
Comparison of Compacting
for Garbage Collection

JACQUES COHEN and ALEXANDRU NICOLAU
Brandeis University

Algorithms

The relative efficiencies of four compactors of varisized cells are estimated by constructing their time-
formulas. These are symbolic formulas expressing execution times as functions of the time to perform
common, elementary operations such as assignment, addition, subscripting, and loop overhead. By
binding the variables to numeric values corresponding to a specific machine one can estimate program
execution times without resorting to empirical tests. The first of the compactors (Lisp 2) requires
additional storage for pointer readjustment. The second (based on the work of Haddon and Waite)
attempts to reduce these storage requirements at the expense of processing time. The last two (Morris'
and Jonkers') are recently proposed compactors that require minimal additional storage and that
update pointers by first threading them into linear lists. The paper provides unified descriptions of
the algorithms and presents curves expressing the relative efficiencies of the compactors when run on
a specific machine (PDP-10). It is straightforward to modify the given formulas to estimate compac-
tors' efficiencies when run on other computers.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics; D.4.2 [Operating
Systems]: Storage Management; E.1 [Data]: Data Structures; E.2 [Data]: Data Storage Represen-
tations

General Terms: Algorithms, Measurement

Additional Key Words and Phrases: Garbage collection, compaction, varisized cells, storage manage-
ment, pointer readjustment, time-formulas

1. INTRODUCTION

Garbage col lec t ion is a t e r m t h a t d e n o t e s the process of r e c l a i m i n g u n u s e d
storage. M e t h o d s for ga rbage col lec t ion u sua l l y compr i se two sepa ra t e phases :

(1) iden t i fy ing the s torage t h a t m a y be rec la imed;
(2) i nco rpo ra t i ng th i s r ec l a imab le s torage in to the m e m o r y a rea t h a t c a n be m a d e

ava i lab le to the user.

P h a s e (1) is u sua l l y pe r fo rmed by keep ing a l is t of i m m e d i a t e l y access ible cells
a n d fol lowing t he h n k s c o n t a i n e d in t h e m to t race a n d m a r k eve ry access ible cell.
T h i s m e t h o d of i den t i f i ca t ion is u sua l l y cal led marking. P h a s e (2) c a n be subd i -

This work was supported by the National Science Foundation under grant MCS 79-05522.
Authors' addresses: J. Cohen, Computer Science Program, Ford Hall, Brandeis University, Waltham,
MA 02254; A. Nicolau, Computer Science Department, Yale University, New Haven, CT 06520.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0164-0925/83/0700-0532 $00.75

ACM Transactions on Programming Languages and Systems, Vo]. 5, No. 4, October 1983, Pages 532-553.

Comparison of Compacting Algorithms for Garbage Collection 533

vided into two classes:

(2a) incorporation into a free list in which available cells are linked by pointers;
(2b) compaction of all used cells into one end of the memory, the other end

containing contiguous words that are made available to the allocator.

Knuth [8] and Cohen [2] describe several algorithms for performing these two
phases of garbage collection.

In this paper we present detailed analyses of four algorithms that perform
Phase (2b) of garbage collection. The first algorithm, referred to as Lisp 2 [8, pp.
602-603], is a classical one. The second is an improved version of another classical
compactor also known as the "rolling table" compactor [5, 6, 13]. The last two, by
Morris [11, 12] and Jonkers [7], have been proposed only recently. Our analyses
consist of constructing the time-formulas [1, 3] for these compacting algorithms.
Time-formulas are symbolic formulas that express execution times as functions
of variables representing the time needed to perform common, elementary oper-
ations (e.g., addition, assignment, subscripting, loop overhead). By binding the
variables to numeric values corresponding to a specific machine, one can estimate
program execution times without resorting to empirical tests.

All four of the selected algorithms can compact varisized cells, that is, cells of
different sizes. The following storage requirements should be kept in mind when
comparing the four compactors:

Lisp 2

Table Compactor

Morris

Jonkers

One extra field per cell is required to store information for
pointer readjustment. The content of this field is an address.
In principle, no additional storage is required since the infor-
mation for readjusting pointers can be stored within garbage
cells. This information consists of a table of records, each
being able to hold two addresses. An additional table may be
used to speed up pointer readjustment.
Assuming that cells may contain pointers and data, two bits
per field are needed to identify pointers, swapped pointers,
data, and garbage cells. If each field has its own mark bit,
only an additional bit is needed.
One bit per cell is required to recognize if the space occupied
by data has been previously occupied by a pointer. This
presupposes that the space needed to store the data of a cell
is also capable of holding a pointer.

Although the four chosen algorithms are (essentially) hnear, only a microanal-
ysis, as presented here, can reveal their relative efficiencies on specific machines.

In the following two sections we present unified descriptions of the algorithms
and show how to derive their time-formulas. In Section 4 we compare the
performance of the algorithms by considering a specific computer (PDP-10).
However, the data provided by the time-formulas enable the reader to estimate
the performance on various other machines.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

534 J. Cohen and A. Nicolau

o

p

\
Size c

npc

Address

Pointers

. Da ta

L i s p 2 on l y

Fig. 1. Assumed layout of a cell.

2. DESCRIPTION OF THE ALGORITHMS

A cell is a number (_1) of contiguous computer words that can be made available
to the user. For description purposes let us consider that the varisized cells have
the configuration depicted in Figure 1. The first field of the cell is large enough
to store an address and is only required in the Lisp 2 compactor. The second and
third fields contain (1) the size of the cell and (2) the number, NPC, of fields
containing pointers. It is assumed that these pointers immediately follow the field
storing NPC and that they reference the first element of a cell. The data of the
cell are placed following the pointers.

It would be straightforward to modify our descriptions and analyses of the
compactors if the information about the size of a cell and its pointers were stored
in a different manner.

Each algorithm compacts an area of the memory M between two addresses,
START and LAST (START < LAST). This area contains a number (_1) of
cells, which may be either active or garbage cells. An active cell is one that can
be accessed by a program through a set of initial pointers. In contrast, garbage
(also called inactive) cells cannot be accessed through that set. All four compac-
tors are of the sliding type; that is, they move the active cells toward one end of
the memory.

