
Comparison of Compacting 
for Garbage Collection 

JACQUES COHEN and ALEXANDRU NICOLAU 
Brandeis University 

Algorithms 

The relative efficiencies of four compactors of varisized cells are estimated by constructing their time- 
formulas. These are symbolic formulas expressing execution times as functions of the time to perform 
common, elementary operations such as assignment, addition, subscripting, and loop overhead. By 
binding the variables to numeric values corresponding to a specific machine one can estimate program 
execution times without resorting to empirical tests. The first of the compactors (Lisp 2) requires 
additional storage for pointer readjustment. The second (based on the work of Haddon and Waite) 
attempts to reduce these storage requirements at the expense of processing time. The last two (Morris' 
and Jonkers') are recently proposed compactors that require minimal additional storage and that 
update pointers by first threading them into linear lists. The paper provides unified descriptions of 
the algorithms and presents curves expressing the relative efficiencies of the compactors when run on 
a specific machine (PDP-10). It is straightforward to modify the given formulas to estimate compac- 
tors' efficiencies when run on other computers. 
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1. INTRODUCTION 

Garbage  col lec t ion  is a t e r m  t h a t  d e n o t e s  the  process  of r e c l a i m i n g  u n u s e d  
storage.  M e t h o d s  for ga rbage  col lec t ion  u sua l l y  compr i se  two sepa ra t e  phases :  

(1) iden t i fy ing  the  s torage  t h a t  m a y  be  rec la imed;  
(2) i nco rpo ra t i ng  th i s  r ec l a imab le  s torage  in to  the  m e m o r y  a rea  t h a t  c a n  be m a d e  

ava i lab le  to  the  user.  

P h a s e  (1) is u sua l l y  pe r fo rmed  by  keep ing  a l is t  of  i m m e d i a t e l y  access ible  cells 
a n d  fol lowing t he  h n k s  c o n t a i n e d  in  t h e m  to t race  a n d  m a r k  eve ry  access ible  cell. 
T h i s  m e t h o d  of i den t i f i ca t ion  is u sua l l y  cal led marking. P h a s e  (2) c a n  be  subd i -  
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vided into two classes: 

(2a) incorporation into a free list in which available cells are linked by pointers; 
(2b) compaction of all used cells into one end of the memory, the other end 

containing contiguous words that are made available to the allocator. 

Knuth [8] and Cohen [2] describe several algorithms for performing these two 
phases of garbage collection. 

In this paper we present detailed analyses of four algorithms that perform 
Phase (2b) of garbage collection. The first algorithm, referred to as Lisp 2 [8, pp. 
602-603], is a classical one. The second is an improved version of another classical 
compactor also known as the "rolling table" compactor [5, 6, 13]. The last two, by 
Morris [11, 12] and Jonkers [7], have been proposed only recently. Our analyses 
consist of constructing the time-formulas [1, 3] for these compacting algorithms. 
Time-formulas are symbolic formulas that express execution times as functions 
of variables representing the time needed to perform common, elementary oper- 
ations (e.g., addition, assignment, subscripting, loop overhead). By binding the 
variables to numeric values corresponding to a specific machine, one can estimate 
program execution times without resorting to empirical tests. 

All four of the selected algorithms can compact varisized cells, that is, cells of 
different sizes. The following storage requirements should be kept in mind when 
comparing the four compactors: 

Lisp 2 

Table Compactor 

Morris 

Jonkers 

One extra field per cell is required to store information for 
pointer readjustment. The content of this field is an address. 
In principle, no additional storage is required since the infor- 
mation for readjusting pointers can be stored within garbage 
cells. This information consists of a table of records, each 
being able to hold two addresses. An additional table may be 
used to speed up pointer readjustment. 
Assuming that cells may contain pointers and data, two bits 
per field are needed to identify pointers, swapped pointers, 
data, and garbage cells. If each field has its own mark bit, 
only an additional bit is needed. 
One bit per cell is required to recognize if the space occupied 
by data has been previously occupied by a pointer. This 
presupposes that the space needed to store the data of a cell 
is also capable of holding a pointer. 

Although the four chosen algorithms are (essentially) hnear, only a microanal- 
ysis, as presented here, can reveal their relative efficiencies on specific machines. 

In the following two sections we present unified descriptions of the algorithms 
and show how to derive their time-formulas. In Section 4 we compare the 
performance of the algorithms by considering a specific computer (PDP-10). 
However, the data provided by the time-formulas enable the reader to estimate 
the performance on various other machines. 
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Fig. 1. Assumed layout of a cell. 

2. DESCRIPTION OF THE ALGORITHMS 

A cell is a number (_1) of contiguous computer words that  can be made available 
to the user. For description purposes let us consider that  the varisized cells have 
the configuration depicted in Figure 1. The first field of the cell is large enough 
to store an address and is only required in the Lisp 2 compactor. The second and 
third fields contain (1) the size of the cell and (2) the number, NPC, of fields 
containing pointers. It is assumed that  these pointers immediately follow the field 
storing NPC and that  they reference the first element of a cell. The data of the 
cell are placed following the pointers. 

It would be straightforward to modify our descriptions and analyses of the 
compactors if the information about the size of a cell and its pointers were stored 
in a different manner. 

Each algorithm compacts an area of the memory M between two addresses, 
START and LAST (START < LAST). This area contains a number (_1) of 
cells, which may be either active or garbage cells. An active cell is one that  can 
be accessed by a program through a set of initial pointers. In contrast, garbage 
(also called inactive) cells cannot be accessed through that  set. All four compac- 
tors are of the sliding type; that  is, they move the active cells toward one end of 
the memory. 

