
long-lived objects to the older of a two-generation heap. To aid
in pretenuring decisions, their system tracked the observed object
lifetimes for each allocation site. Tracking information on a per-
allocation site basis is much simpler than summarizing information
about the dynamic call stack. Further, much of the benefits of the
latter can be gained through inlining of methods containing alloca-
tion sites into calling contexts.

All of these approaches rely on off-line, full-run profiling of ap-
plications. These approaches make the basic assumption that the
profile data is representative of how objects allocated at particular
allocation sites behave. This assumption is limiting for a number
of reasons. First, programs, especially concurrent ones, rarely run
repeatedly with precisely the same behavior. Second, as programs
scale to large sizes (for example, ones with heaps greater than 1
GB), the lifespans of objects and their relative proportions shift.
Finally, as programs execute, they go through phases. Objects allo-
cated at a given allocation-site may exhibit different lifespans de-
pending on the phase in which they are allocated. Profile-driven
feedback is unable to track such shifts in behavior within a run-
ning application. Our approach using weak references to finger-
print sampled objects avoids these problems with negligible over-
head on the performance of the application.

3. DESIGN
Pretenuring or the automatic placement of objects at allocation

time breaks down into the following set of tasks or choices:

1. Object selection or sampling

2. The fingerprinting mechanism

3. The level and kind of data gathered for each object

4. The summarization of gathered data

5. Method (re)adaptation

In this section, we outline approaches to each of these steps.
The platform we will use to implement our approach to dynamic

adaptive tenuring is the ResearchVM.2 This platform provides a
number of facilities including:

� the ability to configure the number, size, and policies of gen-
erations forming the heap

� support for both application-level and VM-specific classes of
weak references

� support for method recompilation including a number of op-
timizations such as the inlining of methods

The basic memory structure of the ResearchVM is described in
[18].
2The Sun Laboratories Virtual Machine for Research or Re-
searchVM is currently being used as the Java virtual machine in
the JavaTM 2 Standard Edition for the SolarisTM Operating Environ-
ment and was formerly known as the ExactVM.



3.1 Sampling Techniques
Since sampling is done when objects are allocated and since the

tenuring decisions are made at allocation sites, it makes sense that
any decision on how to implement object sampling affects the allo-
cation code at these sites. Because allocation is a frequent activity,
it is good to sample objects in a manner that does not impact the
common case.

The key to obtaining low overhead sampling is to avoid intro-
ducing overhead on the allocation of non-sampled objects. The Re-
searchVM memory system already contains several mechanisms by
which this can be achieved:

� Local allocation buffers (LABs). We can chose to sample
only the objects that cause a LAB refill. This is a low-pressure
point in the allocation system. Care must be taken in this
case since large objects tend to overflow LABs more often
than small objects, resulting in skewed samples.

� Custom-allocator routines can be used to achieve cheap sam-
pling for specific classes.

� The allocator routines already take a thread identifier as an
argument. By comparing this identifier against a global vari-
able or mask, we could obtain thread-specific sampling. To
cover multiple threads, the global variable can be slowly ro-
tated among the threads. Alternatively, we can have a per-
thread flag indicating if a thread should be considered for
sampling.

The most common technique for sampling will likely use the first
approach. One might think that we could overcome the bias men-
tioned for large objects by sampling the first object allocated once
the local allocation buffer is refilled. Unfortunately, this alternative
introduces a different kind of bias since allocation of large objects,
for example, character arrays, are often correlated with the alloca-
tion of other objects, such as theString objects managing those
arrays. On the other hand, one could argue that such a bias is appro-
priate for large objects since these objects incur higher costs when
copied by the garbage collector. In any event, customization of
allocator routines is handled by having a per-class allocation func-
tion. So, another approach to the bias issue is to support several
LABs per thread and to use custom-allocators to allocate different
sizes of objects.

3.2 Fingerprinting
We have already discussed the importance of weak references as

a mechanism for associating information with objects as they are al-
located. The ResearchVM supports the four application-level weak
references mandated by the Java Language Specification as well as
several kinds of VM-level weak references. Examples of the lat-
ter kind include the hash tables supporting the interning of strings
and the maintenance of loader constraints generated through class
loading, resolution, and verification. For our purposes, the appro-
priate choices of weak references are either phantom references or
VM-level references since neither of these kinds may result in a dy-
ing object to become reachable again when their “imminent death”
operations are performed. Phantom references offer several advan-
tages:

� the PhantomReference class is easily extended to in-
clude the data associated with the object.

� the collector need only queue the phantom references for pro-
cessing instead of processing them during a collection phase.

� more of the tenuring infrastructure can be expressed in the
Java programming language and is, thus, more portable to
other Java virtual machines.