The first phase of collection marks each active cell by setting a special bit on.
(Initially, mark bits are off.) The mark bits of the garbage cells remain off. Upon
completing its task, the compactor turns off the mark bits of the active cells to
prepare for a subsequent collection.

The marking (or tagging) fields of a cell vary according to the compactor. In
Lisp 2 the first word of a cell (see Figure 1) contains a nonnil pointer if the cell is
active and a nil pointer otherwise.

Before we proceed to the presentation of the compactors, it is helpful to
describe the common data used in evaluating them. Table I presents the param-
eters used in time-formulas to indicate the number of cells (classified according
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Comparison of Compacting Algorithms for Garbage Collection

Table I. Loop Data Applicable to the Four Compactors

535

NC
NMC
NGC
NGB
NMB
NPC
NNP
NAP
NAPC
NIP
NIAP
NFP
NBP
NSP
NIPF
SIZEC

Total number of cells between START and LAST (NC = NMC + NGC)
Number of marked (i.e., active) cells between START and LAST
Number of garbage cells between START and LAST
Number of garbage blocks; a garbage block is a sequence of adjacent garbage cells
Number of marked blocks
Number of pointers per cell (NPC = NNP + NAPC)
Number of nil pointer fields per ceil
Number of active pointers (i.e. nonnil ones) including the initial pointers
Number of nonnil pointers per cell
Number of initial pointers
Number of initial nonnil pointers
Number of forward pointers plus the number of initial pointers
Number of backward pointers
Number of pointers referencing their own cell
Number of initial pointers outside the area to be compacted
Number of words in a cell

Note. Average values of these quantities are actually used in the time-formula computations.

Table II. Time-Variables and Their Bindings

PDP-10 bindings
Time-variable (ps)

ADDITION 0.61
ASSIGN 1.21
AND 0.63
COND 1.30
OR 0.63
FOROH 2.02
IFOH 1.30
MULT 2.69
NEGATION 0.20
REPEATOH 0.93
SUB1 2.27
SUBTRACT 0.77
WHILEOH O.92

to the i r types) , t he n u m b e r of poin ters , a n d r e l a t ed i n fo rma t ion . T i m e f o r m u l a s
are expressed as a f u n c t i o n of these p a r a m e t e r s a n d of the t i m e - v a r i a b l e s ind i -
ca t ing the t ime to pe r fo rm the basic ope ra t i ons c o m m o n to all t he compac to r s . A
list of these ope ra t ions a n d t he i r b i n d i n g s to a specific c o m p u t e r are p r e s e n t e d in
T a b l e II. SUB1, for example , is the t ime n e e d e d to subsc r ip t a o n e - d i m e n s i o n a l
array; C O N D deno te s the t ime to tes t a cond i t i ona l express ion (such as a > b or
d ~ a). T h e t ime -va r i ab l e s e n d i n g in OH d e n o t e t he t ime o v e r h e a d n e e d e d to
execute the co r r e spond ing opera t ion .

We have chosen to p rov ide de ta i led p r o g r a m vers ions of on ly t he f irst a n d las t
compactors . A careful e x a m i n a t i o n of the t i m e - f o r m u l a for t he f irst c o m p a c t o r
will e n a b l e the r e a d e r to r e c o n s t r u c t the t i m e - f o r m u l a s for t he others . 1 T h e las t

~The detailed programs for all four compactors and their time-formulas are available from the
authors.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

536 J. Cohen and A. Nicolau

compactor is also presented in detail since it is one of the most likely to be used
in cases where memory is scarce.

2.1 Lisp 2

The algorithm as described by Knuth [8, pp. 602-603] uses three linear passes of
the memory space. The first pass has two objectives:

(1) To combine all adjacent garbage cells into one garbage cell; although this
step is not strictly necessary, it may speed up the subsequent passes.

(2) To compute the new address of each active cell; this new address is the sum
of the sizes of the preceding active cells, and it is stored in the first field of
each active cell as it is encountered (see Figure 1).

The second pass simply updates the pointer fields of each active cell so that
they point to the new address where the cell will be relocated. Finally, the third
pass relocates the active cells toward the lowest address part of the memory.
This pass also resets to nil the link field of each active cell. As mentioned earlier,
this field is used in the marking phase of each collection.

Figure 2 is a program that implements the Lisp 2 algorithm. Our purpose in
presenting this straightforward algorithm is to illustrate the generation of the
time-formula. The program is presented in a PASCAL-like language. 2 It contains
comments indicating the number of times each of its branches and loops are
executed. This information, which is complemented by Table I, is needed to
derive the time-formula for the algorithm.

The snapshots shown in Figure 3 illustrate the action of each pass. To improve
clarity, only the pointers to one of the cells, C, are shown in the figure. The sole
initial pointer (root) also references C, and it lies in a word outside the area being
compacted. There are, of course, pointers emanating from C and linking all the
marked cells shown in the shapshots.

2.2 Table Compactors

The table in this class of compactors [5, 6, 13] is used for storing data needed for
pointer readjustment. These compactors usually operate in three phases:

1. Computation of readjustment data and its storage within the inactive cells
("holes"). This scan also does the compacting and involves the following steps:

a. determine the next hole, its initial address ai, and its size Si;
b. compute the i th pair (ai, Sum + Si); Sum is initialized to zero, and it is

updated by the assignment Sum := Sum + Si;
c. add the above pair to a (break) table BT that is stored within the holes and

that may need to be "rolled" to make room for the cells being compacted.
This rolling alters the order in which pairs appear in the table; 3

d. compact; that is, move the cell adjacent to the hole toward the address ai.

2 This has been done to simplify the presentation. The actual programs were tested using a PASCAL
compiler.
3 It can be shown [6] that there is always room in the holes for storing the BT.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Comparison of Compacting Algorithms for Garbage Collection 537

2. Sorting of the pairs in the BT table according to increasing values of a. This
is needed to speedup Phase 3 below.

3. Pointer readjustment. Each element in the compacted area is scanned, and
each pointer p is adjusted as follows:

a. search through the BT table and determine the adjacent pairs (a, S) and
(a', S') such that a _ p < a';

b. the readjusted value o fp i sp - S.