The first phase of collection marks each active cell by setting a special bit on. 
(Initially, mark bits are off.) The mark bits of the garbage cells remain off. Upon 
completing its task, the compactor turns off the mark bits of the active cells to 
prepare for a subsequent collection. 

The marking (or tagging) fields of a cell vary according to the compactor. In 
Lisp 2 the first word of a cell (see Figure 1) contains a nonnil pointer if the cell is 
active and a nil pointer otherwise. 

Before we proceed to the presentation of the compactors, it is helpful to 
describe the common data used in evaluating them. Table I presents the param- 
eters used in time-formulas to indicate the number of cells (classified according 
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983. 
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Table I. Loop Data Applicable to the Four Compactors 

535 

NC 
NMC 
NGC 
NGB 
NMB 
NPC 
NNP 
NAP 
NAPC 
NIP 
NIAP 
NFP 
NBP 
NSP 
NIPF 
SIZEC 

Total number of cells between START and LAST (NC = NMC + NGC) 
Number of marked (i.e., active) cells between START and LAST 
Number of garbage cells between START and LAST 
Number of garbage blocks; a garbage block is a sequence of adjacent garbage cells 
Number of marked blocks 
Number of pointers per cell (NPC = NNP + NAPC) 
Number of nil pointer fields per ceil 
Number of active pointers (i.e. nonnil ones) including the initial pointers 
Number of nonnil pointers per cell 
Number of initial pointers 
Number of initial nonnil pointers 
Number of forward pointers plus the number of initial pointers 
Number of backward pointers 
Number of pointers referencing their own cell 
Number of initial pointers outside the area to be compacted 
Number of words in a cell 

Note. Average values of these quantities are actually used in the time-formula computations. 

Table II. Time-Variables and Their Bindings 

PDP-10 bindings 
Time-variable (ps) 

ADDITION 0.61 
ASSIGN 1.21 
AND 0.63 
COND 1.30 
OR 0.63 
FOROH 2.02 
IFOH 1.30 
MULT 2.69 
NEGATION 0.20 
REPEATOH 0.93 
SUB1 2.27 
SUBTRACT 0.77 
WHILEOH O.92 

to the i r  types) ,  t he  n u m b e r  of poin ters ,  a n d  r e l a t ed  i n fo rma t ion .  T i m e  f o r m u l a s  
are  expressed  as a f u n c t i o n  of these  p a r a m e t e r s  a n d  of the  t i m e - v a r i a b l e s  ind i -  
ca t ing  the  t ime  to pe r fo rm  the  basic  ope ra t i ons  c o m m o n  to all  t he  compac to r s .  A 
list of  these  ope ra t ions  a n d  t he i r  b i n d i n g s  to a specific c o m p u t e r  are  p r e s e n t e d  in  
T a b l e  II. SUB1,  for example ,  is the  t ime  n e e d e d  to subsc r ip t  a o n e - d i m e n s i o n a l  
array;  C O N D  deno te s  the  t ime  to tes t  a cond i t i ona l  express ion  (such as a > b or 
d ~ a). T h e  t ime -va r i ab l e s  e n d i n g  in  OH d e n o t e  t he  t ime  o v e r h e a d  n e e d e d  to 
execute  the  co r r e spond ing  opera t ion .  

We  have  chosen  to p rov ide  de ta i led  p r o g r a m  vers ions  of on ly  t he  f irst  a n d  las t  
compactors .  A careful  e x a m i n a t i o n  of the  t i m e - f o r m u l a  for t he  f irst  c o m p a c t o r  
will e n a b l e  the  r e a d e r  to r e c o n s t r u c t  the  t i m e - f o r m u l a s  for t he  others .  1 T h e  las t  

~The detailed programs for all four compactors and their time-formulas are available from the 
authors. 

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 4, October 1983. 



536 J. Cohen and A. Nicolau 

compactor is also presented in detail since it is one of the most likely to be used 
in cases where memory is scarce. 

2.1 Lisp 2 

The algorithm as described by Knuth [8, pp. 602-603] uses three linear passes of 
the memory space. The first pass has two objectives: 

(1) To combine all adjacent garbage cells into one garbage cell; although this 
step is not strictly necessary, it may speed up the subsequent passes. 

(2) To compute the new address of each active cell; this new address is the sum 
of the sizes of the preceding active cells, and it is stored in the first field of 
each active cell as it is encountered (see Figure 1). 

The second pass simply updates the pointer fields of each active cell so that  
they point to the new address where the cell will be relocated. Finally, the third 
pass relocates the active cells toward the lowest address part of the memory. 
This pass also resets to nil the link field of each active cell. As mentioned earlier, 
this field is used in the marking phase of each collection. 

Figure 2 is a program that  implements the Lisp 2 algorithm. Our purpose in 
presenting this straightforward algorithm is to illustrate the generation of the 
time-formula. The program is presented in a PASCAL-like language. 2 It contains 
comments indicating the number of times each of its branches and loops are 
executed. This information, which is complemented by Table I, is needed to 
derive the time-formula for the algorithm. 

The snapshots shown in Figure 3 illustrate the action of each pass. To improve 
clarity, only the pointers to one of the cells, C, are shown in the figure. The sole 
initial pointer (root) also references C, and it lies in a word outside the area being 
compacted. There are, of course, pointers emanating from C and linking all the 
marked cells shown in the shapshots. 

