
Reducing Garbage Collector Cache Misses

Hans-J. Boehm
Hewlett-Packard Laboratories
1501 Page Mill Rd., MS 1U-17

Palo Alto, CA 94304-1126

Hans Boehm@hp.com

ABSTRACT
Cache misses are currently a major factor in the cost of
garbage collection, and we expect them to dominate in the
future. Traditional garbage collection algorithms exhibit rel-
atively little temporal locality; each live object in the heap is
likely to be touched exactly once during each garbage collec-
tion. We measure two techniques for dealing with this issue:
prefetch-on-grey, and lazy sweeping. The �rst of these is
new in this context. Lazy sweeping has been in common use
for a decade. It was introduced as a mechanism for reducing
paging and pause times; we argue that it is also crucial for
eliminating cache misses during the sweep phase.
Our measurements are obtained in the context of a non-

moving garbage collector. Fully copying garbage collection
inherently requires more traÆc through the cache, and thus
probably also stands to bene�t substantially from something
like the prefetch-on-grey technique. Generational garbage
collection may reduce the bene�t of these techniques for
some applications, but experiments with a non-moving gen-
erational collector suggest that they remain quite useful.

1. INTRODUCTION
Tracing garbage collectors [9] conceptually operate in two

phases:

1. Identify and mark reachable objects. (Themark phase.)

2. Reclaim unmarked objects. (The sweep phase.)

The mark phase normally requires a traversal of all reachable
objects in the heap, often reading the contents of each object
exactly once. Thus much of the heap will have to be read
into the cache, the reads are likely to miss, and the new
contents of the cache are unlikely to be used more than
once.
For many garbage collectors, the sweep phase requires es-

sentially no work, and it is typically omitted from the algo-
rithm description. A pure copying collector may just update
a few pointers to cause the allocator to reuse the previous

heap space. Baker's treadmill collector [1] only has to up-
date a few pointers to lists of objects. A non-moving garbage
collector may simply require the allocator to search for an
unmarked object. In all of these cases, the total cost of the
\sweep phase" is bounded by a very small constant, which
is independent of the heap size.
In contrast, traditional mark-sweep collectors require a

full heap traversal, in which unmarked objects are restored
to free lists. And indeed, there are advantages to explicitly
building free lists from unmarked objects:

� Allocation is fast. The allocator typically needs to lo-
cate the appropriate free list for the requested object
size, remove the �rst entry and return a pointer to it.
This requires a small number of memory references,
and very limited access to global collector data struc-
tures.

� All heap scanning for unmarked objects is performed
in a tight loop. Pointers to relevant data structures
can be moved into registers once, outside the loop. If
mark bits for multiple objects are packed into a word,
multiple mark bits can be retrieved with a single load
instruction. The scanning loop tends to access memory
sequentially, an access pattern for which the memory
system has been tuned.

� Little additional space overhead is required. Unlike
the Baker Treadmill collector, no additional pointers
are associated with live objects. We do not need to
copy any section of the heap. We need only one bit per
object overhead for marking. (This may be partially
o�set by fragmentation issues.)

As a result, many garbage collectors do use a sweep phase
that is somewhat separated from both the mark phase and
the allocator. Such a sweep phase naturally has cache be-
havior similar to the mark phase: Each object is touched
exactly once. Unlike the mark phase, accesses tend to be
more sequential, since mark bits can often be read many at
a time, most memory accesses are likely to be write accesses,
and the objects touched are exactly those not examined by
the marker. The last point makes it even less likely that any
of the cache contents left by the marker will be reused.
We argue that, as a result of their memory access pat-

terns, the performance of both the mark phase and, if there
is one, the sweep phase is largely determined by memory-
system issues. Thus garbage collection algorithms should
be compared primarily on the basis of the generated traÆc
through the memory hierarchy.