Phase 1 is linear; one of its time-consuming operations is the copying and
rolling of the table as explained in Phase lc.

Let n be the number of blocks of active cells. The worst case complexity of
Phase 2 occurs when active cells alternate with inactive cells. In that case the BT
table contains n entries, and its sorting has complexity n log n.

Phase 3 also has complexity n log n since a binary search is needed to readjust
each pointer by consulting the already sorted BT table.

Although the complexity of the last two phases is theoretically n log n, the
results presented by Fitch and Norman [5] and confu~med by our analysis show
that in most practical situations the compactor behaves linearly.

Our version of the table compactor is that suggested by Fitch and Norman [5]
and is briefly described as follows:

A table H (of size h -- 2 p) containing pointers to BT is constructed just after
Phase 2 and stored in the reclaimed space together with BT. This table is used
as a hash table providing fast access to BT. When a pointer is redjusted in Phase
3, the p most significant bits are used to look up the start and end addresses of a
region in BT containing the values of a and a' needed for readjustment (see
Phase 3a). Fitch and Norman suggest that h be roughly twice the size of BT
when possible.

Microanalysis of the table compactor enabled us to estimate the importance of
the sorting required in Phase 2. An initial analysis was made assuming that
sorting would take y NMB log NMB time units, in which 7 is a constant depending
on the sorting algorithm and on the computer characteristics and NMB is the
number of marked blocks, that is, the number of entries in BT. We then
determined experimentally that value of y for Quicksort running on the PDP-10,
the numbers to be sorted being randomly generated. To our surprise, the results
indicated that the time-formula for the table compactor was not only strongly
nonlinear but also yielded compacting times above those of the other compactors.
(Our results indicated that sorting required about 30 to 40 percent of the
compactor's time.) This was contrary to the almost linear results obtained by
Fitch and Norman [5]. Our findings led to a more careful and realistic analysis,
which in turn suggested the proper algorithm for sorting BT.

Note that, every time the BT table is rolled, the order of its contents is changed,
and additional effort is needed to sort BT in Phase 2. Therefore, the appropriate
strategy in Phase 1 is to avoid rolling the BT table unless this is strictly necessary.

We now estimate the size of the portion of the BT that must be sorted, that is,
the index S such that sorting is only needed for elements BT[1] through BT[S].

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

538 J. Cohen and A. Nicolau

p r o c e d u r e COMPACT_LISP2;
(~ c o m p a c t s used c e l l s t o w a r d s l o w e s t a d d r e s s ~)
b e g i n

(~ f i r s t pass: combine adjacent garbage ce l l s and
ca lcu la te new address of used ce l l s ~)
P:=START;
NEW_AaDRE$S:=START;
w h i l e P (> N IL do

b e g i n
(~ t h e l o o p h e a d e r i s e x e c u t e d (NGB+NMC* I) t i m e s l and

t h e body (NGS+NMC) t i m e s ~)
i f MARKED(P) t h e n

~egin
(~ t h i s b r a n c h i s e x e c u t e d (NMC) t i m e s ~)
L I N K (P) : = N E W ACOR~S$;
NEW_ADDRESS:=NEW_AODRESS+SIZE(P);

end;
e l s e

wnile n o t MARKECCNEXT(P)) do
(~ t h e l o o p h e s d e r i s e x e c u t e d (NGC) t i m e s ~ and

t h e b o d y (NGC-NGB) t i m e s ~)
COMBINE(P)

P:= N~XT(P)
e n d ; (= end = h i l e l o o p ~)

UPDATE_ROOTS; (= u p d a t e s i n i t i a l p o i n t e r s =)

(~ s e c o n d p a s s : u p o a t e a l l p o i n t e r f i e l d s i n e a c h used c e l l =)
P :=START;
r e p e a t

(= t h i s l o o p i s e x e c u t e d (NMC+NGB) t i m e s ~)
i f MARKEO(P)

t h e n UPOATE_CHILDREN(P) ;
P : = N E X T (P)

u n t i l P = NIL; (~ end r e p e a t loop ~)

(~ t h i r d p a s s : r e l o c a t e marked c e l l s #)
P :=START;
r e p e a t

(~ t h i s l o o p i s e x e c u t e d (NMC+NG8) t i m e s ; a t e m p o r a r y l o c a t i o n
i s neeoed t o save t h e i n f o r m a t i o n c o n t a i n e d i n t h e o l d s i z e
f i e l d o f t h e c e l l b e i n g moved ~)

T : = N E X T (P) ;
i f MARKED(P) t h e n

begin
(~ t ~ i s branch is e x e c u t e d (NMC) t i m e s =)
NE~ ACDRE$SI=LINK(P);
(¢ s e t l i n k f i e l d t o u n m a r k e d f o r f u t u r e use ~)
UNMARK(P) ;
MCVE(P,NEW_ADORESS)

e n d ;
P :=T

u n t i l P = N~L; (= end r e p e a t l o o p ~)
e n d ; (¢ p r o c e d u r e COMPACT L I S P 2 ~)

p r o c e d u r e UPDAT~ ROCTS;
b e g i n

(~ t h i s l o o p i s e x e c u t e d (N I P) t i m e s ~)
f o r (a l l i n i t i a l po in te rs i) do

i f (M [I] is not n i l) then UPDATECi)
end;

Fig. 2. PASCAL-I~e program implementing the Lisp 2 compactor.

As the scan of Phase 1 proceeds, the to ta l n u m b e r of freed words s teadi ly
increases, f rom zero to the value N G B * S IZEC (see Tab le I). T h e expected
n u m b e r of free words af ter processing b blocks of m a r k e d ceUs is a t leas t
b * SIZEC.

ACM Wransactmns on Pro~amming Languages and Systems, Vol. 5, No. 4, October 1983.