The disadvantage is that phantom references occupy space in the
heap and may affect the rate at which collections occur. This dis-
advantage may be lessened in two ways: the sampled object and its
phantom weak reference object could be allocated in one operation
and if the ratio of sampled objects to non-sampled objects is low
then the impact should be minimal. The advantage of VM-level
weak references include:

� the lack of constraints on the format in which the fingerprint-
ing information is represented. For example, we can main-
tain arrays of such references and process these arrays with
bulk operations.

� the fact that these weak references are allocated outside the
heap.

The primary disadvantage to this approach is that the resulting sys-
tem is entirely VM-specific.

3.3 Gathering Statistics
There are several ways in which statistics on objects can be gath-

ered:

� at the time an object is allocated and sampled

� when a sampled object becomes unreachable and dies

� in the event that the weak references are linked together, by
iterating over the list of sampled objects

Combining the first two approaches allows us to incrementally main-
tain information about object lifespans without having to traverse
potentially long data structures. For a simple, two-generation heap,
the statistics may take the form of a mean object lifespan and de-
viation. More generally, though, it may take the form of one or
more histograms to support tenuring decisions with more than one
generation. The data on lifespans may be used to determine when
objects allocated at a given site live long enough to justify being
placed in a particular generation.

For sampled objects that are still living, we can best gather their
birth time statistics in a histogram at the time they are allocated. As
sampled objects die, we can remove their contribution to the appro-
priate bucket of the histogram, in the process maintaining an up-to-
date histogram of the birth times and counts of reachable sampled
objects. Using this histogram together with the current time, we can
calculate the distribution of lifespans for objects allocated at a given
site in the program. For sampled objects that become unreachable,
we can gather their lifespan information in a second histogram di-
rectly. Combining these two distributions, we can easily determine
where best to allocate or promote a given object.

3.4 Representation of Statistics
Allocation-site information may include static information such

as the program counter of the allocation instruction or the method
containing it as well as dynamic information summarizing the top
frames of the call-stack, the identity of the thread allocating the
objects, or the receiver-object of the method in which the alloca-
tion occurs. All of these may be used to refine the summary data
gathered.

However, the two key pieces of information required for mak-
ing tenuring decisions include the object’s age and the site in the
program at which it is allocated. As mentioned above, there are a



number of different metrics that may be used to measure age and
lifespan. What is important is that these metrics are nondecreas-
ing and simple to calculate. Following common practice, we will
use ages and lifespans calculated in terms of the number of bytes
allocated. Concerning allocation-site information, we have consid-
ered using summary information from the allocating thread’s call
stack. However, preliminary studies by our colleague, Tim Harris,
indicate that simply tracking the allocation-site is a sufficient dis-
criminator for our purposes [8]. Further, in the presence of inlining
and dynamic recompilation, we have the ability to gain the bene-
fits of call stack information without incurring the cost of having to
examine thread stacks when allocating sampled objects.

We have proposed that the appropriate data structures for mak-
ing tenuring decisions in a configurable generational framework are
histograms of either birth time or lifespan distributions. The orga-
nization of these histograms must have fine enough resolution to
distinguish the ages of objects in the individual generations. Fur-
ther, the distributions of ages represented by the buckets need to
reflect the relative rates and frequencies with which the individual
generations are collected. One simple approximation of this might
be to scale the per-bucket distributions logarithmically. Finally, we
must support both adaptation to changing program behavior as well
as some level of hysteresis to ensure that decisions, once made, are
stable for a while. This goal may be achieved by either periodically
purging lifespan data gathered about a particular allocation site—
for example, when a new tenuring decision is made as to where to
place objects allocated at that site—or by “aging” the information
in the histogram—for example, with the use of a decay function.

3.5 Program Adaptation
There are a number of ways in which lifespan information may

be used to improve the placement of objects:

� at allocation of an object

� when promoting an object

� when moving an object within a generation

All three of these decisions can be made through dynamic checks
on the available lifespan statistics of a given object. For example,
promotion of objects allocated at a given site might be improved if
we know that these objects exhibit a bimodal behavior—for exam-
ple, either dying young or living forever—and so move surviving
objects directly to the oldest generation.

In the case of allocation, though, we can do better if we are
able to recompile the methods containing the allocation sites where
we wish to set a particular tenuring policy. For example, the Re-
searchVM provides mechanisms for scheduling a bytecode method
to be recompiled. However, there are some cases where this is not
possible. Examples include:

� the interpreter

� the reflection service

� java.lang.Object::clone()

The first two cases are typically not significant since objects of
many types are allocated at the same site or sites. The third case
can be handled by dynamically checking the lifespan information
for an object but it is neither a frequent case nor is it clear that there
is any relationship between the lifespan of an object and a copy of
that object. So, for our purposes, the main impact of tenuring de-
cisions is on dynamically compiled code and in the internal mech-
anisms of the per-generation collectors. When a change in policy

is determined, the methods dependent on a given allocation-site are
recompiled by the VM to implement the new object-placement pol-
icy. One reason to have different thresholds for changing decisions
is to prevent the same methods from being repeatedly recompiled.
In general, though, the result of this process only affects the perfor-
mance of a running application and not its correctness.