Older work on garbage collection often attempted to pro-
vide reasonable performance in the presence of paging [11,
2]. More modern implementations appear to have largely
given up on this goal. Java virtual machines generally per-
form unacceptably in the presence of paging. Economics
have made this state of a�airs acceptable. Rapid increase of
memory sizes combined with much smaller improvements in
disk performance have made it nearly unavoidable.
At the same time, cache considerations have become much

more important for garbage collectors. Cache miss penalties
are still much less than those associated with page faults, but
a complete cache miss often incurs a penalty corresponding
to hundreds of instruction executions.1

Typically, even the largest cache level is still appreciably
smaller than the heap. Thus the above observations make
cache misses in the collector essentially unavoidable.
Even generational collectors often encounter similar prob-

lems. The youngest generation must be large enough to
amortize the cost of scanning the root set (i.e. the non-
heap-allocated pointer variables) and the remembered set
(i.e. pointers from other generations). Thus it most com-
monly does not �t into any level of the cache.
The mutator will normally touch the entire youngest gen-

eration during a collection cycle. If the cache is too small
to hold the entire generation, the contents left in the cache
at the beginning of the mark phase are likely to include
recently allocated dead objects, but not all live objects al-
located near the beginning of the collection cycle. Thus the
marker is still likely to encounter cache misses, and it is
likely to evict objects subsequently needed for allocation, if
they haven't already been evicted.
A generational collector will also still need to mark (and

possibly sweep) the entire heap occasionally. For applica-
tions that primarily build and drop large data structures,
this is likely to happen frequently.

2. RELATED WORK
Much of the prior work on the relationship between cache

performance and garbage collection has concentrated on us-
ing a copying or other compacting collector to improve the
locality of the mutator (client) [5, 10]. We believe this work
is orthogonal to ours and could largely be combined with it.
We concentrate exclusively on the performance of the col-

lector itself. Neither of the techniques discussed here should
signi�cantly impact the performance of the mutator.
There has been some work on automatically inserting pre-

fetch instructions in pointer-based code. The prefetch-on-
grey technique described here is very similar to the \Greedy
Prefetch" strategy for recursive data structure traversals
from [4], though we use some re�nements, and our garbage
collector mark loop would not have been recognized as a
recursive data structure traversal by a compiler.
An alternate approach to reducing sweep time in sparse

heaps is discussed in [6]. It ignores the cache bene�ts of lazy
sweeping, and thus helped to inspire some of the measure-
ments presented here.

1Most current machines have main memory latencies on the
order of 200nsecs, which is typically 100-200 cycle times,
and may correspond to several times that many instruc-
tions. Many such measurements, mostly obtained using
Larry McVoy's \lmbench", are available on the web.

3. ASSUMPTIONS
Our discussion will take place in the context of a mark-

sweep collector.
Our collector2 segregates objects by size. Each page in the

heap (or \heap block") contains objects of a single size. We
do not believe that this is a necessary assumption for any of
the techniques described here, but it makes their description
easier.
We will assume that the collector maintains its data struc-

tures outside the user-visible heap. In particular, mark bits
are stored separately, not in or near the objects. In our case,
the mark bits are part of a descriptor associated with each
page in the heap. We reserve a mark bit for each word in
the page, though only those corresponding to the beginning
of an object are used.
The separation of mark bits from the actual heap objects

is essential for our discussion and results on lazy sweeping.
Although this can increase the number of instructions exe-
cuted in the mark phase, it has some major advantages:

1. The mark phase does not need to examine pointer-free
objects at all. They do not need to be brought into the
cache. If pointer-free objects are segregated (as they
are in our environment), pages containing pointer-free
objects can remain paged out during a garbage collec-
tion. In our experience, this easily justi�es the tech-
nique by itself.

2. Sequences of small unreachable objects can be recog-
nized and reclaimed eÆciently as a group, by examin-
ing a sequence of mark bits with a single instruction.
In our environment, we take advantage of this if an en-
tire heap block (roughly a page) turns out to be empty.
In practice, this is a frequent occurrence.