Comparison of Compacting Algorithms for Garbage Collection 539

p r o c e d u r e U P D A T E _ C H I L D R E N (P) ;
b e g i n

(* t h i s l o o p i s e x e c u t e d (NPC) t i m e s *)
f o r (a l l p o i n t e r s i i n t h e c e l l P) do

i f (HCi] is not n i l) than U P D A T E (i)
end;

p r o c e d u r e NDVE{P tNEW_ADDRESS) ;
b e g i n

(* t h i s l o o p i s e x e c u t e d (S r Z E C) t i m e s ~)
fo r i:=O t o NIP+l] -1 do

M[NEW_ADORESS+i]:=N[P+i]
and;

V a r i a b l e s Used i n L i s p 2 C o m p a c t i o n
= = = = = = = = = = == = ==

p

START

LAST

NEW_ADDRESS -

a d d r e s s o f t h e f i r s t e l e m e n t o f e c e l l

a d d r e s s o f t h e f i r s t l o c a t i o n i n t h e a r e a b e i n g c o m p a c t e d

a d d r e s s o f t h e l a s t l o c a t i o n i n t h e a r e a b e i n g c o m p a c t e d

a d d r e s s t o m h i c h a c e l l m i l l be r e l o c a t e d a f t e r c o m p a c t i o n

F i e l d s Used i n t h e L i s p 2 C o m p a c t o r
. ======_-== = = = = = = = = = = = = = = = =

L I N K (P) c o n t a i n s t h e a d d r e s s o f t h e f u t u r e l o c a t i o n o f a c e l l ,
i . e . a f t e r compaction. When t h i s f i e l d is n i l , the
c e l l i s c o n s i d e r e d t o be u n m a r k e d .

MARKED(P) - c o n t a i n s t h e v a l u e TRUE i f t h e c e l l i s m a r k e d ~ o t h e r i i s e
c o n t a i n s t h e v a l u e FALSE

S I Z E (P) - y i e l d s t h e s i z e (n u m b e r o f m o r d s) o f t h e c e l l p o i n t e d t o
by P

C D H B I N E (P)

H 0 V E (P)

N E X T (P)

A u x i l i a r y P r o c e d u r e s Used i n t h e L i s p Z C o m p a c t o r
= = = === ===== == = = = = = = = = ====== = == == = = = = == = = = === == = = =

- c o m b i n e s tmo a d j a c e n t g a r b a g e c e l l s by c h a n g i n g t h e
c o n t e n t s o f t h e f l e l d S I Z E (P) t o S I Z E (P) + S I Z E (N E X T (P))

m o v e s t h e c e l l p o i n t e d t o by P t o i t s n e e a d d r e s s

- y i e l d s t h e a d d r e s s o f t h e c e l l f o l l o u i n g t h e c a l l p o i n t e d
t o by P. N E X T (P) r e t u r n s t h e v a l u e N I L i f t h e c o m p u t e d
a d d r e s s e x c e e d s t h e v a l u e o f L A S T .

u p d a t e p o i n t e r f i e l d A t so t h a t i t h o e p o i n t s
t o t h e n e e l o c a t i o n o f t h e c e l l

u p d a t e s e a c h o f t h e NPC p o i n t e r s i n t h e c e l l s p o i n t e d
t o by P

u p d a t e s e a c h o f t h e i n i t i a l (r o o t) p o i n t e r s

u n m e r k s t h e c e l l P

Figure 2 continued.

Let T be the size of the largest ceU; then, w h e n T < b * SIZEC - b, the freed
space should be large enough to a c c o m m o d a t e both the break table and the next
marked ceU, so we would not have to roU the table. Thus , an upper bound for the
average value of S is T/(SIZEC - 1). If T is relatively small, only a short initial

ACM Transact ions on P r o ~ a m m i n g Languages and Sys~ms , Vol. 5, No. 4, October 1983.

UPDATE(A)

U P D A T E _ C H I L D R E N (P) -

UPDATE ROOTS

UNMARK(P)

540 J. Cohen and A. Nicolau

(a)

direction

== =iii == m
i nl n2 n3 n 4 n 5

start c

A

last

(b)

(c)

1[1 n|ll il Ill Iml I | 1 , .]

' TT T n l ~

n 2 ~-----.~---~ ' ----- . ,~----~
n 3 n 4

(d) Ill m i H ~
start la t

Fig. 3. Snapshots used in describing the Lisp 2 compactor: (a) initially; (b) after
pass 1; (c) after pass 2; (d) after pass 3.

segment of the final break table will need to be sorted. This suggests t ha t a few
scans of the break table be made to de termine the size of this initial segment. A
suitable sorting s t ra tegy then proceeds as follows:

1 Scan the B T from higher to lower addresses, finding the first en t ry such tha t

aj -1 > aj .

2 Find the largest value V between al and aj-1.

3 Scan the B T f rom j - 1 onward and find the largest index S such tha t

a s - 1 <-- Y < a s .

4 Sort the values between al and as.

The t ime-formula for Step (2) above becomes ~(S log S where S is at mos t
T / (S IZEC - 1). This result suggests t ha t sorting can become t ime consuming
when there are large active arrays in memory.

The expense of sorting caused by excessive rolling can be avoided ff each B T
entry contains an extra field. This field stores the final position of the en t ry in
the table, and it is assigned a value in Phase 1 when the ent ry is created. T h e
table can now be rolled with impunity, since an obvious l inear algori thm can be
used to res tore the table to the order indicated by the extra field.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Comparison of Compacting Algorithms for Garbage Collection 541

2.3 Morris

Morris' algorithm is based on the following property: assume that the contents of
locations A, B, C, . . . point to location T. Then no information is lost if this tree
structure, with root T, is transformed into a linear list by stringing together
locations T , . . . , C, B, A and placing the contents of T in A. Once the new position
of T, say T', is known, it is simple to reconstruct the original tree by making A,
B, and C point to T'.

This property has been used by Fisher in a special type of collector [4]. Morris
pioneered the development of general compactors based on that property. (We
see below that Jonker's algorithm uses it as well.)

Morris' algorithm requires two tag bits for each word in a cell. 4 These bits
indicate different configurations of pointers and data according to the following
convention:

0: inactive (garbage);
1: pointer;
2: swapped pointer;
3: nonpointer (data).