2.2 Table Compactors 

The table in this class of compactors [5, 6, 13] is used for storing data needed for 
pointer readjustment. These compactors usually operate in three phases: 

1. Computation of readjustment data and its storage within the inactive cells 
("holes"). This scan also does the compacting and involves the following steps: 

a. determine the next hole, its initial address ai, and its size Si; 
b. compute the i th pair (ai, Sum + Si); Sum is initialized to zero, and it is 

updated by the assignment Sum := Sum + Si; 
c. add the above pair to a (break) table BT that  is stored within the holes and 

that  may need to be "rolled" to make room for the cells being compacted. 
This rolling alters the order in which pairs appear in the table; 3 

d. compact; that  is, move the cell adjacent to the hole toward the address ai. 

2 This  has been done to simplify the presentation. The actual programs were tested using a PASCAL 
compiler. 
3 It  can be shown [6] that  there is always room in the holes for storing the BT. 
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2. Sorting of the pairs in the BT table according to increasing values of a. This 
is needed to speedup Phase 3 below. 

3. Pointer readjustment. Each element in the compacted area is scanned, and 
each pointer p is adjusted as follows: 

a. search through the BT table and determine the adjacent pairs (a, S) and 
(a', S') such that  a _ p  < a'; 

b. the readjusted value o fp  i sp  - S. 

Phase 1 is linear; one of its time-consuming operations is the copying and 
rolling of the table as explained in Phase lc. 

Let n be the number of blocks of active cells. The worst case complexity of 
Phase 2 occurs when active cells alternate with inactive cells. In that  case the BT 
table contains n entries, and its sorting has complexity n log n. 

Phase 3 also has complexity n log n since a binary search is needed to readjust 
each pointer by consulting the already sorted BT table. 

Although the complexity of the last two phases is theoretically n log n, the 
results presented by Fitch and Norman [5] and confu~med by our analysis show 
that in most practical situations the compactor behaves linearly. 

Our version of the table compactor is that  suggested by Fitch and Norman [5] 
and is briefly described as follows: 

A table H (of size h -- 2 p) containing pointers to BT is constructed just after 
Phase 2 and stored in the reclaimed space together with BT. This table is used 
as a hash table providing fast access to BT. When a pointer is redjusted in Phase 
3, the p most significant bits are used to look up the start and end addresses of a 
region in BT containing the values of a and a' needed for readjustment (see 
Phase 3a). Fitch and Norman suggest that  h be roughly twice the size of BT 
when possible. 

Microanalysis of the table compactor enabled us to estimate the importance of 
the sorting required in Phase 2. An initial analysis was made assuming that  
sorting would take y NMB log NMB time units, in which 7 is a constant depending 
on the sorting algorithm and on the computer characteristics and NMB is the 
number of marked blocks, that  is, the number of entries in BT. We then 
determined experimentally that  value of y for Quicksort running on the PDP-10, 
the numbers to be sorted being randomly generated. To our surprise, the results 
indicated that  the time-formula for the table compactor was not only strongly 
nonlinear but also yielded compacting times above those of the other compactors. 
(Our results indicated that  sorting required about 30 to 40 percent of the 
compactor's time.) This was contrary to the almost linear results obtained by 
Fitch and Norman [5]. Our findings led to a more careful and realistic analysis, 
which in turn suggested the proper algorithm for sorting BT. 

Note that, every time the BT table is rolled, the order of its contents is changed, 
and additional effort is needed to sort BT in Phase 2. Therefore, the appropriate 
strategy in Phase 1 is to avoid rolling the BT table unless this is strictly necessary. 

We now estimate the size of the portion of the BT that  must be sorted, that  is, 
the index S such that  sorting is only needed for elements BT[1] through BT[S]. 
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p r o c e d u r e  COMPACT_LISP2;  
(~  c o m p a c t s  used  c e l l s  t o w a r d s  l o w e s t  a d d r e s s  ~ )  
b e g i n  

(~ f i r s t  pass: combine adjacent garbage ce l l s  and 
ca lcu la te  new address of used ce l l s  ~) 
P:=START; 
NEW_AaDRE$S:=START; 
w h i l e  P ( >  N IL  do 

b e g i n  
( ~  t h e  l o o p  h e a d e r  i s  e x e c u t e d  (NGB+NMC* I )  t i m e s l  and 

t h e  body  (NGS+NMC) t i m e s  ~ )  
i f  MARKED(P) t h e n  

~egin 
(~  t h i s  b r a n c h  i s  e x e c u t e d  (NMC) t i m e s  ~ )  
L I N K ( P ) : = N E W  ACOR~S$; 
NEW_ADDRESS:=NEW_AODRESS+SIZE(P); 

end; 
e l s e  

wnile n o t  MARKECCNEXT(P))  do 
(~ t h e  l o o p  h e s d e r  i s  e x e c u t e d  (NGC) t i m e s ~  and 

t h e  b o d y  (NGC-NGB) t i m e s  ~ )  
COMBINE(P) 

P:= N~XT(P) 
e n d ;  ( =  end = h i l e  l o o p  ~ )  

UPDATE_ROOTS; ( =  u p d a t e s  i n i t i a l  p o i n t e r s  = )  

(~  s e c o n d  p a s s :  u p o a t e  a l l  p o i n t e r  f i e l d s  i n  e a c h  used  c e l l  = )  
P :=START;  
r e p e a t  

(= t h i s  l o o p  i s  e x e c u t e d  (NMC+NGB) t i m e s  ~ )  
i f  MARKEO(P) 

t h e n  UPOATE_CHILDREN(P) ;  
P : = N E X T ( P )  

u n t i l  P = NIL; (~ end r e p e a t  loop ~) 

(~  t h i r d  p a s s :  r e l o c a t e  marked  c e l l s  # )  
P :=START;  
r e p e a t  