The collector data structures are a small fraction of the
size of the heap. In our informal discussions we will ignore
their impact. In fact, and in our measurements, they do
compete with the user heap for the cache.

4. PREFETCH ON GREY
Abstractly, we can describe the mark phase of a garbage

collector as follows [7]. Each object has an associated color:
White objects have not yet been visited, grey objects have
been visited but pointers inside the object have not yet been
examined, and black objects have both been visited and
contained pointers have been followed.
The mark algorithm can then be described as:

Ensure that all objects are white.
Grey all objects pointed to by a root.
while there is a grey object g

blacken g
For each pointer p in g

if p points to a white object
grey that object.

In reality, we keep a table containing only one mark bit
per object. A mark bit value of zero corresponds to a white
object; a value of one indicates a grey or black object. In

2See http://www.hpl.hp.com/personal/
Hans Boehm/gc.



addition, a separate stack contains the addresses of all grey
objects.
When an object is greyed its mark bit is set, and it is

pushed onto the mark stack. Blackening an object corre-
sponds to removing it from the mark stack.
Empirically a signi�cant fraction of the time devoted to

this algorithm is spent retrieving the �rst pointer p from
each grey object. On a 500MHz Pentium III, we typically
see the marker dominate the time spent in the garbage col-
lector, and about a third of the execution time of the marker
is accounted for by the load instruction(s) performing the
initial load of a candidate pointer p from an object.3 This
should not be surprising, since this is the �rst reference to
the object itself by the marker, and typically the �rst ref-
erence to the cache line since at least the start of the mark
phase.
We expect the percentage of mark time accounted for by

these misses to increase on future machines, as processor cy-
cle times continue to decrease faster than memory latencies.
Most modern processors provide instructions that allow

data to be \prefetched" into the cache in anticipation of
future use. This can avoid much of the delay associated with
retrieving an object not in the cache, provided it is possible
to predict the object reference suÆciently far ahead of time.
If the object can only be found in main memory, this may
require that the prefetch instruction is issued hundreds of
instructions ahead of the actual object reference, since the
cache miss will probably require on the order of 100 machine
cycles.
Most commonly \prefetch" instructions are introduced

by a compiler optimizing numerical code (cf. [3]). Array
references can often be automatically predicted. In non-
numerical \pointer-chasing" code, this is less feasible (but
see for example [4]).
Nonetheless, in this case, we can manually predict ob-

ject references quite far ahead of time. As soon as we grey
an object, i.e. push it onto the mark stack, we immedi-
ately prefetch the �rst cache line in that object. In our
implementation, we in fact prefetch the object slightly be-
fore that, speci�cally as soon as we notice that p is likely to
be a pointer, before verifying that it is indeed a pointer and
was not previously marked.
We use two other techniques, which slightly improve per-

formance:

1. We minimize the number of cases in which an object
that has just been greyed is immediately examined.
This is done by permuting the code in the marker
slightly, so that the last pointer to be pushed on the
mark stack is prefetched �rst. For reasons related to
optimizer de�ciencies and register pressure in the mark
loop, this turns out to improve matters slightly even
without the prefetch.

2. We also linearly prefetch a few cache lines ahead as we
are scanning an object. This helps with very large ob-
jects. It probably also often prefetches other relevant
objects in the data structure we are scanning.

3This was measured by pro�ling the program using
a PC-sampling technique with single instruction res-
olution. A tiny utility to generate such pro�les
is available from http://www.hpl.hp.com/personal
/Hans Boehm/gc/gc bench.html.

The �rst technique ensures that for every pointer p inside
an object g, the prefetch operation on p is separated from
any dereference of p by most of the pointer validity and mark
bit checking code for the pointers contained in g. Thus, un-
like the cases studied in [4], the prefetch instruction should
be very helpful even for the �rst pointer followed.
This is somewhat less true for a nonconservative collec-

tor for which pointer validity checking is typically limited
to checking a bit in an object descriptor, and checking the
pointer value against null.