Morris' algorithm may require three passes through the memory space. The
first pass only readjusts forward-pointing references and references pointing to
their own cell. The second pass readjusts backward-pointing references. Finally,
a third pass moves the active cells toward the highest address in the memory
space. The first pass is in the forward direction. The other two passes are in the
backward direction and may be combined into one pass.

One advantage of Morris' compactor is that it does not require that pointers
reference the beginning of a cell. It would be inefficient in terms of storage to
modify Lisp 2 to handle these general pointers. (Jonkers remarks that his
compactor may handle general pointers by introducing tag bits.)

The heart of Morris' algorithm is a procedure that is called within the first two
passes, that is, in the forward and in the backward directions. Its parameters are
the current field being examined and the direction of the pass. Basically, this
procedure threads pointers to a given cell as they are encountered. Assume cells
A, B, and C point to location T whose contents are X. Then threading A, B, and
C consists of linking T, C, B, and A by pointers and placing X in A. Note that
threading involves swapping information, and this is indicated by an appropriate
setting of the tag bits.

The operation of updating consists of unthreading, that is, transforming the
threaded list into its original tree form. In our example unthreading consists of
making A, B, and C point to the new address T', where the original contents of
T are now stored.

The first pass of Morris' algorithm consists of threading and updating forward
pointers (as well as pointers which reference their own cell). The second pass, in
the backward direction, also calls this procedure to thread and update backward
pointers. Finally, the third pass moves the cells toward the highest addresses of
the memory space.

4 In its original presenta t ion, Morr is used cells containing only pointers. In t h a t case only one tag bit
is required.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

542 . J. Cohen and A. Nicolau

The reader interested in the actual implementation of Morris' algorithm should
examine Figure 4, which presents the details of the thread and update operations.

The snapshot shown in Figure 4b is taken when cell C is reached during the
first pass. This is followed by an updating of the pointers originally pointing to C
(see Figure 4c). The updating of pointers referencing their own cell is shown in
Figure 4d.

Figure 4e shows a snapshot during the second pass when cell C is reached.
Figure 4f is a snapshot taken after updating the backward pointers to C. Figure
4g shows the memory space after the higher address cells have been moved.

A source of inefficiency in Morris' algorithm is that the backward pass has to
scan every word of a cell until it accesses the header information needed to locate
the cell's pointers (see Figure 1). Recall that a complete scan within cell bound-
aries is unnecessary in the forward pass since unmarked cells are easily skipped
and access to marked cell's pointers is immediate.

In his final remarks Morris suggests that this inefficiency may be surmounted
by storing in inactive ~ells (during the forward pass) a pointer to the header of
the preceding active cell. Some speedup is possible by using this approach to skip
garbage cells in backward scans, and this was taken into account in constructing
the time-formulas.

2.4 Jonkers

Jonkers improves Morris' algorithm by eliminating the need for tag bits and by
using two passes, both in the forward direction. Note that Morris needed the tag
bits to differentiate between swapped and unswapped pointers in both forward
and backward directions. The need for tag bits is eliminated by assuming that a
word of the cell (originally containing data) is large enough to store an address.
In our description this word is the first word of the cell.

Let C be a typical cell. The first pass threads the forward pointers to cell C.
When C is reached, the forward pointers are updated. As the first pass continues,
pointers which refer back to cell C are threaded. Pointers which reference their
own cell are treated as backward pointers.

The second pass compacts the previously updated cells until cell C is reached.
From then on it updates the backward reference pointers and moves their cells
to the compaction area. The detailed program is presented in Figure 5.

Figure 6b is a snapshot taken during the first pass after cell C is reached. It is
assumed that the contents of the first word of C is X. At this stage all cells of
lower addresses containing pointers to C have been threaded. The snapshot in
Figure 6c is taken after the threaded lists are updated. The configuration after
processing of a self-referencing cell is depicted in Figure 6d. A snapshot analogous
to that in Figure 6b appears in Figure 6e and is taken after the threading of cells
whose addresses are higher than C's.

During the second pass all cells of addresses lower than C's are compacted (see
Figure 6f). Figure 6g {similar to Figure 6c) shows the memory configuration after
updating of the lists threaded as shown in Figure 6e.

3. T IME-FORMULAS

The information contained in Table I and in the program's comments enable us
to generate time-formulas for the compactors described in the previous sections.
ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

(a)

, ~ I~1 I i I I i I I ~ ~1 I i I I i I

start last

(b)

C

(c)

I l l I i I I ~1 i ~ i i I ~1 I iI
c

(d)

(e)

I l l I ~1 I i I i ~ i I I i I I i I '
c

direction

I [- 1 ,

I l l I i I I 1! i2 i I ~1 I 3 I
c

(f)

(g)

(h)

c

c !

Irl
I~1 I 1 I I~ 1 I 1 I i I

Fig. 4. Snapshots used in describing Morris' compactor.

p r o c e d u r e COMPACT_JONKERS;
(~ c o m p a c t s used c e l l s t o m a r d s l o i e s t a d d r e s s =)
b e g i n

(# f i r s t p a s s : l i n k a l l p o i n t e r s t u p d a t e f o r = a r d p o i n t e r s =)
THREAD_ROOTS;
P :=START;
NEW_ADDRESS:=START;
r e p e a t

(~ t h i s l o o p i s e x e c u t e d (NC) t i m e s =)
i f MARKED(P) t h e n

b e g i n
(~ t h i s b r a n c h i s e x e c u t e d (NMC) t i m e s =)
UPOATE_J(PtNEW_ADORESS);
THREAD CHILDREN(P);
NEW_ADDRESS:=NEW_ADORE$S+SIZE(P)

e n d ;
P : = N E X T (P)

u n t i l P = N I L ; (~ end r e p e a t l o o p ~)

(~ s e c o n d p a s s : u p d a t e b a c k = a r d s p o i n t e r s and r e l o c a t e
used c e l l s t o w a r d s l o e e s t a d d r e s s ~)
P :=START;
NEW_ADDRESS:=START;
r e p e a t