(~  t h i s  l o o p  i s  e x e c u t e d  (NMC+NG8) t i m e s ;  a t e m p o r a r y  l o c a t i o n  
i s  neeoed  t o  save  t h e  i n f o r m a t i o n  c o n t a i n e d  i n  t h e  o l d  s i z e  
f i e l d  o f  t h e  c e l l  b e i n g  moved ~ )  

T : = N E X T ( P ) ;  
i f  MARKED(P) t h e n  

begin 
(~  t ~ i s  branch is  e x e c u t e d  (NMC) t i m e s  = )  
NE~ ACDRE$SI=LINK(P); 
( ¢  s e t  l i n k  f i e l d  t o  u n m a r k e d  f o r  f u t u r e  use  ~ )  
UNMARK(P) ;  
MCVE(P,NEW_ADORESS) 

e n d ;  
P :=T 

u n t i l  P = N~L;  (=  end r e p e a t  l o o p  ~ )  
e n d ;  ( ¢  p r o c e d u r e  COMPACT L I S P 2  ~ )  

p r o c e d u r e  UPDAT~ ROCTS; 
b e g i n  

( ~  t h i s  l o o p  i s  e x e c u t e d  ( N I P )  t i m e s  ~ )  
f o r  ( a l l  i n i t i a l  po in te rs  i )  do 

i f  ( M [ I ]  is not n i l )  then UPDATECi) 
end; 

Fig. 2. PASCAL-I~e program implementing the Lisp 2 compactor. 

As the scan of Phase  1 proceeds,  the  to ta l  n u m b e r  of  freed words  s teadi ly  
increases, f rom zero to the  value N G B  * S IZEC (see Tab le  I). T h e  expected  
n u m b e r  of  free words af ter  processing b blocks of  m a r k e d  ceUs is a t  leas t  
b * SIZEC.  
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p r o c e d u r e  U P D A T E _ C H I L D R E N ( P ) ;  
b e g i n  

( *  t h i s  l o o p  i s  e x e c u t e d  (NPC)  t i m e s  * )  
f o r  ( a l l  p o i n t e r s  i i n  t h e  c e l l  P)  do 

i f  (HCi] is not n i l )  than U P D A T E ( i )  
end; 

p r o c e d u r e  NDVE{P tNEW_ADDRESS) ;  
b e g i n  

( *  t h i s  l o o p  i s  e x e c u t e d  ( S r Z E C )  t i m e s  ~ )  
fo r  i:=O t o  NIP+l ] -1 do 

M[NEW_ADORESS+i]:=N[P+i] 
and; 

V a r i a b l e s  Used i n  L i s p 2  C o m p a c t i o n  
= = = = = = = = =  = = = = = = = = = = = = = = = = = = = =  == = == 

p 

START 

LAST 

NEW_ADDRESS - 

a d d r e s s  o f  t h e  f i r s t  e l e m e n t  o f  e c e l l  

a d d r e s s  o f  t h e  f i r s t  l o c a t i o n  i n  t h e  a r e a  b e i n g  c o m p a c t e d  

a d d r e s s  o f  t h e  l a s t  l o c a t i o n  i n  t h e  a r e a  b e i n g  c o m p a c t e d  

a d d r e s s  t o  m h i c h  a c e l l  m i l l  be r e l o c a t e d  a f t e r  c o m p a c t i o n  

F i e l d s  Used i n  t h e  L i s p  2 C o m p a c t o r  
. . . . . . . . . .  . . . . . . . . . .  ======_-== = = = = = = = = = =  = = = = = =  

L I N K ( P )  c o n t a i n s  t h e  a d d r e s s  o f  t h e  f u t u r e  l o c a t i o n  o f  a c e l l ,  
i . e .  a f t e r  compaction. When t h i s  f i e l d  is  n i l ,  the 
c e l l  i s  c o n s i d e r e d  t o  be u n m a r k e d .  

MARKED(P)  - c o n t a i n s  t h e  v a l u e  TRUE i f  t h e  c e l l  i s  m a r k e d ~  o t h e r i i s e  
c o n t a i n s  t h e  v a l u e  FALSE 

S I Z E ( P )  - y i e l d s  t h e  s i z e  ( n u m b e r  o f  m o r d s )  o f  t h e  c e l l  p o i n t e d  t o  
by  P 

C D H B I N E ( P )  

H 0 V E ( P )  

N E X T ( P )  

A u x i l i a r y  P r o c e d u r e s  Used i n  t h e  L i s p  Z C o m p a c t o r  
= = = === =====  == = = = = = = = =  ======  = == == = = = = == = = = === == = = = 

- c o m b i n e s  tmo a d j a c e n t  g a r b a g e  c e l l s  by  c h a n g i n g  t h e  
c o n t e n t s  o f  t h e  f l e l d  S I Z E ( P )  t o  S I Z E ( P )  + S I Z E ( N E X T ( P ) )  

m o v e s  t h e  c e l l  p o i n t e d  t o  by  P t o  i t s  n e e  a d d r e s s  

- y i e l d s  t h e  a d d r e s s  o f  t h e  c e l l  f o l l o u i n g  t h e  c a l l  p o i n t e d  
t o  by  P.  N E X T ( P )  r e t u r n s  t h e  v a l u e  N I L  i f  t h e  c o m p u t e d  
a d d r e s s  e x c e e d s  t h e  v a l u e  o f  L A S T .  

u p d a t e  p o i n t e r  f i e l d  A t  so  t h a t  i t  h o e  p o i n t s  
t o  t h e  n e e  l o c a t i o n  o f  t h e  c e l l  

u p d a t e s  e a c h  o f  t h e  NPC p o i n t e r s  i n  t h e  c e l l s  p o i n t e d  
t o  by  P 

u p d a t e s  e a c h  o f  t h e  i n i t i a l  ( r o o t )  p o i n t e r s  

u n m e r k s  t h e  c e l l  P 

Figure 2 continued. 