5. LAZY SWEEPING
Traditional mark-sweep collectors �rst mark all reachable

objects, and then perform a sweep over the entire heap,
adding each unmarked object to a free list. Since free list
pointers are typically maintained inside the objects them-
selves, this often involves accessing every unmarked object.
Thus the sweep phase can signi�cantly add to garbage col-
lector pause times. Furthermore, it needs to both page in
any pages containing unreachable objects, and move at least
part of each such object through the cache.
If the amount of reclaimed memory exceeds the size of the

cache, it is unlikely that many of the objects brought into
the cache by the sweep phase will be reused before they are
evicted from the cache by the allocator or mutator. Thus the
allocator is again likely to miss the cache when the object is
�nally allocated.
Hughes [8] �rst observed that collector pause times can be

reduced by performing the sweep incrementally, that is, de-
ferring it until allocation time. (Hughes suggests having the
allocator examine mark bits directly, something that would
probably make the allocator too expensive in our context.)
Others have suggested di�erent variations on this idea (cf.

[9, 11, 2]), usually in part to improve paging performance.
If a section of memory is swept just before the reclaimed
memory is reallocated, we may still encounter a page fault
while sweeping. But when the allocator needs that same
region of memory, it is nearly guaranteed to be resident.
The same observation applies to the cache. By ensuring

that a cache line is reallocated very shortly after it is swept,
we replace two cache misses, in the sweep phase and alloca-
tor, by a single miss.
We measure the variant of lazy sweeping that has been

implemented in our collector for a number of years. After
completing the mark phase, the collector scans the mark bit
table for each page in the heap. If no mark bits are set in
the page, the entire page is added to a pool of free pages
without touching it. If some mark bits are set, the page is
added to a queue of pages waiting to be swept. For present
purposes, it is safe to assume that there is one such queue
for each object size. (There are actually several, depending
on other object attributes.)
The allocator normally maps the requested object size to

an appropriate object free list. (This involves a table lookup,
so that similar sizes an be rounded to a single size class in
the same step.) It then removes the �rst object from the
free list and returns it. If the free list is empty, it sweeps
additional pages dedicated to objects of the right size, until
it �nds one containing some available objects. (A heuristic
is used to avoid scanning or touching most pages that are
\nearly full".) In the absence of explicit deallocation and
incremental collection, no free list ever contains objects from
more than one page.



In order to disable lazy sweeping, we modi�ed the collector
to optionally sweep all pages immediately after enqueueing
them.

6. MEASUREMENTS
We report the impact of the above two techniques on Pen-

tium III/500 execution times of a number of benchmarks. To
get some calibration on variation with architecture, we also
remeasured a few of the benchmarks on an HP PA-8000-
based machine. Currently all benchmarks except one are C
programs, and are executed with our collector scanning the
heap conservatively.
For reasons discussed in the appendix, a Pentium III, al-

though it does provide prefetch instructions, does not ap-
pear to gain maximum bene�t from our prefetch-on-grey
technique. Preliminary results on an Intel Itanium machine
are even more encouraging.
We use the following benchmarks:

gc bench java A fairly widely used arti�cial Java garbage
collection benchmark.4 It repeatedly allocates and
drops complete binary trees of various heights. It is
probably more dependent on garbage collector perfor-
mance than any real application. Consecutively allo-
cated objects tend to be dropped at exactly the same
time, which is representative of some real applications,
and unrepresentative of others. Due to this behavior,
our collector tends to reclaim entire pages, and spend
almost no time in the sweep phase.

The fact that objects have exactly zero or two out-
going pointers, and most objects are reachable by ex-
actly one path, tends to help our prefetch-on-grey im-
plementation. Objects with a single outgoing pointer
provide only a smaller amount of latency between the
prefetch and dereference of the outgoing pointer. Mul-
tiple paths to the same object are likely to result in
redundant prefetches.