(¢ t h i s l o o p i s e x e c u t e d (NC) t i m e s ¢)
i f MARKED(P) t h e n

b e g i n
(~ t h i s b r a n c h i s e x e c u t e d (NMC) t ames e)
UPDATE_J(PtNEW ADDRESS);
MCVE(P~NEW ADDRESS);
NEW_ADDRESS:=NEW ADDRESS÷SIZE(P)

e n d ;
P : = N E X T (P)

u n t i l P = N IL (= end r e o e a t l o o p =)
e n d ; (~ p r o c e d u r e CDMPACT_JONKERS ¢)

p r o c e d u r e THREAD(P) ;
v a r T: = o r d ;
b e g i n

(~ l e t T be t h e a d d r e s s c o n t a i n e d i n P. Then THREAO makes t h e l o c a t i o n T
p o i n t t o P end s t o r e s t h e o l d c o n t e n t s o f T i n P; F i g . 6 i l l u s t r a t e s
g r a p h i c a l l y t h e a c t i o n o f c o n s e c u t i v e c a l l s o f t h i s p r o c e d u r e . ~)

i f (H I P] <) n i l) t h e n
b e g i n

(= t h i s b r a n c h i s e x e c u t e d (NAP) t ames ~)
T = = M [P] ;
M [P] : = M E T] ;
M [T] : = P

end
e n d ; (~ p r o c e d u r e THREAD ~)

p r o c e d u r e UPOATE_J(P,NEW ADDRESS);
v a t S t T : m o r d ;
b e g i n

(~ t h i s p r o c e d u r e r e p l a c e s a l i n k e d l i s t p o i n t e d t o by P~ b y a t r e e
s t r u c t u r e i n = h i c h a l l e l e m e n t s o f t h e l i s t p o i n t t o t h e nee a d d r e s s
o f P . (s e e i l l u s t r a t i o n i n F i g . 6) ~)

T : = M [P] ;
w h i l e POINTER(T) do

b e g i n
(¢ t h i s l o o p i s e x e c u t e d (NAP) t i m e s ¢)
S : = M E T] ;
MCT]:=NEW ADDRESS;
T : = S

e n d ;
MCP] :=T

e n d ; (¢ p r o c e d u r e UPDATE ~)

NOTE: The p r e d i c a t e " p o i n t e r (P) " i s e a s i l y i m p l e m e n t e d i f t h e c o n v e n t i o n s of
F i g . l a r e u s e d . O t h e r w i s e t a s p e c i a l b i t may be n e e d e d f o r t h i s p u r p o s e .

Fig. 5. Program implementing Jonkers' compactor.

Comparison of Compacting Algorithms for Garbage Collection 545

V a r 2 a b l e s U s e d i n J o n k a r ° s C o m p a c t i o n
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

P t S T A R T ~ L A S T t N E W A D O R E S S
- a s i n t h e L i s p 2 Compactor

F i e l d s Used i n J o n k e r ° s Compactor
R= = ~ = = = = = = = = = = = = = = = = = == = = = = = = = = = =

R A R K E D C P) , S Z Z E (P) - a s I n t h e L i s p Z Compactor

P r o c e d u r e s U s e d i n J o n k e r ' s Compactor

H O V E (P j N E ~ _ A D O R E S S) - r e l o c a c e s t h e c e l l p o i n t e d by P t o i t s n e e a d d r e s s .
T h i s p r o c e d u r e a l s o u n m a r k s a c e l l .

N E X T (P) - a s i n t h e L i s p Z Compactor

T H R E A D _ C H I L D R E N (P) - f o r (a l l p o i n t e r f i e l d s i c o n t a i n e d i n c e l l P) do
T H R E A D C i)

T H R E A D ROOTS - f o r (a l l i n l t l a l p o i n t e r s i) d o T H R E A D (1)

Figure 5 continued.

In this section we only present the time-formula for the Lisp 2 compactor. The
reader should have no difficulty reconstructing the time-formulas for the other
three compactors.

Our time-formulas have been generated semiautomatically by a revised version
of the program described in [3]. This version allows the user to specify the flows
in selected branches of a program being analyzed. Kirchhoff's law is then applied
using the algorithm proposed by Knuth and Stevenson [9] to determine the flows
in the various program branches as functions of the flows specified by the user.

It should be mentioned that the task of generating time-formulas is akin to
that of compiling. Therefore, if a given implementation optimizes certain parts of
an algorithm, that optimization should be taken into consideration in constructing
its time-formula. We have endeavored to produce the "most reasonable" opti-
mized version of the compactors. Although we expect the reader to trust our
results, he or she should keep in mind that the techniques proposed herein will
enable him or her to reconstruct time-formulas for a particular compactor taking
advantage of particular machine features. With the information in the program
(Figure 2) and in Table I we can easily derive the time-formula for the Lisp 2
compactor (see Figure 7).

Once a time-formula is generated, it can easily be processed by a symbolic
formula manipulator, for example, Macsyma [10]. This processing consists of
simplifying a formula and expressing it in terms of certain parameters. By binding
the time-variables to specific numeric values applicable to a given machine, we
are able to do a microanalysis of the compactors. The results of this analysis are
presented in the next section.

4. RESULTS

When plotting curves describing the time efficiencies of the algorithms, it is
important to reduce the number of variables in the time-formulas.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

(a)

direction

I{I ~ l mltgl
s t a r t

ml roll
(

i l ml ltl
j

El @l

(c) III ml lW!
c

1 I

(d) iI ~I 151
I i

ml ~li

(e)

(f)

(g)

(h)

start last

Fig. 6. Snapshots used in describing Jonker's compactor.