Let T be the  size of  the  largest ceU; then,  w h e n  T < b * SIZEC - b, the  freed 
space should be large enough  to  a c c o m m o d a t e  both  the  break table and the  next  
marked ceU, so we  would  not  have  to roU the  table. Thus ,  an upper bound  for the  
average value of S is T/(SIZEC - 1). If T is relatively small, only a short initial 
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Fig. 3. Snapshots  used in describing the  Lisp 2 compactor:  (a) initially; (b) after 
pass 1; (c) after pass 2; (d) after pass 3. 

segment of the final break table will need to be sorted. This  suggests t ha t  a few 
scans of the break table be made  to de termine  the size of this initial segment.  A 
suitable sorting s t ra tegy then  proceeds as follows: 

1 Scan the B T  from higher  to lower addresses, finding the  first en t ry  such tha t  

aj -1  > aj .  

2 Find the largest value V between al and aj-1. 

3 Scan the B T  f rom j - 1 onward and find the largest index S such tha t  

a s - 1  <-- Y < a s .  

4 Sort  the values between al and as.  

The  t ime-formula for Step (2) above becomes ~( S log S where S is at  mos t  
T / (S IZEC - 1). This  result  suggests t ha t  sorting can become t ime consuming 
when there  are large active arrays in memory.  

The  expense of sorting caused by  excessive rolling can be avoided ff each B T  
entry  contains an extra field. This  field stores the final position of the  en t ry  in 
the table, and it is assigned a value in Phase  1 when the ent ry  is created.  T h e  
table can now be rolled with impunity,  since an obvious l inear algori thm can be 
used to res tore  the table to the order  indicated by  the extra  field. 
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2.3 Morris 

Morris' algorithm is based on the following property: assume that  the contents of 
locations A, B, C, . . .  point to location T. Then no information is lost if this tree 
structure, with root T, is transformed into a linear list by stringing together 
locations T , . . . ,  C, B, A and placing the contents of T in A. Once the new position 
of T, say T', is known, it is simple to reconstruct the original tree by making A, 
B, and C point to T'. 

This property has been used by Fisher in a special type of collector [4]. Morris 
pioneered the development of general compactors based on that  property. (We 
see below that  Jonker's algorithm uses it as well.) 

Morris' algorithm requires two tag bits for each word in a cell. 4 These bits 
indicate different configurations of pointers and data according to the following 
convention: 

0: inactive (garbage); 
1: pointer; 
2: swapped pointer; 
3: nonpointer (data). 

Morris' algorithm may require three passes through the memory space. The 
first pass only readjusts forward-pointing references and references pointing to 
their own cell. The second pass readjusts backward-pointing references. Finally, 
a third pass moves the active cells toward the highest address in the memory 
space. The first pass is in the forward direction. The other two passes are in the 
backward direction and may be combined into one pass. 

One advantage of Morris' compactor is that it does not require that  pointers 
reference the beginning of a cell. It would be inefficient in terms of storage to 
modify Lisp 2 to handle these general pointers. (Jonkers remarks that  his 
compactor may handle general pointers by introducing tag bits.) 

The heart of Morris' algorithm is a procedure that  is called within the first two 
passes, that  is, in the forward and in the backward directions. Its parameters are 
the current field being examined and the direction of the pass. Basically, this 
procedure threads pointers to a given cell as they are encountered. Assume cells 
A, B, and C point to location T whose contents are X. Then threading A, B, and 
C consists of linking T, C, B, and A by pointers and placing X in A. Note that  
threading involves swapping information, and this is indicated by an appropriate 
setting of the tag bits. 

The operation of updating consists of unthreading, that  is, transforming the 
threaded list into its original tree form. In our example unthreading consists of 
making A, B, and C point to the new address T', where the original contents of 
T are now stored. 

The first pass of Morris' algorithm consists of threading and updating forward 
pointers (as well as pointers which reference their own cell). The second pass, in 
the backward direction, also calls this procedure to thread and update backward 
pointers. Finally, the third pass moves the cells toward the highest addresses of 
the memory space. 

4 In  its original presenta t ion,  Morr is  used  cells containing only pointers.  In  t h a t  case only one tag bit  
is required. 
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The reader interested in the actual implementation of Morris' algorithm should 
examine Figure 4, which presents the details of the thread and update operations. 

The snapshot shown in Figure 4b is taken when cell C is reached during the 
first pass. This is followed by an updating of the pointers originally pointing to C 
(see Figure 4c). The updating of pointers referencing their own cell is shown in 
Figure 4d. 

Figure 4e shows a snapshot during the second pass when cell C is reached. 
Figure 4f is a snapshot taken after updating the backward pointers to C. Figure 
4g shows the memory space after the higher address cells have been moved. 

A source of inefficiency in Morris' algorithm is that the backward pass has to 
scan every word of a cell until it accesses the header information needed to locate 
the cell's pointers (see Figure 1). Recall that  a complete scan within cell bound- 
aries is unnecessary in the forward pass since unmarked cells are easily skipped 
and access to marked cell's pointers is immediate. 

In his final remarks Morris suggests that  this inefficiency may be surmounted 
by storing in inactive ~ells (during the forward pass) a pointer to the header of 
the preceding active cell. Some speedup is possible by using this approach to skip 
garbage cells in backward scans, and this was taken into account in constructing 
the time-formulas. 