The benchmark was compiled with the gcj static Java
compiler5, and garbage collected with our collector.
Unlike the C benchmarks, the collector had object lay-
out information for heap objects. This information
is encoded in GC descriptors, which can be retrieved
from the object's method table. The runtime is cur-
rently about 45% higher than the corresponding C pro-
gram, mostly because the allocation sequence acquires
a spin lock, and has not been as well-tuned as its C
counterpart.

gc bench A C translation of the above benchmark, also
available from the above location.

holes gc bench The above C benchmark, but we allocate
and drop an extra tree node between each pair of re-
tained nodes. This causes the collector to spend large
amounts of time in the sweep phase.

4The benchmark was written by John Ellis, Pete Kovac, and
the author. It is available from http://www.hpl.hp.com
/personal/Hans Boehm/gc/gc bench/.
5See http://sourceware.cygnus.com/java. The version
we used di�ered from the (7/24/00) released versions in that
it used code supplied by Tom Tromey, Bryce McKinley, and
the author to avoid interpreting Java class objects in the
garbage collector. We expect our version to become the
standard one.

ptc This is one of the programs in the Zorn memory alloca-
tion benchmark suite. It and Ghostscript appear to be
the only two benchmarks in the suite with a heap size
that exceeds the size of the cache on the HP machine.
It translates Pascal to C. It was run on the largest in-
put. The program was written for malloc/free mem-
ory management, but it builds a single large syntax
tree data structure, which is retained until program
exit. A number of garbage collections are run during
execution, though they could all be avoided by imme-
diately setting the heap size to its �nal value.

ghostscript This is again the version from the Zorn bench-
mark suite, run on the largest provided input. As with
ptc, we let the garbage collector grow the heap using
its normal heuristics. This version bypasses the orig-
inal Ghostscript custom memory management, but is
not well-tuned for a garbage collector.

incremental ghostscript As above, but we let the col-
lector run in its incremental and generational mode.
This is similar to the scheme described in [BoeDem-
Sch91], but the collector is run incrementally during
allocation calls instead of in a separate thread. The
primary di�erence is that most collections do not re-
set the mark bit state, and hence do not attempt to
collect objects that survived the preceding collection.
True incremental mode is triggered only when the col-
lection time exceeds a 50msec threshold.

large ghostscript This is ghostscript with a non-incre-
mental collector, but we added code to immediately
expand the heap to 20MB, nearly 10 times larger than
the maximal live data size.

Table 1 presents the Pentium performance results rela-
tive to the \normal" version of the collector, which sweeps
lazily, but does not prefetch. For each benchmark, we give
the approximate fraction of time spent marking when using
the \normal" collector, the approximate fraction of the time
spent sweeping, the slowdown from eager sweeping, and the
speedup from the addition of prefetching.
All percentages are fractions of the entire \normal" ex-

ecution time of that benchmark, not fractions of garbage
collection time.
Table 2 contains some of the analogous measurements on

an HP PA-8000 machine running at 180MHz.
We draw several conclusions from these measurements:

� Sweeping eagerly instead of lazily usually slows down
the sweep phase by at least 50%. This is entirely a
cache e�ect.

� For both gc bench versions, prefetch-on-grey appears
to eliminate most of the cache miss overhead in the
marker. For data structures that look less like com-
plete binary trees, it is less e�ective, but still seems to
eliminate at least a third of the miss overhead (which
is about a third of the mark cost.)

� Sweep times are rarely an issue for our collector, though
this is surprisingly architecture dependent. Generally,
collector performance is determined by the marker.

� The incremental collector essentially requires lazy sweep-
ing, since otherwise the entire heap is swept, even for
minor collections. (This is not a new insight.)