Comparison of Compacting Algorithms for Garbage Collection • 547

TLISP2 :=
2~ASSIGN÷
(NGS+NMC+I)~(WHILEOH+CONC)*

(NGB+NMC)~(IFOH+MARKEO)*
(NMC)¢(2~ASSIGN+LINK÷ADDITION÷SIZE)+
(NGC)~(WflILEON÷NEGATION+MARKEO*NEXT)+

(NGC-NGB)~CCOMBZNE)*
(NGB*NMC)¢(ASSIGN+NEXT)*

UPDATEROOTS÷
ASSIGN*
(NMC*NGB)¢(REPEATOH÷CONO+

(IFOH+MARKEO))~
NMC~(UPDATECHILDRSN)+

(NMC+NGB)¢CASSIGN÷NEXT)+
ASSIGN+
(NNC+NGB)~(REPEATOH+COND+

(ASSIGN÷NEXT)*
(IFOH÷MARKED))÷

NMC~(ASSIGN+LINK+UNNARK+MOVE)+
(NMC+NGB)¢(ASSIGN);

NEXT:=2~ADDITION+SUB1;
COMBINE:=ASSIGN*6$AODITION+4$SUgl:
MARKED:=SUBI÷COND;
LINK==SU81;
SIZE:=SUBI+ADOITION;
UPDATEROOTS:=NIP~(IFOH+COND÷SUBI+FOROH)+NIAP~(3#SUBI+ASSIGN);
UPDATECHILDREN:=SUBI+¢~AODITION*

NPC~(IFOH*CONO÷SUBI+FOROH)+NAPC~(3~SUBI+ASSIGN)|
UNMARK==SUBI+ASSIGN;
MOVE:=AODITION+SUBTRACT*SUBI*SIZEC~(FOROH+2¢SUBI÷2~ADOITION+ASSIGN);

Fig. 7. T ime- fo rmula for the Lisp 2 compactor .

First, we assume tha t there is only one active initial pointer to the area being
compacted. Two ratios are critical in estimating the efficiencies of the compactors:

a: (number of marked cells)/(total number of cells) (according to Table I, ~ =
NMC/NC) ;

fl: (number of nonnil pointers in marked cel ls) /(total number of pointers in
marked cells) (i.e., fl = (NAP - 1) / (NPC * NMC)).

We have also assumed tha t the cells have an average size of five words and have
an average of two pointers. Therefore , there are 2 • fl active pointers per cell.

In what follows we show how to express NGB, the number of garbage blocks,
as a function of a, the quant i ty indicating the percentage of marked cells. Le t
~ ' = (1 - ~), tha t is, the ratio of garbage cells (NGC) to the total number of cells
(NC). The average size of garbage blocks A is de termined by

1
A = a (l + 2 a ' + 3 a ' 2 + . . .) = - .

Therefore, NGB = a(1 - a)NC.
Given a t ime-formula such as tha t of Figure 7, it would be trivial to obtain

simplified formulas tha t hold for a different set of assumptions. Th e curves
presented here were obtained by binding the values of the t ime-variables to those
of a PDP-10-PASCAL configuration (see Table II).

I t is interesting to note that , a l though the compactors behave almost l inearly
in a, the actual t ime-formulas using NGB have a (small) nonlinear component .

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

548 • J. Cohen and A. Nicolau

4 0 -

c-

o

c

ID

E

3 5

3 0

2 5

2 0

15

I0

!
- - - - . Morris /

_ Tab le /

Jonkers /

. L isp2 /"

Upper ~ = 0 .9 /

_ Lower ~'= 0 . 3 /
/

/
/ /"

/ /
/ /

/
/ /

/ /
/ /

/ /
/" / /

/ • ~ _ _ /" / /

/ / " / / ~ / /
/ / / / / . I

• / / / / ~ ' . /
I / / / / / /

i
z //y~. /

I I I I I I I I I

0.2 0.4 0.6 0.8 1,0

Fig. 8. Time comparisons for the four compactors.

For example, the use of Macsyma in processing the t ime-formula for Lisp 2
{Figure 7) yielded

execution t ime = -1 .45a 2 = 12.97a = 2.21 seconds.

Figure 8 shows the results obtained for the four compactors given the assumptions
made at the beginning of this section and with fl = 0.9 (i.e., wi th a large percentage
of active pointers) and fl -- 0.3. T h e total number of cells was assumed to be
100,000, bu t similar results were obtained by considering o ther m em o ry sizes.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

14

12

10

" 8 o
U

(/3

.S

E 6
I -

Without J / Lisp2

Combine / /
-

With Combine

Comparison of Compacting Algorithms for Garbage Collection 549

0 I I I I I

0 0.2 0.4 0.6 0.8 1.0

Fig. 9. Effect of combining the garbage cells in the Lisp 2 compactor.

Benchmarks obtained by actually running the compactors yielded results
within 5 percent of those shown in Figure 8. The discrepancies are due to several
factors, among them the fact that the times presented in Table II are average
times.

The curves show that Lisp 2 is the most time efficient of the compactors.
However, it should be kept in mind that the Lisp 2 compactor requires an
additional word per cell. For the assumed cell distribution, Morris' compactor is
the least efficient even when assuming that an extra (small) field was available at
the end of each cell to store the cell size, therefore permitting a speedup of the
backward scan. Figure 8 also indicates that the Lisp 2 compactor exhibits the
smallest overhead when the number of pointers increases.

The effects of introducing changes in two of the compactors are depicted in
Figures 9 and 10. Figure 9 shows how the efficiency of the Lisp 2 compactor
decreases when garbage cells are not combined during the first scan (see Section
2.1). Figure 10 shows the nonlinear behavior of the table compactor when the
entire break table needs to be sorted. As mentioned earlier, this may occur if
there are large discrepancies in the sizes of cells in the memory. The more linear

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

550 J. Cohen and A. Nicolau

25

20

15
o
u

e-

.e io
I -

,8=0.9

Fig. 10.

Complete
Sorting of BT

,8=0.9

,8=0.3

P a r t i a l
S o r t i n g o f B T

Table Compactor

0 I I I I I I I I I I

0 0 . 2 0 . 4 0 . 6 0 . 8 1.0
a

Effect of increased sorting in the table compactor.

curves in Figure 10 (which are identical to those of Figure 8 for the table
compactor) were obtained by assuming that the largest cell was ten times larger
than the average cell.