2.4 Jonkers 

Jonkers improves Morris' algorithm by eliminating the need for tag bits and by 
using two passes, both in the forward direction. Note that  Morris needed the tag 
bits to differentiate between swapped and unswapped pointers in both forward 
and backward directions. The need for tag bits is eliminated by assuming that a 
word of the cell (originally containing data) is large enough to store an address. 
In our description this word is the first word of the cell. 

Let C be a typical cell. The first pass threads the forward pointers to cell C. 
When C is reached, the forward pointers are updated. As the first pass continues, 
pointers which refer back to cell C are threaded. Pointers which reference their 
own cell are treated as backward pointers. 

The second pass compacts the previously updated cells until cell C is reached. 
From then on it updates the backward reference pointers and moves their cells 
to the compaction area. The detailed program is presented in Figure 5. 

Figure 6b is a snapshot taken during the first pass after cell C is reached. It is 
assumed that the contents of the first word of C is X. At this stage all cells of 
lower addresses containing pointers to C have been threaded. The snapshot in 
Figure 6c is taken after the threaded lists are updated. The configuration after 
processing of a self-referencing cell is depicted in Figure 6d. A snapshot analogous 
to that in Figure 6b appears in Figure 6e and is taken after the threading of cells 
whose addresses are higher than C's. 

During the second pass all cells of addresses lower than C's are compacted (see 
Figure 6f). Figure 6g {similar to Figure 6c) shows the memory configuration after 
updating of the lists threaded as shown in Figure 6e. 

3. T IME-FORMULAS 

The information contained in Table I and in the program's comments enable us 
to generate time-formulas for the compactors described in the previous sections. 
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p r o c e d u r e  COMPACT_JONKERS; 
( ~  c o m p a c t s  used  c e l l s  t o m a r d s  l o i e s t  a d d r e s s  = )  
b e g i n  

( #  f i r s t  p a s s :  l i n k  a l l  p o i n t e r s t  u p d a t e  f o r = a r d  p o i n t e r s  = )  
THREAD_ROOTS; 
P :=START;  
NEW_ADDRESS:=START; 
r e p e a t  

(~  t h i s  l o o p  i s  e x e c u t e d  (NC)  t i m e s  = )  
i f  MARKED(P) t h e n  

b e g i n  
(~  t h i s  b r a n c h  i s  e x e c u t e d  (NMC) t i m e s  = )  
UPOATE_J(PtNEW_ADORESS);  
THREAD CHILDREN(P); 
NEW_ADDRESS:=NEW_ADORE$S+SIZE(P) 

e n d ;  
P : = N E X T ( P )  

u n t i l  P = N I L ;  (~  end r e p e a t  l o o p  ~ )  

(~  s e c o n d  p a s s :  u p d a t e  b a c k = a r d s  p o i n t e r s  and r e l o c a t e  
used  c e l l s  t o w a r d s  l o e e s t  a d d r e s s  ~ )  
P :=START;  
NEW_ADDRESS:=START; 
r e p e a t  

( ¢  t h i s  l o o p  i s  e x e c u t e d  (NC)  t i m e s  ¢ )  
i f  MARKED(P) t h e n  

b e g i n  
(~  t h i s  b r a n c h  i s  e x e c u t e d  (NMC) t ames  e )  
UPDATE_J(PtNEW ADDRESS);  
MCVE(P~NEW ADDRESS);  
NEW_ADDRESS:=NEW ADDRESS÷SIZE(P) 

e n d ;  
P : = N E X T ( P )  

u n t i l  P = N IL  (=  end r e o e a t  l o o p  =)  
e n d ;  ( ~  p r o c e d u r e  CDMPACT_JONKERS ¢ )  

p r o c e d u r e  THREAD(P) ;  
v a r  T: = o r d ;  
b e g i n  

( ~  l e t  T be t h e  a d d r e s s  c o n t a i n e d  i n  P.  Then THREAO makes t h e  l o c a t i o n  T 
p o i n t  t o  P end s t o r e s  t h e  o l d  c o n t e n t s  o f  T i n  P;  F i g .  6 i l l u s t r a t e s  
g r a p h i c a l l y  t h e  a c t i o n  o f  c o n s e c u t i v e  c a l l s  o f  t h i s  p r o c e d u r e .  ~ )  

i f  ( H I P ]  < )  n i l )  t h e n  
b e g i n  

( =  t h i s  b r a n c h  i s  e x e c u t e d  (NAP)  t ames  ~ )  
T = = M [ P ] ;  
M [ P ] : = M E T ] ;  
M [ T ] : = P  

end 
e n d ;  ( ~  p r o c e d u r e  THREAD ~ )  

p r o c e d u r e  UPOATE_J(P,NEW ADDRESS);  
v a t  S t T :  m o r d ;  
b e g i n  

( ~  t h i s  p r o c e d u r e  r e p l a c e s  a l i n k e d  l i s t  p o i n t e d  t o  by  P~ b y  a t r e e  
s t r u c t u r e  i n  = h i c h  a l l  e l e m e n t s  o f  t h e  l i s t  p o i n t  t o  t h e  nee a d d r e s s  
o f  P .  ( s e e  i l l u s t r a t i o n  i n  F i g .  6 ) ~ )  

T : = M [ P ] ;  
w h i l e  POINTER(T )  do 

b e g i n  
( ¢  t h i s  l o o p  i s  e x e c u t e d  (NAP)  t i m e s  ¢ )  
S : = M E T ] ;  
MCT]:=NEW ADDRESS; 
T : = S  

e n d ;  
MCP] :=T  

e n d ;  ( ¢  p r o c e d u r e  UPDATE ~ )  

NOTE: The p r e d i c a t e  " p o i n t e r ( P ) "  i s  e a s i l y  i m p l e m e n t e d  i f  t h e  c o n v e n t i o n s  of 
F i g .  l a r e  u s e d .  O t h e r w i s e t  a s p e c i a l  b i t  may be n e e d e d  f o r  t h i s  p u r p o s e .  