Table 1: Pentium II/500 Relative Performance
Benchmark Mark Time Sweep Time Eager Sweep Slowdown Prefetch Speedup
gc bench java 39% 3% 0% 11%
gc bench 49% 3% 0% 13%
holes gc bench 57% 12% 7% 17%
ptc 27% 0% 0% 4%
ghostscript 44% 5% 5% 5%
incremental ghostscript 39% 9% 17% 4%
large ghostscript 8% 6% 3% 1%

Table 2: HP PA-RISC Relative Performance
Benchmark Mark Time Sweep Time Eager Sweep Slowdown Prefetch Speedup
gc bench 45% 3% -1% 11%
holes gc bench 40% 36% 34% 9%
ghostscript 26% 4% 3% 8%

Both prefetch-on-grey and lazy sweeping are very cheap
to implement in many contexts, and should clearly be incor-
porated into future garbage collectors.
It is worth pointing out that in our experiments, the ex-

ecution time always varies inversely with the number of in-
structions executed. Measurements with the PCL perfor-
mance counter library6 show that lazy sweeping executes
slightly more instructions in our implementation, but is al-
most uniformly no slower. This is more than made up for
by a reduction in cache misses. 7 Similarly prefetching adds
a small number of instructions.

7. ACKNOWLEDGEMENTS
I would like to thank the anonymous ISMM referees and

Brian Lynn for their many detailed comments.

8. REFERENCES
[1] H. G. Baker. The treadmill, real-time garbage

collection without motion sickness. SIGPLAN Notices,
27(3), March 1992.

[2] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly
parallel garbage collection. In Proceedings of the ACM
SIGPLAN 91 Conference on Programming Language
Design and Implementation, SIGPLAN Notices 26, 6,
pages 157{164. ACM, June 1991.

[3] D. Callahan, K. Kennedy, and A. Porter�eld. Software
prefetching. In Proceedings of the Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 40{52. ACM,
April 1991.

[4] L. Chi-keung and T. C. Mowry. Compiler-based
prefetching for recursive data structures. In
Proceedings of the Seventh International Conference
for Architectural Support for Programming Languages

and Operating Systems, SIGPLAN Notices 31, 9,
pages 222{233, September 1996.

6See http://www.fz-juelich.de/zam/PCL/.
7In the case of holes gc bench, we measured about 8% re-
duction in the both L1 and L2 cache miss rates on a 300MHz
Pentium II. The corresponding cache miss measurements for
ghostscript also paralleled the reported execution time mea-
surements.

[5] T. M. Chilimbi and J. Larus. Using generational
garbage collection to implement cache-conscious data
placement. In Proceedings of the International
Symposium on Memory Management, pages 37{48.
ACM, 1998.

[6] Y. C. Chung, S.-M. Moon, K. Ebcioglu, and D. Sahlin.
Reducing sweep time for a nearly empty heap. In
Proceedings of the 27th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages,
pages 378{387. ACM, January 2000.

[7] E. W. Dikstra, L. Lamport, A. J. Martin, C. S.
Scholten, and E. Ste�ens. On-the-
y garbage
collection: An exercise in cooperation.
Communications of the ACM, 21(11):965{975,
November 1978.

[8] R. J. M. Hughes. A semi-incremental garbage
collection algorithm. Software Practice and
Experience, 12(11):1081{1084, Novemeber 1982.

[9] R. Jones and R. Lins. Garbage Colection: Algorithms
for Automatic Dynamic Memory Management. John
Wiley and Sons, New York, 1996.

[10] P. R. Wilson, M. S. Lam, and T. G. Moher. E�ective
`static graph' reorganization to improve locality in
garbage collected systems. In Proceedings of the ACM

SIGPLAN '91 Conference on Programming Language
Design and Implementation, SIGPLAN Notices 26, 6,
pages 177{191, JUNE 1991.

[11] B. Zorn. Comparing mark-and-sweep and
stop-and-copy garbage collection. In 1990 ACM
Conference on Lisp and Functional Programming,
pages 87{98, June 1990.