Figures 11 and 12 show the effect of varying some of the parameters of the
time-formulas. The curves shown in Figure 11 indicate how the time efficiency of
the compactors varies with cell size. The results are based on the assumption
that the total memory size remains constant. Also, the number of pointers per
cell was considered to remain constant and equal to five. Results indicate that
compactor efficiency increases as cell size increases. This is expectable since there
are fewer pointers to be readjusted. The relative efficiencies of the compactors,
however, remain essentially the same.

The effects of changes in the value of the time-variable SUB1 are shown in
Figure 12. (Recall that SUB1 stands for the time to access an item in the
memory.) The results indicate that the relative efficiencies of the compactors
remain approximately the same as the value of SUB1 is doubled or halved.

An added advantage of the availability of time-formulas for the compactors is
that time-space trade-offs may be studied. For example, the choice between two
compactors (say, Jonkers and Lisp 2) could be made by evaluating the product
S * P (i.e., space * time) for each compactor and selecting the compactor yielding
the smallest product. Note, however, that the determination of S is machine
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Compar ison of Compact ing A lgor i thms for Garbage Col lect ion 551

t -

O
U

Or)

c_

E

2 4 - -

20 - -

16 - -

12 -

8 -

4 -

\
\

\
\

\

NC= 5 0 0 , 0 0 0 / S i z e c

0 = 0 . 5

, e = 0 . 9

N P C = 5

\
\
k
\
\

\
\

\

M o r r i s

- - - - - - T a b l e

- - J o n k e r s

L i s p 2

\ "~ '~'~,.~. ~

o - I I I I I I I I I I I
0 I0 20 30 40 50

S i z e c

Fig. 11. Effect of cell size.

dependent since word boundaries have to be taken into account. The following
estimate, suggested by one of the referees, allows us to approximate the
space-time impact of the extra pointer required for the Lisp 2 algorithm. When
the size of memory considerably exceeds the steady-state requirements of the
application program, the primary effect of larger cells will be more frequent
garbage collection. Assume that the application requires cells at a rate of w per
time unit. Then with the Lisp 2 collector the requirement will be Ow per time
unit where

O - Lisp 2 cell size
nominal cell size"

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

5 5 2 J. C o h e n and A. N ico lau

'qO
c
0 ¢.t

E
h-

4 0

35

3 0

2 5

2 0 -

15 -

I 0 -

5 -

Fig. 12.

- - . Mor r i s

T a b l e

J o n k e r s

. L i s p 2

U p p e r 2Subl

Lower I / 2Sub l
/

/
/

/
/

/
/

/
/ /

/ /
/

/ / /
/ /

/ /
/ / f ~

/ / / / ~ / / /
/ / / /

.// ~.----J
/ / / . / j - ' ~

/ / / / / / I

I I I I I I I I I

0 .2 0 .4 0 . 6 0 .8
Q

Effect of doubling and halving the value of SUB1.

I

1.0

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

Comparison of Compacting Algorithms for Garbage Collection • 553

With a fixed memory size, Lisp 2 will have to be called ® times as often as a
nominal size collector. Thus, its cost should be multiplied by O. This has the
effect of moving the Lisp 2 curves up slightly. In Figure 8 the space-penalized
Lisp 2 curves would lie between the curves for Jonkers (and slightly above for
small a).

Great caution should be exercised in generalizing the presented results to cases
involving assumptions far removed from the ones made herein. It is not improb-
able that the relative efficiencies of the compactors will change in special cases.

One should also keep in mind that, although Jonkers' algorithm exhibits the
best performance with minimal additional space, the algorithm requires that
there must exist enough space in a cell to store a pointer. The selection of an
algorithm over another may therefore depend on factors other than time effi-
ciency.

ACKNOWLEDGMENTS

The authors wish to thank Carolyn Boettner, Peter Pih, and Sandra Belloni for
the help provided during the gestation phase of this work. Susan Denker's
participation in revising the time-formulas and obtaining further results is grate-
fully appreciated. Timothy Hickey made a thorough study of the table compactors
and assisted in the processing of time-formulas using Macsyma. Finally, the
careful and constructive remarks made by one of the referees enabled the authors
to produce a better version of the paper.

REFERENCES

1. COHEN, J. Computer-assisted microanalysis of programs. Commun. A C M 25, 10 (Oct. 1982),
724-733.

2. COHEN, J. Garbage collection of linked data structures, Comput. Surv. (ACM) 13, 3 (Sept. 1981),
341-367.

3. COHEN, J., AND ZUCKERMAN, C. Two languages for estimating program efficiency. Commun.
A C M 17, 6 {June 1974), 301-308.

4. FISHER, D.A. Bounded workspace garbage collection in an address order preserving list pro-
cessing environment. Inf. Process. Lett. 3, 1 (July 1974), 29-32.

5. FITCH, J.P., AND NORMAN, A.C. A note on compacting garbage collection. Comput. J. 21, 1 (Feb.
1978), 31-34.

6. HADDON, B.K., AND WAITE, W.M. A compaction procedure for variable length storage elements.
Comput. J. 10 (Aug. 1967}, 162-165.

7. JONKERS, H.B.M. A fast garbage compaction algorithm. Inf. Process. Lett. 9, 1 (July 1979),
26-30.

8. KNUTH, D.E. The Art of Computer Programming, vol. 1: Fundamental Algorithms. Addison-
Wesley, Reading, Mass., 1973.

9. KNUTH, D.E., AND STEVENSON, F.R. Optimal measurement points for program frequency
counts. B I T 13 (1973), 313-322.

10. MATH LAB GROUP. Macsyma reference manual. Laboratory for Computer Science, Massachu-
setts Inst. of Technology, Cambridge, Mass., Dec. 1977.

11. MORRIS, F.L. On a comparison of garbage collection techniques. Comrnun. A C M 22, 10 (Oct.
1979), 571.

12. MORRIS, F.L. A time- and space-efficient garbage compaction algorithm. Commun. A C M 21, 8
(Aug. 1978}, 662-665.

13. WEGBREIT, B. A generalized compactifying garbage collector. Comput. J. 15, 3 (Aug. 1972),
204-208.

Received July 1980; revised August and November 1982; accepted December 1982

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983.