Fig. 5. Program implementing Jonkers' compactor. 
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V a r 2 a b l e s  U s e d  i n  J o n k a r ° s  C o m p a c t i o n  
= =  = = = = =  = = = = = =  = = = = = = = = = = = = = =  = = =  = = = = = = =  

P t S T A R T ~ L A S T t N E W  A D O R E S S  
- a s  i n  t h e  L i s p  2 Compactor  

F i e l d s  Used i n  J o n k e r ° s  Compactor  
R= = ~ = =  = = = = =  = = = = = = = =  = = ==  = =  = = =  = = = =  = 

R A R K E D C P ) , S Z Z E ( P )  - a s  I n  t h e  L i s p  Z Compactor  

P r o c e d u r e s  U s e d  i n  J o n k e r ' s  Compactor  

H O V E ( P j N E ~ _ A D O R E S S )  - r e l o c a c e s  t h e  c e l l  p o i n t e d  by P t o  i t s  n e e  a d d r e s s .  
T h i s  p r o c e d u r e  a l s o  u n m a r k s  a c e l l .  

N E X T ( P )  - a s  i n  t h e  L i s p  Z Compactor  

T H R E A D _ C H I L D R E N ( P )  - f o r  ( a l l  p o i n t e r  f i e l d s  i c o n t a i n e d  i n  c e l l  P )  do 
T H R E A D C i )  

T H R E A D  ROOTS - f o r  ( a l l  i n l t l a l  p o i n t e r s  i )  d o  T H R E A D ( 1 )  

Figure 5 continued. 

In this section we only present the time-formula for the Lisp 2 compactor. The 
reader should have no difficulty reconstructing the time-formulas for the other 
three compactors. 

Our time-formulas have been generated semiautomatically by a revised version 
of the program described in [3]. This version allows the user to specify the flows 
in selected branches of a program being analyzed. Kirchhoff's law is then applied 
using the algorithm proposed by Knuth and Stevenson [9] to determine the flows 
in the various program branches as functions of the flows specified by the user. 

It should be mentioned that  the task of generating time-formulas is akin to 
that of compiling. Therefore, if a given implementation optimizes certain parts of 
an algorithm, that  optimization should be taken into consideration in constructing 
its time-formula. We have endeavored to produce the "most reasonable" opti- 
mized version of the compactors. Although we expect the reader to trust our 
results, he or she should keep in mind that  the techniques proposed herein will 
enable him or her to reconstruct time-formulas for a particular compactor taking 
advantage of particular machine features. With the information in the program 
(Figure 2) and in Table I we can easily derive the time-formula for the Lisp 2 
compactor (see Figure 7). 

Once a time-formula is generated, it can easily be processed by a symbolic 
formula manipulator, for example, Macsyma [10]. This processing consists of 
simplifying a formula and expressing it in terms of certain parameters. By binding 
the time-variables to specific numeric values applicable to a given machine, we 
are able to do a microanalysis of the compactors. The results of this analysis are 
presented in the next section. 

4. RESULTS 

When plotting curves describing the time efficiencies of the algorithms, it is 
important to reduce the number of variables in the time-formulas. 
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TLISP2 :=  
2~ASSIGN÷ 
(NGS+NMC+I)~(WHILEOH+CONC)* 

(NGB+NMC)~(IFOH+MARKEO)* 
(NMC)¢(2~ASSIGN+LINK÷ADDITION÷SIZE)+ 
(NGC)~(WflILEON÷NEGATION+MARKEO*NEXT)+ 

(NGC-NGB)~CCOMBZNE)* 
(NGB*NMC)¢(ASSIGN+NEXT)* 

UPDATEROOTS÷ 
ASSIGN* 
(NMC*NGB)¢(REPEATOH÷CONO+ 

(IFOH+MARKEO))~ 
NMC~(UPDATECHILDRSN)+ 

(NMC+NGB)¢CASSIGN÷NEXT)+ 
ASSIGN+ 
(NNC+NGB)~(REPEATOH+COND+ 

(ASSIGN÷NEXT)* 
(IFOH÷MARKED))÷ 

NMC~(ASSIGN+LINK+UNNARK+MOVE)+ 
(NMC+NGB)¢(ASSIGN); 

NEXT:=2~ADDITION+SUB1; 
COMBINE:=ASSIGN*6$AODITION+4$SUgl:  
MARKED:=SUBI÷COND; 
LINK==SU81; 
SIZE:=SUBI+ADOITION; 
UPDATEROOTS:=NIP~(IFOH+COND÷SUBI+FOROH)+NIAP~(3#SUBI+ASSIGN); 
UPDATECHILDREN:=SUBI+¢~AODITION* 

NPC~(IFOH*CONO÷SUBI+FOROH)+NAPC~(3~SUBI+ASSIGN)| 
UNMARK==SUBI+ASSIGN; 
MOVE:=AODITION+SUBTRACT*SUBI*SIZEC~(FOROH+2¢SUBI÷2~ADOITION+ASSIGN); 

Fig. 7. T ime- fo rmula  for the  Lisp 2 compactor .  

First, we assume tha t  there  is only one active initial pointer  to the area being 
compacted.  Two ratios are critical in estimating the efficiencies of the compactors:  

a: (number of marked  cells)/( total  number  of cells) (according to Table  I, ~ = 
NMC/NC) ;  

fl: (number  of nonnil  pointers  in marked  cel ls) /( total  number  of pointers  in 
marked  cells) (i.e., fl = (NAP - 1 ) / (NPC * NMC)).  