APPENDIX

A. MEASUREMENT DETAILS
The Pentium measurements here were obtained on a dual

processor 500MHz Pentium III machine with a 100MHz bus
and a 512KB L2 cache running RedHat 6.1 Linux. None of
the measurements here involved more than one processor.
The machine had more than enough physical memory (>
300MB) to preclude paging, and to allow the executable
itself to be cached in memory.
Pentium benchmarks were compiled with gcc (egcs 2.91)

-O2. We used -O on the PA-RISC machine.



HP PA-RISCmeasurements were obtained on a single pro-
cessor 180 MHz HP PA-8000 system running HP/UX 11.
The machine has single-level I and D caches of 1 MB each.
The Zorn memory allocation benchmarks are available

from ftp://ftp.cs.colorado.edu/pub/misc/malloc-
benchmarks. The benchmarks we used needed mi-
nor modi�cation to allow compilation with modern C
compilers. No substantive changes were made, except
as described above. The only change required to run
Ghostscript with incremental garbage collection was a call
to GC enable incremental().
The measurements were obtained with collector versions

equivalent in performance to the released version 5.1 of the
collector.
Most program execution times were in the 3 to 25 second

range and repeatable with signi�cantly less than 1% varia-
tion on the Pentium III, and up to about 2% variation on
the PA-RISC machine. Ptc unfortunately ran for only about
3/4 of a second, even with the largest input.
Execution time measurements are averages across 5 runs.

They include user and system mode time.
The percentage of time spent in the mark and sweep

phases was obtained with gprof and, in a few cases, veri-
�ed with other pro�ling tools. It is probably less accurate
than the speedup and slowdown numbers.
The division between sweep and allocation time is un-

avoidably rather arbitrary. The sweep time we report here
includes the time to detect completely empty pages, and
to scan partially full pages. It excludes the time used to
initialize known empty pages in preparation for allocation,
even though that is often larger than sweep times. (Roughly
24% of gc bench time on the Pentium III is spent clearing
empty blocks of memory and writing an initial set of free
list pointers into it.) Such initialization must be performed
on demand, even in the absence of lazy sweeping, since it
depends on the object size assigned to that page, and thus
on requested object sizes. A collector that did not detect
empty regions in this way would bene�t much more from
lazy sweeping than we show here.
We did not directly attempt to control the heap size,

which can drastically a�ect garbage collection times. But
we have been careful to compare only executions that re-
sulted in very similar heap sizes and GC frequencies.
Prefetch instructions were inserted using gcc's inline as-

sembly code facilities and a roughly comparable facility in
the HP compiler. Although this a�ected the surrounding
code somewhat, it did not seem to worsen it appreciably.
Unfortunately, there is no uniform prefetch instruction for

all X86 compatible processors. Intel introduced a family of
prefetch instructions with the Pentium III. AMD introduced
a di�erent and incompatible set of prefetch instructions with
the AMD K6-2 at roughly the same time. The Pentium III
instructions appear to be ignored on earlier Intel processors.
The AMD instructions appear to trap on those processors.
We did not have the chance to experiment on AMD-based
machines.
Our experiments suggest that on a Pentium III, it is not

bene�cial to prefetch locations that are about to be written
sequentially. Thus we did not attempt to prefetch in the
sweep phase.
We initially used the prefetcht0 instruction for the Pen-

tium III to prefetch during the mark phase. This prefetches
directly into all cache levels, and was extremely e�ective at

eliminating the cache misses we has observed in instruction
level pro�les of the marker. However, it appeared to slow
down the remainder of the mark loop, presumably because it
interfered with the remainder of the memory traÆc. Unlike
other processors, the X86 version of the mark loop contains
many register spills and the like, at least when compiled
with gcc.
The measurements reported here use the prefetchnta in-

struction, which suggests to the hardware that subsequent
accesses will not have temporal locality. We found this to
be signi�cantly less e�ective at reducing the original cache
misses, but it appeared to introduce no new overhead. Over-
all results were very slightly better than with prefetcht0.