4. CONCLUSION
We have presented a proposal for dynamically selecting and col-

lecting information about object behavior in a generational frame-
work. The proposal makes good use of facilities readily available
in runtime systems like those provided by Java virtual machines:
in particular, it makes use of weak references and of the ability to
dynamically recompile methods. Further, we have evidence that
the runtime overheads for the sampling technique and data man-
agement are low for a two-generation collector. Our plan is now to
extend this technique to our dynamically configurable generational
framework.

5. ACKNOWLEDGEMENT
We would like to thank Tim Harris for his excellent work in ap-

plying our methods to a two-generation system and demonstrating
their practicality. In particular, his performance and tracing stud-
ies, his method for graphing object lifetimes, and his idea for using
a small range of objects in the older generation to decide when to
reverse pretenuring decisions helped clarify and validate our pro-
posal.

In addition to Tim Harris, we would like to thank Steve Heller
for many fruitful discussions. many

6. REFERENCES
[1] A. W. Appel. Simple generational garbage collection and fast

allocation.Software Practice and Experience,
19(2):171–183, 1989.

[2] D. A. Barrett and B. Zorn. Garbage collection using a
dynamic threatening boundary. InProceedings of
SIGPLAN’95 Conference on Programming Languages
Design and Implementation, volume 30 ofACM SIGPLAN
Notices, La Jolla, CA, June 1995. ACM Press.

[3] D. A. Barrett and B. G. Zorn. Using lifetime predictors to
improve memory allocation performance. InProceedings of
SIGPLAN’93 Conference on Programming Languages
Design and Implementation, volume 28(6) ofACM
SIGPLAN Notices, pages 187–196, Albuquerque, NM, June
1993. ACM Press.

[4] Y. Bekkers and J. Cohen, editors.Proceedings of
International Workshop on Memory Management, volume
637 ofLecture Notes in Computer Science, St Malo, France,
16–18 Sept. 1992. Springer-Verlag.

[5] P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. InProceedings of
SIGPLAN’98 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices,
Montreal, June 1998. ACM Press.

[6] W. D. Clinger and L. T. Hansen. Generational garbage
collection and the Radioactive Decay model. InProceedings
of SIGPLAN’97 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices, pages
97–108, Las Vegas, Nevada, June 1997. ACM Press.

[7] D. R. Hanson. Fast allocation and deallocation of memory
based on object lifetimes.Software Practice and Experience,
20(1):5–12, Jan. 1990.



[8] T. Harris. Dynamic adaptive pre-tenuring. InProceedings of
the International Symposium on Memory Management, Oct.
2000.

[9] R. L. Hudson and J. E. B. Moss. Incremental garbage
collection for mature objects. In Bekkers and Cohen [4].

[10] JavaTM 2 platform, standard edition, version 1.3 api
specification. Available at:
http://java.sun.com/j2se/1.3/docs/api/index.html .

[11] R. E. Jones.Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, July 1996. With a
chapter on Distributed Garbage Collection by R. Lins.

[12] H. Lieberman and C. E. Hewitt. A real-time garbage
collector based on the lifetimes of objects.Communications
of the ACM, 26(6):419–429, 1983. Also report TM–184,
Laboratory for Computer Science, MIT, Cambridge, MA,
July 1980 and AI Lab Memo 569, 1981.

[13] D. A. Moon. Garbage collection in a large LISP system. In
G. L. Steele, editor,Conference Record of the 1984 ACM
Symposium on Lisp and Functional Programming, pages
235–245, Austin, TX, Aug. 1984. ACM Press.

[14] D. Stefanović, K. S. McKinley, and J. E. B. Moss. Age-based
garbage collection. InOOPSLA’99 ACM Conference on
Object-Oriented Systems, Languages and Applications,
volume 34(10) ofACM SIGPLAN Notices, pages 370–381,
Denver, CO, Oct. 1999. ACM Press.

[15] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm.ACM SIGPLAN
Notices, 19(5):157–167, Apr. 1984. Also published as ACM
Software Engineering Notes 9, 3 (May 1984) — Proceedings
of the ACM/SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, 157–167, April 1984.

[16] D. M. Ungar and F. Jackson. Tenuring policies for
generation-based storage reclamation.ACM SIGPLAN
Notices, 23(11):1–17, 1988.

[17] D. M. Ungar and F. Jackson. An adaptive tenuring policy for
generation scavengers.ACM Transactions on Programming
Languages and Systems, 14(1):1–27, 1992.

[18] D. White and A. Garthwaite. The GC interface in the EVM.
Technical Report SML TR–98–67, Sun Microsystems
Laboratories, Dec. 1998.

[19] P. R. Wilson. Uniprocessor garbage collection techniques. In
Bekkers and Cohen [4].

[20] B. Zorn and M. Seidl. Segregating heap objects by reference
behavior and lifetime. InEighth International Conference on
Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, Oct. 1998.