We have also assumed tha t  the cells have an average size of five words and have 
an average of two pointers. Therefore ,  there  are 2 • fl active pointers  per  cell. 

In what  follows we show how to express NGB, the number  of garbage blocks, 
as a function of a, the quant i ty  indicating the percentage of marked  cells. Le t  
~ '  = (1 - ~), tha t  is, the  ratio of garbage cells (NGC) to the  total  number  of cells 
(NC). The  average size of garbage blocks A is de termined by 

1 
A = a ( l + 2 a ' + 3 a  ' 2 + . . . ) = - .  

Therefore,  NGB = a(1 - a)NC. 
Given a t ime-formula such as tha t  of Figure 7, it would be trivial to obtain 

simplified formulas tha t  hold for a different set of assumptions. Th e  curves 
presented here  were obtained by  binding the values of the t ime-variables to those 
of a PDP-10-PASCAL configuration (see Table  II). 

I t  is interesting to note  that ,  a l though the compactors  behave almost  l inearly 
in a, the actual t ime-formulas using NGB have a (small) nonlinear  component .  
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Fig. 8. Time comparisons for the four compactors. 

For  example, the use of Macsyma in processing the t ime-formula  for Lisp 2 
{Figure 7) yielded 

execution t ime = -1 .45a  2 = 12.97a = 2.21 seconds. 

Figure 8 shows the results obtained for the four compactors  given the assumptions 
made at  the beginning of this section and with fl = 0.9 (i.e., wi th  a large percentage 
of active pointers) and fl -- 0.3. T h e  total  number  of cells was assumed to be 
100,000, bu t  similar results were obtained by  considering o ther  m em o ry  sizes. 
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Fig. 9. Effect of combining the garbage cells in the Lisp 2 compactor. 

Benchmarks obtained by actually running the compactors yielded results 
within 5 percent of those shown in Figure 8. The discrepancies are due to several 
factors, among them the fact that the times presented in Table II are average 
times. 

The curves show that Lisp 2 is the most time efficient of the compactors. 
However, it should be kept in mind that  the Lisp 2 compactor requires an 
additional word per cell. For the assumed cell distribution, Morris' compactor is 
the least efficient even when assuming that an extra (small) field was available at 
the end of each cell to store the cell size, therefore permitting a speedup of the 
backward scan. Figure 8 also indicates that the Lisp 2 compactor exhibits the 
smallest overhead when the number of pointers increases. 

The effects of introducing changes in two of the compactors are depicted in 
Figures 9 and 10. Figure 9 shows how the efficiency of the Lisp 2 compactor 
decreases when garbage cells are not combined during the first scan (see Section 
2.1). Figure 10 shows the nonlinear behavior of the table compactor when the 
entire break table needs to be sorted. As mentioned earlier, this may occur if 
there are large discrepancies in the sizes of cells in the memory. The more linear 
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curves in Figure 10 (which are identical to those of Figure 8 for the table 
compactor) were obtained by assuming that  the largest cell was ten times larger 
than the average cell. 

Figures 11 and 12 show the effect of varying some of the parameters of the 
time-formulas. The curves shown in Figure 11 indicate how the time efficiency of 
the compactors varies with cell size. The results are based on the assumption 
that the total memory size remains constant. Also, the number of pointers per 
cell was considered to remain constant and equal to five. Results indicate that  
compactor efficiency increases as cell size increases. This is expectable since there 
are fewer pointers to be readjusted. The relative efficiencies of the compactors, 
however, remain essentially the same. 

The effects of changes in the value of the time-variable SUB1 are shown in 
Figure 12. (Recall that  SUB1 stands for the time to access an item in the 
memory.) The results indicate that  the relative efficiencies of the compactors 
remain approximately the same as the value of SUB1 is doubled or halved. 

An added advantage of the availability of time-formulas for the compactors is 
that  time-space trade-offs may be studied. For example, the choice between two 
compactors (say, Jonkers and Lisp 2) could be made by evaluating the product 
S * P (i.e., space * time) for each compactor and selecting the compactor yielding 
the smallest product. Note, however, that  the determination of S is machine 
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Fig. 11. Effect of cell size. 

dependent since word boundaries have to be taken into account. The following 
estimate, suggested by one of the referees, allows us to approximate the 
space-time impact of the extra pointer required for the Lisp 2 algorithm. When 
the size of memory considerably exceeds the steady-state requirements of the 
application program, the primary effect of larger cells will be more frequent 
garbage collection. Assume that the application requires cells at a rate of w per 
time unit. Then with the Lisp 2 collector the requirement will be Ow per time 
unit where 

O - Lisp 2 cell size 
nominal cell size" 
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With a fixed memory size, Lisp 2 will have to be called ® times as often as a 
nominal size collector. Thus, its cost should be multiplied by O. This has the 
effect of moving the Lisp 2 curves up slightly. In Figure 8 the space-penalized 
Lisp 2 curves would lie between the curves for Jonkers (and slightly above for 
small a). 

Great caution should be exercised in generalizing the presented results to cases 
involving assumptions far removed from the ones made herein. It is not improb- 
able that the relative efficiencies of the compactors will change in special cases. 

One should also keep in mind that, although Jonkers' algorithm exhibits the 
best performance with minimal additional space, the algorithm requires that  
there must exist enough space in a cell to store a pointer. The selection of an 
algorithm over another may therefore depend on factors other than time effi- 
ciency. 
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